Learning to detect unseen object classes by between-class attribute transfer

We study the problem of object classification when training and test classes are disjoint, i.e. no training examples of the target classes are available. This setup has hardly been studied in computer vision research, but it is the rule rather than the exception, because the world contains tens of t...

Full description

Saved in:
Bibliographic Details
Published in2009 IEEE Conference on Computer Vision and Pattern Recognition pp. 951 - 958
Main Authors Lampert, Christoph H, Nickisch, Hannes, Harmeling, Stefan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2009
Subjects
Online AccessGet full text
ISBN1424439922
9781424439928
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2009.5206594

Cover

Abstract We study the problem of object classification when training and test classes are disjoint, i.e. no training examples of the target classes are available. This setup has hardly been studied in computer vision research, but it is the rule rather than the exception, because the world contains tens of thousands of different object classes and for only a very few of them image, collections have been formed and annotated with suitable class labels. In this paper, we tackle the problem by introducing attribute-based classification. It performs object detection based on a human-specified high-level description of the target objects instead of training images. The description consists of arbitrary semantic attributes, like shape, color or even geographic information. Because such properties transcend the specific learning task at hand, they can be pre-learned, e.g. from image datasets unrelated to the current task. Afterwards, new classes can be detected based on their attribute representation, without the need for a new training phase. In order to evaluate our method and to facilitate research in this area, we have assembled a new large-scale dataset, "Animals with Attributes", of over 30,000 animal images that match the 50 classes in Osherson's classic table of how strongly humans associate 85 semantic attributes with animal classes. Our experiments show that by using an attribute layer it is indeed possible to build a learning object detection system that does not require any training images of the target classes.
AbstractList We study the problem of object classification when training and test classes are disjoint, i.e. no training examples of the target classes are available. This setup has hardly been studied in computer vision research, but it is the rule rather than the exception, because the world contains tens of thousands of different object classes and for only a very few of them image, collections have been formed and annotated with suitable class labels. In this paper, we tackle the problem by introducing attribute-based classification. It performs object detection based on a human-specified high-level description of the target objects instead of training images. The description consists of arbitrary semantic attributes, like shape, color or even geographic information. Because such properties transcend the specific learning task at hand, they can be pre-learned, e.g. from image datasets unrelated to the current task. Afterwards, new classes can be detected based on their attribute representation, without the need for a new training phase. In order to evaluate our method and to facilitate research in this area, we have assembled a new large-scale dataset, "Animals with Attributes", of over 30,000 animal images that match the 50 classes in Osherson's classic table of how strongly humans associate 85 semantic attributes with animal classes. Our experiments show that by using an attribute layer it is indeed possible to build a learning object detection system that does not require any training images of the target classes.
Author Nickisch, Hannes
Harmeling, Stefan
Lampert, Christoph H
Author_xml – sequence: 1
  givenname: Christoph H
  surname: Lampert
  fullname: Lampert, Christoph H
  email: christoph.lampert@tuebingen.mpg.de
  organization: Max Planck Inst. for Biol. Cybern., Tubingen, Germany
– sequence: 2
  givenname: Hannes
  surname: Nickisch
  fullname: Nickisch, Hannes
  email: hannes.nickisch@tuebingen.mpg.de
  organization: Max Planck Inst. for Biol. Cybern., Tubingen, Germany
– sequence: 3
  givenname: Stefan
  surname: Harmeling
  fullname: Harmeling, Stefan
  email: stefan.harmeling@tuebingen.mpg.de
  organization: Max Planck Inst. for Biol. Cybern., Tubingen, Germany
BookMark eNpNkEFLAzEUhKNWsK39AeIlf2DX95LsZnOUYlVYUES9lqR5kS01K5sU6b-3agVPw8w3zGEmbBT7SIxdIJSIYK7mr49PpQAwZSWgrow6YjOjG1RCKWkM4jEbI9SyqA2aEzb5A0KM_oEzNklpDSCkFjBmbUt2iF1847nnnjKtMt_GRBR579bfbrWxKVHibscd5c89KX4ibnMeOrfNxPNgYwo0nLPTYDeJZgedspfFzfP8rmgfbu_n123RIVS5EODRae1rJ5pgQ9AWyDmlQEofdCMsaqQ6OHRgvPcEXpl9VzWBpJBVJafs8ne3I6Llx9C922G3PLwivwBFdVSc
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2009.5206594
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781424439911
1424439914
EISSN 1063-6919
EndPage 958
ExternalDocumentID 5206594
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i105t-20d1b77d6b28faff7a0ebb44033df782a171e6fb1b09ddde0d496b248fe323553
IEDL.DBID RIE
ISBN 1424439922
9781424439928
ISSN 1063-6919
IngestDate Wed Aug 27 02:43:41 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i105t-20d1b77d6b28faff7a0ebb44033df782a171e6fb1b09ddde0d496b248fe323553
PageCount 8
ParticipantIDs ieee_primary_5206594
PublicationCentury 2000
PublicationDate 2009-June
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-June
PublicationDecade 2000
PublicationTitle 2009 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023720
ssj0000453166
ssj0003211698
Score 2.389232
Snippet We study the problem of object classification when training and test classes are disjoint, i.e. no training examples of the target classes are available. This...
SourceID ieee
SourceType Publisher
StartPage 951
SubjectTerms Computer vision
Cybernetics
Detectors
Face detection
Humans
Learning systems
Marine animals
Object detection
Testing
Training data
Title Learning to detect unseen object classes by between-class attribute transfer
URI https://ieeexplore.ieee.org/document/5206594
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA2bJ09TN_E3OXg0W5ukSXsejiFOhjjZbTTJVxGhla076F9vkqYTxYO35qPQNuTH6_fy3ofQNSTKomRNCeXSELvgpUQxqYmkzu6bSlUopx2ePYjpgt8tk2UH3ey0MADgD5_B0F16Lt9UeutSZaOEOhaQd1FXpqLRau3yKRaasDhAE9dm9s9GZDtGgbpqLJ75FIyILM5akZc3Zm29n0I7DfRnHGWj8fP8sbG1DE__UYbF70KTHpq1798cPnkbbms11J-_rB3_-4EHaPCt98Pz3U52iDpQHqFeAKg4TP-NDbU1INpYH90Hg9YXXFfYgKMksFO5Q4kr5XI8WDt8DhusPnA4FEZ8COd1U20LcO3RM6wHaDG5fRpPSajQQF4tLqvtFDOxktIIRdMiLwqZR6AU5xFjprDYI49lDKJQsYoyYxfSyPDM3svTAhi1SIcdo72yKuEE4TQpOI24SiRQzrRImbOaS3KpEqO1iU5R3_XX6r0x4ViFrjr7O3yO9hvax6VLLtBevd7CpUUPtbryw-YL1I26_Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pCBeNve_BoYeuPdTsTCSoQYsBwI-v6ZozJZmAc9K-33TqMxoO39WXJ0mZrv73vfd9D6AaEMig5oYRyqYnZ8EKimEyIpNbum0qVKqsdHk-C4Zw_LMSigW63WhgAKIvPoGsvSy5f58nGpsp6gloWkO-gXcE5F5Vaa5tRMeCE-Q6c2DEz_zZBtOUUqO3HUnKfASNB5Ee1zKu0Zq3dn9w4dASo70W9_vP0qTK2dM__0YilPIcGLTSuZ1CVn7x1N4XqJp-_zB3_O8UD1PlW_OHp9iw7RA3IjlDLQVTsNoC1CdVdIOpYG42cResLLnKswZIS2OrcIcO5slkenFiEDmusPrArCyNlCMdF1W8LcFHiZ1h10HxwN-sPievRQF4NMivMR6Z9JaUOFA3TOE1l7IFSnHuM6dSgj9iXPgSp8pUXabOVeppH5l4epsCowTrsGDWzPIMThEORcupxJSRQzpIgZNZsTsRSCZ0k2jtFbbtey_fKhmPplurs7_A12hvOxqPl6H7yeI72KxLIJk8uULNYbeDSYIlCXZWv0BfVBb5K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Learning+to+detect+unseen+object+classes+by+between-class+attribute+transfer&rft.au=Lampert%2C+Christoph+H&rft.au=Nickisch%2C+Hannes&rft.au=Harmeling%2C+Stefan&rft.date=2009-06-01&rft.pub=IEEE&rft.isbn=9781424439928&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=951&rft.epage=958&rft_id=info:doi/10.1109%2FCVPR.2009.5206594&rft.externalDocID=5206594
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon