Non-local means variants for denoising of diffusion-weighted and diffusion tensor MRI

Diffusion tensor imaging (DT-MRI) is very sensitive to corrupting noise due to the non linear relationship between the diffusion-weighted image intensities (DW-MRI) and the resulting diffusion tensor. Denoising is a crucial step to increase the quality of the estimated tensor field. This enhanced qu...

Full description

Saved in:
Bibliographic Details
Published inLecture notes in computer science Vol. 10; no. Pt 2; p. 344
Main Authors Wiest-Daesslé, Nicolas, Prima, Sylvain, Coupé, Pierrick, Morrissey, Sean Patrick, Barillot, Christian
Format Journal Article Book Chapter
LanguageEnglish
Published Germany 2007
Subjects
Online AccessGet full text
ISSN1611-3349
0302-9743
DOI10.1007/978-3-540-75759-7_42

Cover

Abstract Diffusion tensor imaging (DT-MRI) is very sensitive to corrupting noise due to the non linear relationship between the diffusion-weighted image intensities (DW-MRI) and the resulting diffusion tensor. Denoising is a crucial step to increase the quality of the estimated tensor field. This enhanced quality allows for a better quantification and a better image interpretation. The methods proposed in this paper are based on the Non-Local (NL) means algorithm. This approach uses the natural redundancy of information in images to remove the noise. We introduce three variations of the NL-means algorithms adapted to DW-MRI and to DT-MRI. Experiments were carried out on a set of 12 diffusion-weighted images (DW-MRI) of the same subject. The results show that the intensity based NL-means approaches give better results in the context of DT-MRI than other classical denoising methods, such as Gaussian Smoothing, Anisotropic Diffusion and Total Variation.
AbstractList Diffusion tensor imaging (DT-MRI) is very sensitive to corrupting noise due to the non linear relationship between the diffusion-weighted image intensities (DW-MRI) and the resulting diffusion tensor. Denoising is a crucial step to increase the quality of the estimated tensor field. This enhanced quality allows for a better quantification and a better image interpretation. The methods proposed in this paper are based on the Non-Local (NL) means algorithm. This approach uses the natural redundancy of information in images to remove the noise. We introduce three variations of the NL-means algorithms adapted to DW-MRI and to DT-MRI. Experiments were carried out on a set of 12 diffusion-weighted images (DW-MRI) of the same subject. The results show that the intensity based NL-means approaches give better results in the context of DT-MRI than other classical denoising methods, such as Gaussian Smoothing, Anisotropic Diffusion and Total Variation.
Author Barillot, Christian
Wiest-Daesslé, Nicolas
Coupé, Pierrick
Morrissey, Sean Patrick
Prima, Sylvain
Author_xml – sequence: 1
  givenname: Nicolas
  surname: Wiest-Daesslé
  fullname: Wiest-Daesslé, Nicolas
  email: nwiestda@irisa.fr
  organization: Unit/Project VisAGeS U746, INSERM - INRIA - CNRS - Univ-Rennes 1, IRISA campus Beaulieu 35042 Rennes, France. nwiestda@irisa.fr
– sequence: 2
  givenname: Sylvain
  surname: Prima
  fullname: Prima, Sylvain
– sequence: 3
  givenname: Pierrick
  surname: Coupé
  fullname: Coupé, Pierrick
– sequence: 4
  givenname: Sean Patrick
  surname: Morrissey
  fullname: Morrissey, Sean Patrick
– sequence: 5
  givenname: Christian
  surname: Barillot
  fullname: Barillot, Christian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18044587$$D View this record in MEDLINE/PubMed
BookMark eNpF0M1KAzEQwPEcKlqrbyCSF4gmTbKzOUrxo1AVxJ7DZJO0gW227G4tfXtXW-hpYJj_HH7XZJSbHAi5E_xBcA6PBkommVacgQZtGFg1HZGxKIRgUipzSa5EyZXSJYzJ8qPJrG4qrOkmYO7oD7YJc9_R2LTUh9ykLuUVbSL1KcZdl4b7fUirdR88xezPa9qH3A3R-9f8hlxErLtwe5oTsnx5_p69scXn63z2tGBrDbxnaHwpwBgF6CpTonMSTNBecwlQmIJXXgKPxjvpZDUFqIroygoVl4pPNcgJ0ce_u7zFwx7r2m7btMH2YAW3fxp20LDSDhr2X8P-aQzd_bHb7twm-HN0cpG_F_FhCQ
ContentType Journal Article
Book Chapter
DBID CGR
CUY
CVF
ECM
EIF
NPM
ABOKW
UNPAY
DOI 10.1007/978-3-540-75759-7_42
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Unpaywall for CDI: Monographs and Miscellaneous Content
Unpaywall
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10.1007/978-3-540-75759-7_42
18044587
Genre Journal Article
GroupedDBID CGR
CUY
CVF
ECM
EIF
NPM
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ABOKW
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
UNPAY
VI1
~02
ID FETCH-LOGICAL-h570t-a9d8179947abc98abb379e5d503776960cd370f9db3b3c277c6fb8ca403402573
IEDL.DBID UNPAY
ISSN 1611-3349
0302-9743
IngestDate Sun Oct 26 04:00:15 EDT 2025
Sat Sep 18 18:06:09 EDT 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Pt 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h570t-a9d8179947abc98abb379e5d503776960cd370f9db3b3c277c6fb8ca403402573
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007%2F978-3-540-75759-7_42.pdf
PMID 18044587
ParticipantIDs unpaywall_primary_10_1007_978_3_540_75759_7_42
pubmed_primary_18044587
PublicationCentury 2000
PublicationDate 2007-00-00
PublicationDateYYYYMMDD 2007-01-01
PublicationDate_xml – year: 2007
  text: 2007-00-00
PublicationDecade 2000
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Lecture notes in computer science
PublicationTitleAlternate Med Image Comput Comput Assist Interv
PublicationYear 2007
Score 2.026631
Snippet Diffusion tensor imaging (DT-MRI) is very sensitive to corrupting noise due to the non linear relationship between the diffusion-weighted image intensities...
SourceID unpaywall
pubmed
SourceType Open Access Repository
Index Database
StartPage 344
SubjectTerms Algorithms
Data Interpretation, Statistical
Diffusion Magnetic Resonance Imaging - methods
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Reproducibility of Results
Sensitivity and Specificity
Title Non-local means variants for denoising of diffusion-weighted and diffusion tensor MRI
URI https://www.ncbi.nlm.nih.gov/pubmed/18044587
https://link.springer.com/content/pdf/10.1007%2F978-3-540-75759-7_42.pdf
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8NAFH609SB4cN_QMgevU9PMljmKWqrYImK1nkJmw6KkRVJEf70zTWqLeBG8ZpgweW_IW7_vAZxkmjNiOMHGXwdMhVJYailxJl1btblqxzMsTK_PuwN6PWTDGnTnWJhZt_u8JFliGgJLU16cToz7taovwohJLFLqI0Tj6rDCmffKG7Ay6N-ePZVFhBjLqteeB9Y-QuUSiu63Vy3Zo9VpPsk-3rPX1yXD01mH0fzIZb_JS2taqJb-_MHm-B_ftAFrAfiAAiLBC3sTajbfgvX52AdU_QW2YdAf5_gm2EDUs97SoQcfb4d2GuQdYHRh8_EoJCDQ2KGLkXPTkI_Dj7MUrDUoy83iMbr3UbTf1Lu72oFB5_L-vIur6Qz4mYmo8No0SaCToyJTWiaZUkRIywyLiBDcq0AbIiInjSKK6FgIzZ1KdEYj4mNWJsguNPJxbvcB2cRwaYQSjCvqiJHGxbHVRkttvItmD2Cv1EY6KSk40nYSUcoScQCtb_UsFismZi_PlKRenulMnmmQ5-FfNxxBo3ib2mPvehSqCfX-ba9Z3a0vL9fR6g
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LS8MwGA-6HQQP8-1EJQevmW3zao7iHFPcEFl1nkrzwuHohnSI_vUma-eG7CJ4bUhJvy_0e_5-HwAXmWIUa4aRdtcBES4lEkoIlAkbypDJMJpjYXp91k3I3ZAON0B3gYWZd7svSpIlpsGzNOXF5VTbtVV97kdMIp4SFyFquwnqjDqvvAbqSf_h6qUsIkRIVL32zLP2YSJWUHTrXrVij7Zm-TT7_MjG4xXD02mA0eLIZb_JW2tWyJb6-sXm-B_ftAO2PfABekSCE_Yu2DD5Hmgsxj7A6i-wD5L-JEf33gbCnnGWDj65eNu300DnAMO2yScjn4CAEwvbI2tnPh-HnucpWKNhluvlYzhwUbTb1Hu8PQBJ52Zw3UXVdAb0SnlQOG3q2NPJEZ5JJeJMSsyFoZoGmHPmVKA05oEVWmKJVcS5YlbGKiMBdjEr5fgQ1PJJbo4BNLFmQnPJKZPEYi20jSKjtBJKOxfNNMFRqY10WlJwpGEcEEJj3gStH_UsFysmZifPFKdOnulcnqmX58lfN5yCWvE-M2fO9SjkeXWrvgFJgdDe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Lecture+notes+in+computer+science&rft.atitle=Non-Local+Means+Variants+for+Denoising+of+Diffusion-Weighted+and+Diffusion+Tensor+MRI&rft.issn=1611-3349&rft_id=info:doi/10.1007%2F978-3-540-75759-7_42&rft.externalDocID=10.1007%2F978-3-540-75759-7_42
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1611-3349&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1611-3349&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1611-3349&client=summon