Code and parse trees for lossless source encoding
This paper surveys the theoretical literature on fixed-to-variable-length lossless source code trees, called code trees, and on variable-length-to-fixed lossless source code trees, called parse trees. In particular, the following code tree topics are outlined in this survey: characteristics of the H...
Saved in:
Published in | Compression and complexity of sequences 1997 : proceedings, Positano, Amalfitan coast, Salerno, Italy, June 11-13, 1997 pp. 145 - 171 |
---|---|
Main Author | |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
1997
|
Subjects | |
Online Access | Get full text |
ISBN | 9780818681325 0818681322 |
DOI | 10.1109/SEQUEN.1997.666911 |
Cover
Abstract | This paper surveys the theoretical literature on fixed-to-variable-length lossless source code trees, called code trees, and on variable-length-to-fixed lossless source code trees, called parse trees. In particular, the following code tree topics are outlined in this survey: characteristics of the Huffman (1952) code tree; Huffman-type coding for infinite source alphabets and universal coding; the Huffman problem subject to a lexicographic constraint, or the Hu-Tucker (1982) problem; the Huffman problem subject to maximum codeword length constraints; code trees which minimize other functions besides average codeword length; coding for unequal cost code symbols, or the Karp problem, and finite state channels; and variants of Huffman coding in which the assignment of 0s and 1s within codewords is significant such as bidirectionality and synchronization. The literature on parse tree topics is less extensive. Treated here are: variants of Tunstall (1968) parsing; dualities between parsing and coding; dual tree coding in which parsing and coding are combined to yield variable-length-to-variable-length codes; and parsing and random number generation. Finally, questions related to counting and representing code and parse trees are also discussed. |
---|---|
AbstractList | This paper surveys the theoretical literature on fixed-to-variable-length lossless source code trees, called code trees, and on variable-length-to-fixed lossless source code trees, called parse trees. In particular, the following code tree topics are outlined in this survey: characteristics of the Huffman (1952) code tree; Huffman-type coding for infinite source alphabets and universal coding; the Huffman problem subject to a lexicographic constraint, or the Hu-Tucker (1982) problem; the Huffman problem subject to maximum codeword length constraints; code trees which minimize other functions besides average codeword length; coding for unequal cost code symbols, or the Karp problem, and finite state channels; and variants of Huffman coding in which the assignment of 0s and 1s within codewords is significant such as bidirectionality and synchronization. The literature on parse tree topics is less extensive. Treated here are: variants of Tunstall (1968) parsing; dualities between parsing and coding; dual tree coding in which parsing and coding are combined to yield variable-length-to-variable-length codes; and parsing and random number generation. Finally, questions related to counting and representing code and parse trees are also discussed. |
Author | Abrahams, J. |
Author_xml | – sequence: 1 givenname: J. surname: Abrahams fullname: Abrahams, J. organization: Div. of Math., Comput. & Inf. Sci., Office of Naval Res., Arlington, VA, USA |
BookMark | eNotj81KxDAURgMqqGNfYFZ5gdZ7kza9WUqpPzAoorMeYnIjldoMybjw7R0Yv82BszjwXYvzJS0sxBqhQQR7-za-bsfnBq3tG2OMRTwTle0JCMkQatVdiqqULziu6wja9krgkAJLtwS5d7mwPGTmImPKck6lzFyKLOkne5a8-BSm5fNGXEQ3F67-uRLb-_F9eKw3Lw9Pw92mnhDaQx29I-tBRaNCaxwErckCB9KgjerItdYhM_lOGW0pWgNe6z5-GFbKHd1KrE_diZl3-zx9u_y7O_3Sf16TRBM |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/SEQUEN.1997.666911 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 171 |
ExternalDocumentID | 666911 |
GroupedDBID | 6IE 6IK 6IL AAJGR AAWTH ACGHX ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK OCL RIB RIC RIE RIL |
ID | FETCH-LOGICAL-i104t-fca89c02f62d46a0d33890ed83036258a49a1ee8c526398f960c337fb6e22a263 |
IEDL.DBID | RIE |
ISBN | 9780818681325 0818681322 |
IngestDate | Tue Aug 26 16:54:37 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i104t-fca89c02f62d46a0d33890ed83036258a49a1ee8c526398f960c337fb6e22a263 |
PageCount | 27 |
ParticipantIDs | ieee_primary_666911 |
PublicationCentury | 1900 |
PublicationDate | 19970000 |
PublicationDateYYYYMMDD | 1997-01-01 |
PublicationDate_xml | – year: 1997 text: 19970000 |
PublicationDecade | 1990 |
PublicationTitle | Compression and complexity of sequences 1997 : proceedings, Positano, Amalfitan coast, Salerno, Italy, June 11-13, 1997 |
PublicationTitleAbbrev | SEQUEN |
PublicationYear | 1997 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000558044 |
Score | 1.2831767 |
Snippet | This paper surveys the theoretical literature on fixed-to-variable-length lossless source code trees, called code trees, and on variable-length-to-fixed... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 145 |
SubjectTerms | Binary codes Binary trees Cost function Data compression Encoding Huffman coding Random number generation Random variables Source coding |
Title | Code and parse trees for lossless source encoding |
URI | https://ieeexplore.ieee.org/document/666911 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09a8MwEBVtpnZpm6b0Gw1d7ciOJEtzSAgdQksbyBZkS4LS4ITGWfLreycl6QcdutkCCwuB3r27e0-EPGQWWAVHdTvscMIl01jftYm2mWcWEIb50CA7lqMJf5yK6dZnO2hhnHOh-cyl-Bhq-XZRrTFV1oVQW6OO97AodJRq7dMpTAjFOA8Oj-gAjyRr66-zexc7zQzT3ZfB82QwRqlekcZZf9yuEsBleBJV26vgSYg9Je_puinTavPLsfGf_31KOl8qPvq0x6czcuDqNjn-ZkB4TrL-wjpqakuXQHAdxRL1ikIcS-cAnnM4BWnM7lP0u8RpOmQyHLz2R8n2EoXkDZhWk_jKKF2x3MvccmmYBU6qmbMqYJdQhmuTOacqkUOwojwwmqrXK3wpXZ4bGLsgrXpRu0tC4Ws4DUVmGC-4tWXZ0zzzqlRScg805Yq0ce2zZfTJmMVlX_85ekOOohEsJjNuSav5WLs7gPemvA8b-wme3p63 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4MHtSLihh_24PXjW60XXsmEFQkGiHhRrq1TYxkEBgX_3pfW8Af8eBta7JmTZN-73vvfV8Ruks0sArq1O2wwxHlRLr6ro6kTizRgDDE-gbZAe-N6MOYjdc-214LY4zxzWcmdo--lq9nxcqlypoQakun491lQCqyINbaJlQIY4JQ6j0enQe8o1lrh53NO9uoZohsvnZeRp2BE-tlcZj3x_0qHl66h0G3vfSuhK6r5D1eVXlcfPzybPznnx-hxpeODz9vEeoY7Ziyjg6-WRCeoKQ90warUuM5UFyDXZF6iSGSxVOAzymcgzjk97FzvHTTNNCo2xm2e9H6GoXoDbhWFdlCCVmQ1PJUU66IBlYqidHCoxcTikqVGCMKlkK4IixwmqLVymzOTZoqGDtFtXJWmjOE4Ws4D1miCM2o1nnekjSxIhecUwtE5RzV3don8-CUMQnLvvhz9Bbt9YZP_Un_fvB4ifaDLaxLbVyhWrVYmWsA-yq_8Zv8CSzeogg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Compression+and+complexity+of+sequences+1997+%3A+proceedings%2C+Positano%2C+Amalfitan+coast%2C+Salerno%2C+Italy%2C+June+11-13%2C+1997&rft.atitle=Code+and+parse+trees+for+lossless+source+encoding&rft.au=Abrahams%2C+J.&rft.date=1997-01-01&rft.pub=IEEE&rft.isbn=9780818681325&rft.spage=145&rft.epage=171&rft_id=info:doi/10.1109%2FSEQUEN.1997.666911&rft.externalDocID=666911 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780818681325/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780818681325/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780818681325/sc.gif&client=summon&freeimage=true |