Per-run Algorithm Selection with Warm-Starting Using Trajectory-Based Features

Per-instance algorithm selection seeks to recommend, for a given problem instance and a given performance criterion, one or several suitable algorithms that are expected to perform well for the particular setting. The selection is classically done offline, using openly available information about th...

Full description

Saved in:
Bibliographic Details
Published inLecture notes in computer science Vol. 13398; pp. 46 - 60
Main Authors Kostovska, Ana, Jankovic, Anja, Vermetten, Diederick, de Nobel, Jacob, Wang, Hao, Eftimov, Tome, Doerr, Carola
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2022
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783031147135
3031147138
ISSN0302-9743
1611-3349
1611-3349
DOI10.1007/978-3-031-14714-2_4

Cover

Abstract Per-instance algorithm selection seeks to recommend, for a given problem instance and a given performance criterion, one or several suitable algorithms that are expected to perform well for the particular setting. The selection is classically done offline, using openly available information about the problem instance or features that are extracted from the instance during a dedicated feature extraction step. This ignores valuable information that the algorithms accumulate during the optimization process. In this work, we propose an alternative, online algorithm selection scheme which we coin as “per-run” algorithm selection. In our approach, we start the optimization with a default algorithm, and, after a certain number of iterations, extract instance features from the observed trajectory of this initial optimizer to determine whether to switch to another optimizer. We test this approach using the CMA-ES as the default solver, and a portfolio of six different optimizers as potential algorithms to switch to. In contrast to other recent work on online per-run algorithm selection, we warm-start the second optimizer using information accumulated during the first optimization phase. We show that our approach outperforms static per-instance algorithm selection. We also compare two different feature extraction principles, based on exploratory landscape analysis and time series analysis of the internal state variables of the CMA-ES, respectively. We show that a combination of both feature sets provides the most accurate recommendations for our test cases, taken from the BBOB function suite from the COCO platform and the YABBOB suite from the Nevergrad platform.
AbstractList Per-instance algorithm selection seeks to recommend, for a given problem instance and a given performance criterion, one or several suitable algorithms that are expected to perform well for the particular setting. The selection is classically done offline, using openly available information about the problem instance or features that are extracted from the instance during a dedicated feature extraction step. This ignores valuable information that the algorithms accumulate during the optimization process. In this work, we propose an alternative, online algorithm selection scheme which we coin as “per-run” algorithm selection. In our approach, we start the optimization with a default algorithm, and, after a certain number of iterations, extract instance features from the observed trajectory of this initial optimizer to determine whether to switch to another optimizer. We test this approach using the CMA-ES as the default solver, and a portfolio of six different optimizers as potential algorithms to switch to. In contrast to other recent work on online per-run algorithm selection, we warm-start the second optimizer using information accumulated during the first optimization phase. We show that our approach outperforms static per-instance algorithm selection. We also compare two different feature extraction principles, based on exploratory landscape analysis and time series analysis of the internal state variables of the CMA-ES, respectively. We show that a combination of both feature sets provides the most accurate recommendations for our test cases, taken from the BBOB function suite from the COCO platform and the YABBOB suite from the Nevergrad platform.
Author Jankovic, Anja
Doerr, Carola
de Nobel, Jacob
Vermetten, Diederick
Eftimov, Tome
Kostovska, Ana
Wang, Hao
Author_xml – sequence: 1
  givenname: Ana
  orcidid: 0000-0002-5983-7169
  surname: Kostovska
  fullname: Kostovska, Ana
– sequence: 2
  givenname: Anja
  orcidid: 0000-0001-9267-4595
  surname: Jankovic
  fullname: Jankovic, Anja
  email: anja.jankovic@lip6.fr
– sequence: 3
  givenname: Diederick
  orcidid: 0000-0003-3040-7162
  surname: Vermetten
  fullname: Vermetten, Diederick
– sequence: 4
  givenname: Jacob
  surname: de Nobel
  fullname: de Nobel, Jacob
– sequence: 5
  givenname: Hao
  orcidid: 0000-0002-4933-5181
  surname: Wang
  fullname: Wang, Hao
– sequence: 6
  givenname: Tome
  orcidid: 0000-0001-7330-1902
  surname: Eftimov
  fullname: Eftimov, Tome
– sequence: 7
  givenname: Carola
  orcidid: 0000-0002-4981-3227
  surname: Doerr
  fullname: Doerr, Carola
BookMark eNqFkMtOwzAQRc1TtKVfwCY_YLA9ThwvAfGSECAVxNJynUkbSJNiu0L9e9yWDSs2M5o7c2ZxhuSw6zsk5Iyzc86YutCqpEAZcMql4pIKI_fIOKWQsm0k9smAF5xTAKkP_uwgPyQDBkxQrSQckyEHyYXSQuUnZBzCB2NMKADBxYA8vaCnftVll-2s902cL7IJtuhi03fZd5qzd-sXdBKtj003y97Cpr56-5Fuer-mVzZgld2ijSuP4ZQc1bYNOP7tI_J2e_N6fU8fn-8eri8f6Ry4jlS5upBTkCoXrrKlxhxq6wSyui4cl7qWUNia5zlqMVW2mpZYl85pnVdQFszBiMjd31W3tOtv27Zm6ZuF9WvDmdk4NMmIAZOcmK0wkxwmjO-wkK67GXoz7fvP8A8jdszS918rDNHgBnLYRW9bN7fLiD4YxZJSpY3UptDwAy5xgJg
ContentType Book Chapter
Copyright The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Copyright_xml – notice: The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
DBID FFUUA
ABOKW
UNPAY
DEWEY 006.3
DOI 10.1007/978-3-031-14714-2_4
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
Unpaywall for CDI: Monographs and Miscellaneous Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783031147142
3031147146
EISSN 1611-3349
Editor Rudolph, Günter
Kononova, Anna V
Aguirre, Hernán
Ochoa, Gabriela
Tusar, Tea
Kerschke, Pascal
Editor_xml – sequence: 1
  fullname: Ochoa, Gabriela
– sequence: 2
  fullname: Kononova, Anna V
– sequence: 3
  fullname: Rudolph, Günter
– sequence: 4
  fullname: Aguirre, Hernán
– sequence: 5
  fullname: Tusar, Tea
– sequence: 6
  fullname: Kerschke, Pascal
EndPage 60
ExternalDocumentID oai:HAL:hal-03740760v1
EBC7073379_49_69
GroupedDBID 38.
AABBV
AAZWU
ABSVR
ABTHU
ABVND
ACBPT
ACHZO
ACPMC
ADNVS
AEDXK
AEJLV
AEKFX
AHVRR
ALMA_UNASSIGNED_HOLDINGS
BBABE
CZZ
FFUUA
IEZ
SBO
TPJZQ
TSXQS
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z84
Z85
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ABOKW
UNPAY
ID FETCH-LOGICAL-h319t-7cf64b34752cda89e53fac2e0ff6c149f436af155e92b7adb8ef8cc995d3860c3
IEDL.DBID UNPAY
ISBN 9783031147135
3031147138
ISSN 0302-9743
1611-3349
IngestDate Sun Oct 26 04:14:29 EDT 2025
Wed Sep 17 04:06:56 EDT 2025
Thu May 29 00:24:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
LCCallNum QA75.5-76.95
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h319t-7cf64b34752cda89e53fac2e0ff6c149f436af155e92b7adb8ef8cc995d3860c3
OCLC 1341279275
ORCID 0000-0002-4933-5181
0000-0002-5983-7169
0000-0003-3040-7162
0000-0001-7330-1902
0000-0002-4981-3227
0000-0001-9267-4595
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.sorbonne-universite.fr/hal-03740760
PQID EBC7073379_49_69
PageCount 15
ParticipantIDs unpaywall_primary_10_1007_978_3_031_14714_2_4
springer_books_10_1007_978_3_031_14714_2_4
proquest_ebookcentralchapters_7073379_49_69
PublicationCentury 2000
PublicationDate 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 17th International Conference, PPSN 2022, Dortmund, Germany, September 10-14, 2022, Proceedings, Part I
PublicationTitle Lecture notes in computer science
PublicationYear 2022
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Steffen, Bernhard
Bertino, Elisa
Goos, Gerhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002733212
ssj0002792
Score 2.2844183
Snippet Per-instance algorithm selection seeks to recommend, for a given problem instance and a given performance criterion, one or several suitable algorithms that...
SourceID unpaywall
springer
proquest
SourceType Open Access Repository
Publisher
StartPage 46
SubjectTerms Algorithm selection
Black-box optimization
Evolutionary computation
Exploratory landscape analysis
Title Per-run Algorithm Selection with Warm-Starting Using Trajectory-Based Features
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=7073379&ppg=69
http://link.springer.com/10.1007/978-3-031-14714-2_4
https://hal.sorbonne-universite.fr/hal-03740760
UnpaywallVersion submittedVersion
Volume 13398
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2V3QOih7Z8iK1K5UNPRV62tuOsjwtqVVXQrgQL5WTZjt0Fttkqm6gqv4bfwi_rOB8r4IDUW6SMrMQvzjx7Zt4AHPDMOGVGjqL7SKkwo1iszPCKSfQ_qbWhbgf04VyezsTZZXK5AW-6Wpg5Ms7VsrAxy4NWXW6CH4Yi3qJRLSXGkh5BXyZIvnvQn51PJ1-bWAGjqk2pl1Gcjwu11hlqpGQ5DnBEj_CHLCjT4i9WuQ6EPoHHVX5j7m7NYvGHrznZgmn3lE2KyY9hVdqh-_mPgOMDXmMbNmNJA4m1BjiNO7Dh86ew1TV0IO36fgYXU1_QosrJZHG1LL6V82vyse6Tg-CReGL7-9cXU1xTZKhRfOCK1AkHBP3d9_rw_46-RaeYkcgrK9zHP4fZyfGnd6e07bhA57gUS5q6IIXlIk2Yy8xY-YQH45gfhSAd7qWC4NIEpCBeMZuazI59GDunVJLxsRw5_gJ6-TL3L4FYyXzIcEAvjUBbxXEjozwSKuO8Y3IAr7u513VcuE1Gdc1UrHQa20mmSgulpRrAYQePjsYr3cktI6yaa4RV17BqhHUAdA2gvmlEO_5nv_tA-z3olUXlXyEbKe0-9CfHZ-8_77df4j2mAN_J
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB3R5YDaA7QFdVFBPvTUystiO876SBEIVYKu1K5KT5bt2CywZFE2EaK_ht_CL-s4H6vSAxK3SBlZiV-cefbMvAH4xDPjlBk6iu4jpcIMY7Eywysm0f-k1oa6HdDpmTyZiG_nyfkK7HW1MFNknIt5YWOWB6263AQ_CEW8RaNaSowlvYJVmSD57sHq5Gx88LuJFTCq2pR6GcX5uFBLnaFGSpbjAPt0H3_IgjItnrDKZSD0NaxV-a25vzOz2T--5ngdxt1TNikm14OqtAP35z8Bxxe8xga8iSUNJNYa4DS-hRWfv4P1rqEDadf3e_g-9gUtqpwczC7mxWU5vSE_6j45CB6JJ7aPD79McUORoUbxgQtSJxwQ9HdX9eH_Pf2KTjEjkVdWuI_fhMnx0c_DE9p2XKBTXIolTV2QwnKRJsxlZqR8woNxzA9DkA73UkFwaQJSEK-YTU1mRz6MnFMqyfhIDh3fgl4-z_0HIFYyHzIc0Esj0FZx3Mgoj4TKOO-Y7MOXbu51HRduk1FdMxULncZ2kqnSQmmp-vC5g0dH44Xu5JYRVs01wqprWDXC2ge6BFDfNqIdz9lvv9D-I_TKovI7yEZKu9t-gX8Br5zeNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Parallel+Problem+Solving+from+Nature+%E2%80%93+PPSN+XVII&rft.au=Kostovska%2C+Ana&rft.au=Jankovic%2C+Anja&rft.au=Vermetten%2C+Diederick&rft.au=de+Nobel%2C+Jacob&rft.atitle=Per-run+Algorithm+Selection+with%C2%A0Warm-Starting+Using+Trajectory-Based+Features&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2022-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783031147135&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=46&rft.epage=60&rft_id=info:doi/10.1007%2F978-3-031-14714-2_4
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F7073379-l.jpg