A novel approach for ear recognition based on ICA and RBF network

Ear recognition is a new biometrics technique. Due to its unique physiological structure, position and stability, ear recognition is expected to be a promising authentication technique. In this paper, a hybrid system for classifying ear images is proposed. This system combines independent component...

Full description

Saved in:
Bibliographic Details
Published in2005 International Conference on Machine Learning and Cybernetics Vol. 7; pp. 4511 - 4515 Vol. 7
Main Authors Hai-Jun Zhang, Zhi-Chun Mu, Wei Qu, Lei-Ming Liu, Cheng-Yang Zhang
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text
ISBN0780390911
9780780390911
ISSN2160-133X
DOI10.1109/ICMLC.2005.1527733

Cover

Abstract Ear recognition is a new biometrics technique. Due to its unique physiological structure, position and stability, ear recognition is expected to be a promising authentication technique. In this paper, a hybrid system for classifying ear images is proposed. This system combines independent component analysis (ICA) and RBF network. The original ear image database is decomposed into linear combinations of several basic images. Then the corresponding coefficients of these combinations are fed up into RBF network instead of an original feature vector comprised of pixel values of grayscale images. The local features extraction of ICA and the adaptability of RBF neural network are combined reasonably. The robustness of the system is enhanced. The experiment results show that the recognition rate of ICA RBF method is improved substantially.
AbstractList Ear recognition is a new biometrics technique. Due to its unique physiological structure, position and stability, ear recognition is expected to be a promising authentication technique. In this paper, a hybrid system for classifying ear images is proposed. This system combines independent component analysis (ICA) and RBF network. The original ear image database is decomposed into linear combinations of several basic images. Then the corresponding coefficients of these combinations are fed up into RBF network instead of an original feature vector comprised of pixel values of grayscale images. The local features extraction of ICA and the adaptability of RBF neural network are combined reasonably. The robustness of the system is enhanced. The experiment results show that the recognition rate of ICA RBF method is improved substantially.
Author Hai-Jun Zhang
Wei Qu
Cheng-Yang Zhang
Lei-Ming Liu
Zhi-Chun Mu
Author_xml – sequence: 1
  surname: Hai-Jun Zhang
  fullname: Hai-Jun Zhang
  organization: Sch. of Inf. Eng., Univ. of Sci. & Technol., Beijing, China
– sequence: 2
  surname: Zhi-Chun Mu
  fullname: Zhi-Chun Mu
  organization: Sch. of Inf. Eng., Univ. of Sci. & Technol., Beijing, China
– sequence: 3
  surname: Wei Qu
  fullname: Wei Qu
  organization: Sch. of Inf. Eng., Univ. of Sci. & Technol., Beijing, China
– sequence: 4
  surname: Lei-Ming Liu
  fullname: Lei-Ming Liu
  organization: Sch. of Inf. Eng., Univ. of Sci. & Technol., Beijing, China
– sequence: 5
  surname: Cheng-Yang Zhang
  fullname: Cheng-Yang Zhang
  organization: Sch. of Inf. Eng., Univ. of Sci. & Technol., Beijing, China
BookMark eNotT1FLwzAYDDjBbe4P6Ev-QOv3NU1iHmdxc1ARRMG38TVNtDqTkhbFf2_F3cvdwXHcLdgsxOAYu0DIEcFc7ar7usoLAJmjLLQW4oQtQF-DMGAQZ2xeoIIMhXg5Y6theIcJwkglYM7Wax7ilztw6vsUyb5xHxN3lHhyNr6Gbuxi4A0NruWT2FVrTqHljzcbHtz4HdPHOTv1dBjc6shL9ry5farusvphO8XrrEOQY4atFyTL1qu29KCKhgqrrdAKLRJJ6W0JhTWNNpNTzui_fcpaq4zQhCSW7PK_t3PO7fvUfVL62R8fi1-N0kq0
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2005.1527733
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 4515 Vol. 7
ExternalDocumentID 1527733
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i105t-1df3a54df6d4f062ba2c7c3761c1aa55fc402c9b79aa56e9756306ccc6937a1a3
IEDL.DBID RIE
ISBN 0780390911
9780780390911
ISSN 2160-133X
IngestDate Tue Aug 26 19:23:37 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i105t-1df3a54df6d4f062ba2c7c3761c1aa55fc402c9b79aa56e9756306ccc6937a1a3
ParticipantIDs ieee_primary_1527733
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000395630
ssj0000744891
Score 1.4780512
Snippet Ear recognition is a new biometrics technique. Due to its unique physiological structure, position and stability, ear recognition is expected to be a promising...
SourceID ieee
SourceType Publisher
StartPage 4511
SubjectTerms Authentication
Biometrics
Ear
Ear recognition
Gray-scale
Image databases
Independent component analysis
independent component analysis (ICA)
Pixel
radial basis function (RBF) network
Radial basis function networks
Stability
Vectors
Title A novel approach for ear recognition based on ICA and RBF network
URI https://ieeexplore.ieee.org/document/1527733
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJ09TN_GbHDyarWnapDnO4tjEiYiD3Ua-CqK0Ip0H_3pf0w9RPHjLKw1pH03eR3_v9xC6jJhlIZMZoToJSJS4gCRShySjWUAdT7TzqMrlPZ-vott1vO6hq64WxjnnwWduXA39v3xbmG2VKptULVgFYztoRyS8rtXq8ikBkx3VlZcFBB6-YV5IeUAgFFv7qD2BG8FG0oZ8p5PbgppAThbp8i6t0y3Nij9ar3jLMxugZfvMNeDkZbwt9dh8_qJz_O9L7aHRd40ffuis1z7qufwADdomD7jZ80M0neK8-HCvuGUfx-DmYtgfuMMeFTmujKHFMFikU6xyix-vZzivIeYjtJrdPKVz0vRdIM_gbZWE2oypOLIZt1EW8FCr0AgDJxE1VKk4zgwEnUZqIUHiTopK8dwYw8HXUVSxQ9TPi9wdIQyzubLChlwmkXVUh0Jawzgcs1wZER2jYaWRzVtNrbFplHHy9-VTtOuZU30G5Az1y_etOwefoNQX_mP4AnkerCI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAq0CLeeGAkJY4dOx5LRNVCUyHUSt0qvyIhUIJQysCvx3EeCMTA5otiOTnFvke--w6AK4I1DjBPPSQj3yOR8b2Iy8BLUeojQyNpHKoymdPJktyvwlUHXLe1MMYYBz4zw3Lo_uXrXG3KVNlN2YKVYbwFtkNCSFhVa7UZFR_zluzKycyGHq5lXoCo79lgbOXi9sjeaK0kqul3WrkpqfH5zTROZnGVcKnX_NF8xdmecQ8kzVNXkJOX4aaQQ_X5i9Dxv6-1BwbfVX7wsbVf-6BjsgPQa9o8wHrX98FoBLP8w7zChn8cWkcX2h0CW_RRnsHSHGpoB9N4BEWm4dPtGGYVyHwAluO7RTzx6s4L3rP1twoP6RSLkOiUapL6NJAiUEzZswgpJEQYpsqGnYpLxq1EDWel4qlSilpvRyCBD0E3yzNzBKCdTYVmOqA8ItogGTCuFab2oKVCMXIM-qVG1m8Vuca6VsbJ35cvwc5kkczWs-n84RTsOh5Vlw85A93ifWPOrYdQyAv3YXwBt22vbw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=A+novel+approach+for+ear+recognition+based+on+ICA+and+RBF+network&rft.au=Hai-Jun+Zhang&rft.au=Zhi-Chun+Mu&rft.au=Wei+Qu&rft.au=Lei-Ming+Liu&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780780390911&rft.issn=2160-133X&rft.volume=7&rft.spage=4511&rft.epage=4515+Vol.+7&rft_id=info:doi/10.1109%2FICMLC.2005.1527733&rft.externalDocID=1527733
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon