The Generalized PSO: A New Door to PSO Evolution

A generalized form of the particle swarm optimization (PSO) algorithm is presented. Generalized PSO (GPSO) is derived from a continuous version of PSO adopting a time step different than the unit. Generalized continuous particle swarm optimizations are compared in terms of attenuation and oscillatio...

Full description

Saved in:
Bibliographic Details
Published inJournal of artificial evolution and applications Vol. 2008
Main Authors Fernández Martínez, J. L., García Gonzalo, E.
Format Journal Article
LanguageEnglish
Published New York Hindawi Publishing Corporation 01.01.2008
Hindawi Limited
Subjects
Online AccessGet full text
ISSN1687-6229
1687-6237
DOI10.1155/2008/861275

Cover

Abstract A generalized form of the particle swarm optimization (PSO) algorithm is presented. Generalized PSO (GPSO) is derived from a continuous version of PSO adopting a time step different than the unit. Generalized continuous particle swarm optimizations are compared in terms of attenuation and oscillation. The deterministic and stochastic stability regions and their respective asymptotic velocities of convergence are analyzed as a function of the time step and the GPSO parameters. The sampling distribution of the GPSO algorithm helps to study the effect of stochasticity on the stability of trajectories. The stability regions for the second-, third-, and fourth-order moments depend on inertia, local, and global accelerations and the time step and are inside of the deterministic stability region for the same time step. We prove that stability regions are the same under stagnation and with a moving center of attraction. Properties of the second-order moments variance and covariance serve to propose some promising parameter sets. High variance and temporal uncorrelation improve the exploration task while solving ill-posed inverse problems. Finally, a comparison is made between PSO and GPSO by means of numerical experiments using well-known benchmark functions with two types of ill-posedness commonly found in inverse problems: the Rosenbrock and the “elongated” DeJong functions (global minimum located in a very flat area), and the Griewank function (global minimum surrounded by multiple minima). Numerical simulations support the results provided by theoretical analysis. Based on these results, two variants of Generalized PSO algorithm are proposed, improving the convergence and the exploration task while solving real applications of inverse problems.
AbstractList A generalized form of the particle swarm optimization (PSO) algorithm is presented. Generalized PSO (GPSO) is derived from a continuous version of PSO adopting a time step different than the unit. Generalized continuous particle swarm optimizations are compared in terms of attenuation and oscillation. The deterministic and stochastic stability regions and their respective asymptotic velocities of convergence are analyzed as a function of the time step and the GPSO parameters. The sampling distribution of the GPSO algorithm helps to study the effect of stochasticity on the stability of trajectories. The stability regions for the second-, third-, and fourth-order moments depend on inertia, local, and global accelerations and the time step and are inside of the deterministic stability region for the same time step. We prove that stability regions are the same under stagnation and with a moving center of attraction. Properties of the second-order moments variance and covariance serve to propose some promising parameter sets. High variance and temporal uncorrelation improve the exploration task while solving ill-posed inverse problems. Finally, a comparison is made between PSO and GPSO by means of numerical experiments using well-known benchmark functions with two types of ill-posedness commonly found in inverse problems: the Rosenbrock and the "elongated" DeJong functions (global minimum located in a very flat area), and the Griewank function (global minimum surrounded by multiple minima). Numerical simulations support the results provided by theoretical analysis. Based on these results, two variants of Generalized PSO algorithm are proposed, improving the convergence and the exploration task while solving real applications of inverse problems.
Author García Gonzalo, E.
Fernández Martínez, J. L.
Author_xml – sequence: 1
  givenname: J. L.
  surname: Fernández Martínez
  fullname: Fernández Martínez, J. L.
  organization: Department of MathematicsUniversity of OviedoC/Calvo Sotelo S/N33007 OviedoSpain
– sequence: 2
  givenname: E.
  surname: García Gonzalo
  fullname: García Gonzalo, E.
  organization: Department of MathematicsUniversity of OviedoC/Calvo Sotelo S/N33007 OviedoSpain
BookMark eNo9kFFLwzAcxINMcJs--QWCj0LdP0mTJr6NOacwnGDfQ9JmtKMmM20d-um1VHy64zju4DdDEx-8Q-iawB0hnC8ogFxIQWjGz9CUCJklgrJs8u-pukCztj0ACMYonSLIK4c3zrtomvrblfj1bXePl_jFnfBDCBF3YYjw-jM0fVcHf4nO96Zp3dWfzlH-uM5XT8l2t3leLbdJJSgkEjKneMmUtbZQ0haUpUzQlDKzl44YRgpQUtnCybQUVKW8sEJwSS04owywOboZZ48xfPSu7fQh9NH_PmrJM8IEwFC6HUtV7UtzqvUx1u8mfmkCeuChBx565MF-AGBOUBw
ContentType Journal Article
Copyright Copyright © 2008
Copyright © 2008 J. L. Fernández Martínez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright_xml – notice: Copyright © 2008
– notice: Copyright © 2008 J. L. Fernández Martínez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
DBID RHU
RHW
RHX
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1155/2008/861275
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1687-6237
Editor Poli, Riccardo
Editor_xml – sequence: 1
  givenname: Riccardo
  surname: Poli
  fullname: Poli, Riccardo
ExternalDocumentID 2293118371
10_1155_2008_861275
GroupedDBID 2WC
3V.
8FE
8FG
8R4
8R5
AAJEY
ABDBF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
BPHCQ
C1A
CCPQU
CS3
DWQXO
E3Z
ESX
GNUQQ
HCIFZ
I-F
IAO
IL9
ISR
ITC
K6V
K7-
KQ8
M0N
MK~
OK1
P2P
P62
PQQKQ
PROAC
Q2X
RHU
RHW
RHX
TR2
TUS
~8M
0R~
24P
7XB
8AL
8FK
AAMMB
ACCMX
ACUHS
AEFGJ
AGXDD
AIDQK
AIDYY
H13
ICD
JQ2
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-h620-807e95d39bbbc98bc234362423af8e1a31c0989bce84d62945cb66582b0ea9a03
IEDL.DBID RHX
ISSN 1687-6229
IngestDate Sat Jul 26 02:49:53 EDT 2025
Sun Jun 02 18:53:25 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h620-807e95d39bbbc98bc234362423af8e1a31c0989bce84d62945cb66582b0ea9a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://dx.doi.org/10.1155/2008/861275
PQID 857136000
PQPubID 237801
ParticipantIDs proquest_journals_857136000
hindawi_primary_10_1155_2008_861275
PublicationCentury 2000
PublicationDate 20080101
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – month: 01
  year: 2008
  text: 20080101
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of artificial evolution and applications
PublicationYear 2008
Publisher Hindawi Publishing Corporation
Hindawi Limited
Publisher_xml – name: Hindawi Publishing Corporation
– name: Hindawi Limited
References ZhengY.-L.MaL.-H.ZhangL.-Y.QianJ.-X.On the convergence analysis and parameter selection in particle swarm optimisation3Proceedings of the 2nd International Conference on Machine Learning and Cybernetics (ICMLC '03)November 2003Xi'an, China1802180710.1109/ICMLC.2003.1259789
KennedyJ.EberhartR.Particle swarm optimization4Proceedings of the IEEE International Conference on Neural Networks (ICNN '95)November-December 1995Perth, WA, Australia1942194810.1109/ICNN.1995.488968
Fernández AlvarezJ. P.Fernández MartínezJ. L.García GonzaloE.Menéndez PérezC. O.Application of the particle swarm optimization algorithm to the solution and appraisal of the vertical electrical sounding inverse problemProceedings of the 11th Annual Conference of the International Association of Mathematical Geology (IAMG '06)September 2006Liège, Belgium
(14) 2008
(9) 2008; 4
PoliR.The sampling distribution of particle swarm optimisers and their stability2007CSM-465Colchester, UKDepartment of Computer Science, University of Essexhttp://cswww.essex.ac.uk/technical-reports/2007/csm-465.pdf
ClercM.Stagnation analysis in particle swarm optimization or what happens when nothing happens2006CSM-460Colchester, UKDepartment of Computer Science, University of Essexhttp://clerc.maurice.free.fr/pso
(6) 2006; 176
(8) 2002; 38
OzcanE.MohanC. K.Particle swarm optimization: surfing the waves3Proceedings of the Congress on Evolutionary Computation (CEC '99)July 1999Washington, DC, USA1939194410.1109/CEC.1999.785510
(4) 2003; 85
(7) 2006; 10
(2) 2002; 6
(10) 2007; 75
References_xml – reference: KennedyJ.EberhartR.Particle swarm optimization4Proceedings of the IEEE International Conference on Neural Networks (ICNN '95)November-December 1995Perth, WA, Australia1942194810.1109/ICNN.1995.488968
– volume: 6
  start-page: 58
  issue: 1
  year: 2002
  end-page: 73
  ident: 2
  article-title: The particle swarm—explosion, stability, and convergence in a multidimensional complex space
– reference: Fernández AlvarezJ. P.Fernández MartínezJ. L.García GonzaloE.Menéndez PérezC. O.Application of the particle swarm optimization algorithm to the solution and appraisal of the vertical electrical sounding inverse problemProceedings of the 11th Annual Conference of the International Association of Mathematical Geology (IAMG '06)September 2006Liège, Belgium
– volume: 10
  start-page: 245
  issue: 3
  year: 2006
  end-page: 255
  ident: 7
  article-title: Stability analysis of the particle dynamics in particle swarm optimizer
– year: 2008
  ident: 14
  article-title: Feasibility analysis of the use of binary genetic algorithms as importance samplers application to a geo-electrical VES inverse problem
– volume: 38
  start-page: 997
  issue: 2
  year: 2002
  end-page: 1000
  ident: 8
  article-title: Particle swarm optimization—mass-spring system analogon
– reference: OzcanE.MohanC. K.Particle swarm optimization: surfing the waves3Proceedings of the Congress on Evolutionary Computation (CEC '99)July 1999Washington, DC, USA1939194410.1109/CEC.1999.785510
– volume: 75
  start-page: 171
  year: 2007
  end-page: 207
  ident: 10
  article-title: Physical theory for particle swarm optimisation
– reference: ClercM.Stagnation analysis in particle swarm optimization or what happens when nothing happens2006CSM-460Colchester, UKDepartment of Computer Science, University of Essexhttp://clerc.maurice.free.fr/pso/
– volume: 176
  start-page: 937
  issue: 8
  year: 2006
  end-page: 971
  ident: 6
  article-title: A study of particle swarm optimization particle trajectories
– reference: PoliR.The sampling distribution of particle swarm optimisers and their stability2007CSM-465Colchester, UKDepartment of Computer Science, University of Essexhttp://cswww.essex.ac.uk/technical-reports/2007/csm-465.pdf
– reference: ZhengY.-L.MaL.-H.ZhangL.-Y.QianJ.-X.On the convergence analysis and parameter selection in particle swarm optimisation3Proceedings of the 2nd International Conference on Machine Learning and Cybernetics (ICMLC '03)November 2003Xi'an, China1802180710.1109/ICMLC.2003.1259789
– volume: 85
  start-page: 317
  issue: 6
  year: 2003
  end-page: 325
  ident: 4
  article-title: The particle swarm optimization algorithm: convergence analysis and parameter selection
– volume: 4
  issue: 2
  year: 2008
  ident: 9
  article-title: Theoretical analysis of particle swarm trajectories through a mechanical analogy
SSID ssj0063322
Score 1.6510084
Snippet A generalized form of the particle swarm optimization (PSO) algorithm is presented. Generalized PSO (GPSO) is derived from a continuous version of PSO adopting...
SourceID proquest
hindawi
SourceType Aggregation Database
Publisher
SubjectTerms Algorithms
Mathematical models
Studies
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA9ze_HFb3FOJaCvZWnTpokgMnVjCJtDJ-yt5OPK9rLOORX8603a1BfB14YScpfc3S-5ux9CV1KlOQchgxR4bgEKDQMeQxRICZBrLaQskzFHYzZ8jR9nyayBRnUtjEurrG1iaahNod0deZcnFk5Z70xuV2-BI41yj6s1g4b0zArmpuwwtoVakWuM1UStu_548lybZkZp-awQMnuyWBQJX7Bnf-q6PIAuZ67fuQ2F5w4Qfy3-GOjS6wz20I4PF3Gv0u8-asDyAO3WVAzYn8xDRKy6sW8hvfgGgycvT9e4h60Nww9Fscabwn3C_U-_1Y7QdNCf3g8DT4YQzJlFeJykIBJDhVJKC650RGPqajuotLIOJQ01EVwoDTw2LBJxohWz0UWkCEghCT1GzWWxhBOEUwmphRUJcGNs-MQFxHaGVBgSgsiJaaNLv_xsVXW8yEqkkCQVZ2UlpDbq1KLJ_LZ_z36VdPrvaAdtV2kX7ibjDDU36w84t759oy68xn4A4qifuw
  priority: 102
  providerName: ProQuest
Title The Generalized PSO: A New Door to PSO Evolution
URI https://dx.doi.org/10.1155/2008/861275
https://www.proquest.com/docview/857136000
Volume 2008
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-6237
  dateEnd: 20100602
  omitProxy: true
  ssIdentifier: ssj0063322
  issn: 1687-6229
  databaseCode: KQ8
  dateStart: 20071217
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1687-6237
  dateEnd: 20090131
  omitProxy: true
  ssIdentifier: ssj0063322
  issn: 1687-6229
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1687-6237
  dateEnd: 20100131
  omitProxy: true
  ssIdentifier: ssj0063322
  issn: 1687-6229
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1687-6237
  dateEnd: 20100131
  omitProxy: true
  ssIdentifier: ssj0063322
  issn: 1687-6229
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1687-6237
  dateEnd: 20101231
  omitProxy: true
  ssIdentifier: ssj0063322
  issn: 1687-6229
  databaseCode: 24P
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8MwDI1gXLjwjRiDKRJcq6VNkybcNrYyITGmMaTdqqR1tV1WtA2Q-PW4bXZhF06VKjVV7MR-L3ZsQu6NjXIF2ngRqBwJCvc9FULgGQOQp6k2pkrGfBnJ4Xv4PBMzlyC73g3ho7frlBH6jpJlJfJ9sq9kmbg1Gc629lZyXsUKfInbRQaBdrfw_nyK-HZestzvxY7VrVxJfEKOHAak3Vppp2QPlmfkeNtfgbrtdk4Y6pC6utCLH8jo-O31gXYpGibaL4oV3RTlKzr4cuvngkzjwfRx6LkOB95cIm1TLAItMq6ttalWNg14yMsLG9ygAH3D_ZRppW0KKsxkoEORWomQIbAMjDaMX5LGsljCFaGRgQi5ggCVZYiJlIYQ_xDpjPmgc5Y1yZ2bfvJRl7FIKvgvRN2IshZSk7S2okncWl4nSiCRRVzErv81Rosc1jkV5THFDWlsVp9wi457Y9uovfipTQ66vX4vxmdvMBpP2pU2fwHRPZMD
linkProvider Hindawi Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HODCG_EmEnCs1jZ9JEgI8Rgar4FgSNyqpPE0LusYAwS_jR-H06ZckLhxbaWmcRzbX2L7A9hVOu0KlMpLUXQJoPDAExGGnlKI3TyXSpXJmNftpPUQXTzGj2PwVdfC2LTK2iaWhtoUuT0jb4iY4BR5Z_9w8OxZ0ih7uVozaCjHrGAOyg5jrq7jEj_eCcG9HJyf0nLvheFZs3PS8hzJgNdLCDkJP0UZGy611rkUOg95xG3NBFc0h0DxIPelkDpHEZkklFGc64S8dqh9VFL5nD47DpMRjyRBv8njZvv2rvYECeflLUaQ0EZOwlC6-kD6x4ZNO2iIxLZXp8i7Z_H3-9Mvf1A6ubM5mHHRKTuq1GkexrC_ALM18wNzhmARfNIu5jpWP32iYbf3N_vsiJHJZKdFMWSjwj5izTen2UvQ-Q-xLMNEv-jjCrBUYUooJkZhDEVrQmJEI6TS-AHKrm9WYcdNPxtUDTayEpjEcUWRWQlpFdZr0WRul71kPzqx9ufbbZhqda6vsqvz9uU6TFcZH_YQZQMmRsNX3KSwYqS33OoxyP5ZX74BYzvbPQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8QwFH6MCuLFXdwNqMfSJV0SQUQc676ACnMrSfvKzGXqMir6y_x5vrSpF8Gb1xa6JF_e977kLQA7SielQKmcBEVJAoX7jggxcJRCLPNcKlUHY15dx6cP4Xkv6nXgq82FMWGVrU2sDXVR5WaP3BURySliZ88tbVTEbTc9eHxyTAMpc9DadtNoEHKBH--k3l72z7o01btBkB7fH506tsGA049JNQkvQRkVXGqtcyl0HvCQm3wJruj7fcX93JNC6hxFWMSBDKNcx8TYgfZQSeVxeuwYTCSmhrvJUU9PWg6IOa_PL_yYlnAcBNJmBhJ5uybgwBWxKaxOPnffKO_3wS8mqOktnYVp65eywwZIc9DB4TzMtD0fmDUBC-ARrpitVT34xILd3t3ssUNGxpJ1q-qZjSpziR2_WUwvwv1_DMoSjA-rIS4DSxQmpF8iFEVBfpqQGNIbEll4PsrSK1Zg2_5-9tiU1shqSRJFTXPMZpBWYK0dmsyur5fsBw2rf97dgklCSXZ5dn2xBlNNqIfZPVmH8dHzK26QPzHSm_XUMcj-GSrfTx_Y1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Generalized+PSO%3A+A+New+Door+to+PSO+Evolution&rft.jtitle=Journal+of+artificial+evolution+and+applications&rft.au=Fern%C3%A1ndez+Mart%C3%ADnez%2C+J.+L.&rft.au=Garc%C3%ADa+Gonzalo%2C+E.&rft.date=2008-01-01&rft.pub=Hindawi+Publishing+Corporation&rft.issn=1687-6229&rft.eissn=1687-6237&rft.volume=2008&rft_id=info:doi/10.1155%2F2008%2F861275&rft.externalDocID=10_1155_2008_861275
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-6229&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-6229&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-6229&client=summon