Genetic algorithm with search area adaptation for the function optimization and its experimental analysis
The paper applies a method, Genetic algorithm with Search area Adaptation (GSA), to function optimization. In a previous study (H. Someya and M. Yamamura, 1999), GSA was proposed for the floorplan design problem and it showed better performance than several existing methods. We believe that investig...
Saved in:
| Published in | CEC2001 : proceedings of the 2001 congress on evolutionary computation, May 27-30, 2001, Coex, Seoul, Korea Vol. 2; pp. 933 - 940 vol. 2 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
2001
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 0780366573 9780780366572 |
| DOI | 10.1109/CEC.2001.934290 |
Cover
| Abstract | The paper applies a method, Genetic algorithm with Search area Adaptation (GSA), to function optimization. In a previous study (H. Someya and M. Yamamura, 1999), GSA was proposed for the floorplan design problem and it showed better performance than several existing methods. We believe that investigation of the searching behavior of the algorithm is important. However, since the floorplan design problem is a combinatorial optimization problem, we do not know in detail why GSA works well. Thus, we apply GSA to function optimization in order to study the searching behavior in detail. In the function optimization, several benchmarks have been proposed, and their optima and landscapes are known. There is another reason to apply GSA to function optimization: we would like to propose a superior method for function optimization. Through several experiments, we have confirmed that GSA works adaptively and it shows higher performance than existing methods. |
|---|---|
| AbstractList | The paper applies a method, Genetic algorithm with Search area Adaptation (GSA), to function optimization. In a previous study (H. Someya and M. Yamamura, 1999), GSA was proposed for the floorplan design problem and it showed better performance than several existing methods. We believe that investigation of the searching behavior of the algorithm is important. However, since the floorplan design problem is a combinatorial optimization problem, we do not know in detail why GSA works well. Thus, we apply GSA to function optimization in order to study the searching behavior in detail. In the function optimization, several benchmarks have been proposed, and their optima and landscapes are known. There is another reason to apply GSA to function optimization: we would like to propose a superior method for function optimization. Through several experiments, we have confirmed that GSA works adaptively and it shows higher performance than existing methods. |
| Author | Someya, H. Yamamura, M. |
| Author_xml | – sequence: 1 givenname: H. surname: Someya fullname: Someya, H. organization: Interdisciplinary Graduate Sch. of Sci. & Eng., Tokyo Inst. of Technol., Japan – sequence: 2 givenname: M. surname: Yamamura fullname: Yamamura, M. |
| BookMark | eNotUMFKxDAUDKigu-5Z8JQfaH1pkqY5SllXYcGLnpdn-moj3bQ0EV2_3mKdwwzMwPDerNh5GAIxdiMgFwLsXb2t8wJA5FaqwsIZW4GpQJalNvKSbWL8gBnSKiPlFfM7CpS849i_D5NP3ZF_zcwj4eQ6jhMhxwbHhMkPgbfDxFNHvP0M7s8YxuSP_mdJMTTcp8jpe6TJHykk7GcT-1P08ZpdtNhH2vzrmr0-bF_qx2z_vHuq7_eZF6BSpqAthNWEjXuTav7IaNdUCGUlKlmRcdqiKY0RWmhQLSikwhUg0NjW2tLINbtdej0RHcb5DpxOh2UM-QssRVeo |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CEC.2001.934290 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EndPage | 940 vol. 2 |
| ExternalDocumentID | 934290 |
| GroupedDBID | 6IE 6IK 6IL AAJGR AAVQY AAWTH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK OCL RIE RIL |
| ID | FETCH-LOGICAL-i104t-40f2195eadcb3411075cd8a0681838e7c59a7677151504f04ae2c201a79f99673 |
| IEDL.DBID | RIE |
| ISBN | 0780366573 9780780366572 |
| IngestDate | Tue Aug 26 18:49:57 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i104t-40f2195eadcb3411075cd8a0681838e7c59a7677151504f04ae2c201a79f99673 |
| ParticipantIDs | ieee_primary_934290 |
| PublicationCentury | 2000 |
| PublicationDate | 20010000 |
| PublicationDateYYYYMMDD | 2001-01-01 |
| PublicationDate_xml | – year: 2001 text: 20010000 |
| PublicationDecade | 2000 |
| PublicationTitle | CEC2001 : proceedings of the 2001 congress on evolutionary computation, May 27-30, 2001, Coex, Seoul, Korea |
| PublicationTitleAbbrev | CEC |
| PublicationYear | 2001 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000394733 |
| Score | 1.3167943 |
| Snippet | The paper applies a method, Genetic algorithm with Search area Adaptation (GSA), to function optimization. In a previous study (H. Someya and M. Yamamura,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 933 |
| SubjectTerms | Algorithm design and analysis Design optimization Euclidean distance Genetic algorithms Genetic engineering Genetic mutations Optimization methods Performance analysis Search methods |
| Title | Genetic algorithm with search area adaptation for the function optimization and its experimental analysis |
| URI | https://ieeexplore.ieee.org/document/934290 |
| Volume | 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagE1OhFPGWB9akbpzE8Vy1qpBADFTqVp0dByJoUrXpwq_nbKflIQakDIkHK_Lj7vvOvu8IuRMi15oNiyACAUEMWgSKxRCwAn1RnGuTKRsaeHhMp7P4fp7MW51tlwtjjHGXz0xoX91Zfl7rrQ2VDSRH64n8_FBkqU_V2odTGJex4NwR8wytcpoI3urr7L6jVtlnyORgNB5ZbjgMfZc_Sqs4zzLp-pTtjRMktBdK3sJto0L98Uuu8Z8_fUz6Xyl89GnvnE7Igal6pLur4UDbLX1KSqs7jYuHwvtLvS6b1yW1oVnqdwAFxJQUclj5E3uKEJciZKTWHbqGGk3Oss3lpFDltGw29HvZAGz0sid9MpuMn0fToC2_EJTI0RpklgWaswSXmlbo65AnWiEBYCn6eJ4ZoRMJIhXCQiIWFzjDJtKIJ0DIAlmU4GekU9WVOScUDUNkk1oRjCFiUww4zokEmVmLIxRckJ4duMXKK2ws_Jhd_tl6RY78PTD7XJNOs96aGwQGjbp1S-ITPnW08Q |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQGWACShFvPLAmdWMnTuaqVYG2YmilbpXtOBBBk6pNF349ZzstDzEgZUg8WJEfd9939n2H0D3nqVKkk3mB4MJjQnFPEiY8koEvYqnSsTShgdE4GkzZ4yyc1TrbNhdGa20vn2nfvNqz_LRUGxMqaycUrCfw8_2QMRa6ZK1dQIXQhHFKLTWPwS5HIae1ws72O6i1fTokaXd7XcMOO77r9EdxFetb-kcuaXttJQnNlZI3f1NJX338Emz8528fo9ZXEh9-3rmnE7SniyY62lZxwPWmPkW5UZ6G5YPF-0u5yqvXBTbBWez2ABaAKrFIxdKd2WMAuRhAIzYO0TaUYHQWdTYnFkWK82qNvxcOgEYnfNJC035v0h14dQEGLweWVgG3zMCghbDYlARvB0zRSAkIEoGXp7HmKkwEjzg3oIiwDOZYBwoQheBJBjyK0zPUKMpCnyMMpiEwaa0AxwCzSSIozEkiktjYHC7FBWqagZsvncbG3I3Z5Z-td-hgMBkN58OH8dMVOnS3wsxzjRrVaqNvACZU8tYuj0_qNrg- |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=CEC2001+%3A+proceedings+of+the+2001+congress+on+evolutionary+computation%2C+May+27-30%2C+2001%2C+Coex%2C+Seoul%2C+Korea&rft.atitle=Genetic+algorithm+with+search+area+adaptation+for+the+function+optimization+and+its+experimental+analysis&rft.au=Someya%2C+H.&rft.au=Yamamura%2C+M.&rft.date=2001-01-01&rft.pub=IEEE&rft.isbn=9780780366572&rft.volume=2&rft.spage=933&rft.epage=940+vol.+2&rft_id=info:doi/10.1109%2FCEC.2001.934290&rft.externalDocID=934290 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780366572/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780366572/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780366572/sc.gif&client=summon&freeimage=true |