An EM-based algorithm for recurrent neural networks
A stochastic model is established for fully-connected recurrent neural networks with sigmoid units based on Gibbs distributions. The EM (expectation-maximization) algorithm with a mean field approximation is then applied to train recurrent networks through hidden state estimation. The resulting EM-b...
        Saved in:
      
    
          | Published in | Proceedings 1995 IEEE International Symposium on Information Theory p. 175 | 
|---|---|
| Main Authors | , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        1995
     | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 0780324536 9780780324534  | 
| DOI | 10.1109/ISIT.1995.531524 | 
Cover
| Abstract | A stochastic model is established for fully-connected recurrent neural networks with sigmoid units based on Gibbs distributions. The EM (expectation-maximization) algorithm with a mean field approximation is then applied to train recurrent networks through hidden state estimation. The resulting EM-based algorithm, which reduces training the original recurrent network to training a set of individual feedforward neurons, simplifies the original training process and reduces the training time. | 
    
|---|---|
| AbstractList | A stochastic model is established for fully-connected recurrent neural networks with sigmoid units based on Gibbs distributions. The EM (expectation-maximization) algorithm with a mean field approximation is then applied to train recurrent networks through hidden state estimation. The resulting EM-based algorithm, which reduces training the original recurrent network to training a set of individual feedforward neurons, simplifies the original training process and reduces the training time. | 
    
| Author | Ji, C. Ma, S.  | 
    
| Author_xml | – sequence: 1 givenname: S. surname: Ma fullname: Ma, S. organization: Dept. of Electr. Comput. & Syst. Eng., Rensselaer Polytech. Inst., Troy, NY, USA – sequence: 2 givenname: C. surname: Ji fullname: Ji, C.  | 
    
| BookMark | eNotj0FLwzAYQAMq6Obu4il_oDVfki9tj2NMV5h4cJ7H1-SrVrtWkg7x3zuY7_JuD95MXA7jwELcgcoBVPVQv9a7HKoKczSA2l6ImSpKZbRF467FIqVPdcJatApuhFkOcv2cNZQ4SOrfx9hNHwfZjlFG9scYeZjkwMdI_UnTzxi_0q24aqlPvPj3XLw9rnerTbZ9eapXy23WgbJT5pRGCI5Ild5j4cAjkbfGlkzBIAZumuCNJQeVYa8JQltoVBQCet2QmYv7c7dj5v137A4Uf_fnLfMH57tE4g | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/ISIT.1995.531524 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| ExternalDocumentID | 531524 | 
    
| GroupedDBID | 6IE 6IK 6IL AAJGR AAWTH ACGHX ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK OCL RIE RIL  | 
    
| ID | FETCH-LOGICAL-i104t-60251d6aa08cc5761c5aac4348ead355debbdc34a6193ec2a1df7250add5c2ba3 | 
    
| IEDL.DBID | RIE | 
    
| ISBN | 0780324536 9780780324534  | 
    
| IngestDate | Tue Aug 26 16:58:45 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i104t-60251d6aa08cc5761c5aac4348ead355debbdc34a6193ec2a1df7250add5c2ba3 | 
    
| ParticipantIDs | ieee_primary_531524 | 
    
| PublicationCentury | 1900 | 
    
| PublicationDate | 19950000 | 
    
| PublicationDateYYYYMMDD | 1995-01-01 | 
    
| PublicationDate_xml | – year: 1995 text: 19950000  | 
    
| PublicationDecade | 1990 | 
    
| PublicationTitle | Proceedings 1995 IEEE International Symposium on Information Theory | 
    
| PublicationTitleAbbrev | ISIT | 
    
| PublicationYear | 1995 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0000445401 | 
    
| Score | 1.2356994 | 
    
| Snippet | A stochastic model is established for fully-connected recurrent neural networks with sigmoid units based on Gibbs distributions. The EM... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 175 | 
    
| SubjectTerms | Computer networks Convergence Information theory Jacobian matrices Neural networks Neurons Recurrent neural networks Testing  | 
    
| Title | An EM-based algorithm for recurrent neural networks | 
    
| URI | https://ieeexplore.ieee.org/document/531524 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJyZeRbzlgdVpUj_ijAi1apGKkGilbpVjO1BRUtSmC7-eO6ctAjEwxclg2c7Jd9_5vs-E3AoUiPGiYHkCW6DgVjHjdcK0ApNW6EIFEoWHj6o_Fg8TOdnobAcujPc-FJ_5CJvhLN8t7BpTZW2wF9kRDdJItaqpWrt0SixQSi4JwFzHECVIrjb6Ott3sT2ljLP24HkwQqKejOo-f9ytElxL76DmbK-CIiFWlLxF6yqP7OcvvcZ_jvqQtL45fPRp552OyJ4vTwi_K2l3yNB1OWrmL4vlrHp9pxC40iUm3lGqiaLEpZnDIxSIr1pk3OuO7vtsc20CmwG2qphC2OCUMbG2FuBEYqUxVnChwWogvHA-z53lwgB24t52TOKKFCIh2Omk7eSGn5JmuSj9GaGZFI4bFLyxqch4nBXQmceF9mlSGH1OjnG-049aGWNaT_Xiz6-XZL-mg2P64oo0q-XaX4NDr_Kb8Cu_AGZLm0g | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4UD3ryF8bf7uC1Y6OvYzsaAwEFYiIk3EjXdkrEYWBc_Ot9rwOMxoOndTs0bffS977X931l7BZIIMZCxtMQt0AQOuLKxiGPIzTpiFwoEFG414_aQ3gYydFKZ9txYay1rvjM-tR0Z_lmppeUKquhvcg6bLMdCQCyJGttEioBkJhc6KB5HGCcIEW0UthZv8P6nDJIap3nzoCoetIve_1xu4pzLq39krW9cJqEVFPy5i-L1NefvxQb_znuA1b9ZvF5Txv_dMi2bH7MxF3uNXucnJfx1PRlNp8Ur-8ehq7enFLvJNbkkcilmuLDlYgvqmzYag7u23x1cQKfILoqeETAwURKBbHWCChCLZXSICBGu8EAw9g0NVqAQvQkrK6r0GQNjIVwr5O6nipxwir5LLenzEskGKFI8kY3IBFBkmFnlhbaNsJMxWfsiOY7_ii1McblVM___HrDdtuDXnfc7fQfL9heSQ6nZMYlqxTzpb1C916k1-63fgG-eZ6V | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+1995+IEEE+International+Symposium+on+Information+Theory&rft.atitle=An+EM-based+algorithm+for+recurrent+neural+networks&rft.au=Ma%2C+S.&rft.au=Ji%2C+C.&rft.date=1995-01-01&rft.pub=IEEE&rft.isbn=9780780324534&rft.spage=175&rft_id=info:doi/10.1109%2FISIT.1995.531524&rft.externalDocID=531524 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780324534/lc.gif&client=summon&freeimage=true | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780324534/mc.gif&client=summon&freeimage=true | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780324534/sc.gif&client=summon&freeimage=true |