Genetic algorithm with search area adaptation for the function optimization and its experimental analysis

The paper applies a method, Genetic algorithm with Search area Adaptation (GSA), to function optimization. In a previous study (H. Someya and M. Yamamura, 1999), GSA was proposed for the floorplan design problem and it showed better performance than several existing methods. We believe that investig...

Full description

Saved in:
Bibliographic Details
Published inCEC2001 : proceedings of the 2001 congress on evolutionary computation, May 27-30, 2001, Coex, Seoul, Korea Vol. 2; pp. 933 - 940 vol. 2
Main Authors Someya, H., Yamamura, M.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2001
Subjects
Online AccessGet full text
ISBN0780366573
9780780366572
DOI10.1109/CEC.2001.934290

Cover

Abstract The paper applies a method, Genetic algorithm with Search area Adaptation (GSA), to function optimization. In a previous study (H. Someya and M. Yamamura, 1999), GSA was proposed for the floorplan design problem and it showed better performance than several existing methods. We believe that investigation of the searching behavior of the algorithm is important. However, since the floorplan design problem is a combinatorial optimization problem, we do not know in detail why GSA works well. Thus, we apply GSA to function optimization in order to study the searching behavior in detail. In the function optimization, several benchmarks have been proposed, and their optima and landscapes are known. There is another reason to apply GSA to function optimization: we would like to propose a superior method for function optimization. Through several experiments, we have confirmed that GSA works adaptively and it shows higher performance than existing methods.
AbstractList The paper applies a method, Genetic algorithm with Search area Adaptation (GSA), to function optimization. In a previous study (H. Someya and M. Yamamura, 1999), GSA was proposed for the floorplan design problem and it showed better performance than several existing methods. We believe that investigation of the searching behavior of the algorithm is important. However, since the floorplan design problem is a combinatorial optimization problem, we do not know in detail why GSA works well. Thus, we apply GSA to function optimization in order to study the searching behavior in detail. In the function optimization, several benchmarks have been proposed, and their optima and landscapes are known. There is another reason to apply GSA to function optimization: we would like to propose a superior method for function optimization. Through several experiments, we have confirmed that GSA works adaptively and it shows higher performance than existing methods.
Author Someya, H.
Yamamura, M.
Author_xml – sequence: 1
  givenname: H.
  surname: Someya
  fullname: Someya, H.
  organization: Interdisciplinary Graduate Sch. of Sci. & Eng., Tokyo Inst. of Technol., Japan
– sequence: 2
  givenname: M.
  surname: Yamamura
  fullname: Yamamura, M.
BookMark eNotUMFKxDAUDKigu-5Z8JQfaH1pkqY5SllXYcGLnpdn-moj3bQ0EV2_3mKdwwzMwPDerNh5GAIxdiMgFwLsXb2t8wJA5FaqwsIZW4GpQJalNvKSbWL8gBnSKiPlFfM7CpS849i_D5NP3ZF_zcwj4eQ6jhMhxwbHhMkPgbfDxFNHvP0M7s8YxuSP_mdJMTTcp8jpe6TJHykk7GcT-1P08ZpdtNhH2vzrmr0-bF_qx2z_vHuq7_eZF6BSpqAthNWEjXuTav7IaNdUCGUlKlmRcdqiKY0RWmhQLSikwhUg0NjW2tLINbtdej0RHcb5DpxOh2UM-QssRVeo
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CEC.2001.934290
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 940 vol. 2
ExternalDocumentID 934290
GroupedDBID 6IE
6IK
6IL
AAJGR
AAVQY
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
OCL
RIE
RIL
ID FETCH-LOGICAL-i104t-40f2195eadcb3411075cd8a0681838e7c59a7677151504f04ae2c201a79f99673
IEDL.DBID RIE
ISBN 0780366573
9780780366572
IngestDate Tue Aug 26 18:49:57 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i104t-40f2195eadcb3411075cd8a0681838e7c59a7677151504f04ae2c201a79f99673
ParticipantIDs ieee_primary_934290
PublicationCentury 2000
PublicationDate 20010000
PublicationDateYYYYMMDD 2001-01-01
PublicationDate_xml – year: 2001
  text: 20010000
PublicationDecade 2000
PublicationTitle CEC2001 : proceedings of the 2001 congress on evolutionary computation, May 27-30, 2001, Coex, Seoul, Korea
PublicationTitleAbbrev CEC
PublicationYear 2001
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000394733
Score 1.3167943
Snippet The paper applies a method, Genetic algorithm with Search area Adaptation (GSA), to function optimization. In a previous study (H. Someya and M. Yamamura,...
SourceID ieee
SourceType Publisher
StartPage 933
SubjectTerms Algorithm design and analysis
Design optimization
Euclidean distance
Genetic algorithms
Genetic engineering
Genetic mutations
Optimization methods
Performance analysis
Search methods
Title Genetic algorithm with search area adaptation for the function optimization and its experimental analysis
URI https://ieeexplore.ieee.org/document/934290
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagE1OhFPGWB9akbpzE8Vy1qpBADFTqVp0dByJoUrXpwq_nbKflIQakDIkHK_Lj7vvOvu8IuRMi15oNiyACAUEMWgSKxRCwAn1RnGuTKRsaeHhMp7P4fp7MW51tlwtjjHGXz0xoX91Zfl7rrQ2VDSRH64n8_FBkqU_V2odTGJex4NwR8wytcpoI3urr7L6jVtlnyORgNB5ZbjgMfZc_Sqs4zzLp-pTtjRMktBdK3sJto0L98Uuu8Z8_fUz6Xyl89GnvnE7Igal6pLur4UDbLX1KSqs7jYuHwvtLvS6b1yW1oVnqdwAFxJQUclj5E3uKEJciZKTWHbqGGk3Oss3lpFDltGw29HvZAGz0sid9MpuMn0fToC2_EJTI0RpklgWaswSXmlbo65AnWiEBYCn6eJ4ZoRMJIhXCQiIWFzjDJtKIJ0DIAlmU4GekU9WVOScUDUNkk1oRjCFiUww4zokEmVmLIxRckJ4duMXKK2ws_Jhd_tl6RY78PTD7XJNOs96aGwQGjbp1S-ITPnW08Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQGWACShFvPLAmdWMnTuaqVYG2YmilbpXtOBBBk6pNF349ZzstDzEgZUg8WJEfd9939n2H0D3nqVKkk3mB4MJjQnFPEiY8koEvYqnSsTShgdE4GkzZ4yyc1TrbNhdGa20vn2nfvNqz_LRUGxMqaycUrCfw8_2QMRa6ZK1dQIXQhHFKLTWPwS5HIae1ws72O6i1fTokaXd7XcMOO77r9EdxFetb-kcuaXttJQnNlZI3f1NJX338Emz8528fo9ZXEh9-3rmnE7SniyY62lZxwPWmPkW5UZ6G5YPF-0u5yqvXBTbBWez2ABaAKrFIxdKd2WMAuRhAIzYO0TaUYHQWdTYnFkWK82qNvxcOgEYnfNJC035v0h14dQEGLweWVgG3zMCghbDYlARvB0zRSAkIEoGXp7HmKkwEjzg3oIiwDOZYBwoQheBJBjyK0zPUKMpCnyMMpiEwaa0AxwCzSSIozEkiktjYHC7FBWqagZsvncbG3I3Z5Z-td-hgMBkN58OH8dMVOnS3wsxzjRrVaqNvACZU8tYuj0_qNrg-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=CEC2001+%3A+proceedings+of+the+2001+congress+on+evolutionary+computation%2C+May+27-30%2C+2001%2C+Coex%2C+Seoul%2C+Korea&rft.atitle=Genetic+algorithm+with+search+area+adaptation+for+the+function+optimization+and+its+experimental+analysis&rft.au=Someya%2C+H.&rft.au=Yamamura%2C+M.&rft.date=2001-01-01&rft.pub=IEEE&rft.isbn=9780780366572&rft.volume=2&rft.spage=933&rft.epage=940+vol.+2&rft_id=info:doi/10.1109%2FCEC.2001.934290&rft.externalDocID=934290
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780366572/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780366572/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780366572/sc.gif&client=summon&freeimage=true