Per-run Algorithm Selection with Warm-Starting Using Trajectory-Based Features
Per-instance algorithm selection seeks to recommend, for a given problem instance and a given performance criterion, one or several suitable algorithms that are expected to perform well for the particular setting. The selection is classically done offline, using openly available information about th...
        Saved in:
      
    
          | Published in | Lecture notes in computer science Vol. 13398; pp. 46 - 60 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Book Chapter | 
| Language | English | 
| Published | 
        Switzerland
          Springer International Publishing AG
    
        2022
     Springer International Publishing  | 
| Series | Lecture Notes in Computer Science | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 9783031147135 3031147138  | 
| ISSN | 0302-9743 1611-3349 1611-3349  | 
| DOI | 10.1007/978-3-031-14714-2_4 | 
Cover
| Abstract | Per-instance algorithm selection seeks to recommend, for a given problem instance and a given performance criterion, one or several suitable algorithms that are expected to perform well for the particular setting. The selection is classically done offline, using openly available information about the problem instance or features that are extracted from the instance during a dedicated feature extraction step. This ignores valuable information that the algorithms accumulate during the optimization process. In this work, we propose an alternative, online algorithm selection scheme which we coin as “per-run” algorithm selection. In our approach, we start the optimization with a default algorithm, and, after a certain number of iterations, extract instance features from the observed trajectory of this initial optimizer to determine whether to switch to another optimizer. We test this approach using the CMA-ES as the default solver, and a portfolio of six different optimizers as potential algorithms to switch to. In contrast to other recent work on online per-run algorithm selection, we warm-start the second optimizer using information accumulated during the first optimization phase. We show that our approach outperforms static per-instance algorithm selection. We also compare two different feature extraction principles, based on exploratory landscape analysis and time series analysis of the internal state variables of the CMA-ES, respectively. We show that a combination of both feature sets provides the most accurate recommendations for our test cases, taken from the BBOB function suite from the COCO platform and the YABBOB suite from the Nevergrad platform. | 
    
|---|---|
| AbstractList | Per-instance algorithm selection seeks to recommend, for a given problem instance and a given performance criterion, one or several suitable algorithms that are expected to perform well for the particular setting. The selection is classically done offline, using openly available information about the problem instance or features that are extracted from the instance during a dedicated feature extraction step. This ignores valuable information that the algorithms accumulate during the optimization process. In this work, we propose an alternative, online algorithm selection scheme which we coin as “per-run” algorithm selection. In our approach, we start the optimization with a default algorithm, and, after a certain number of iterations, extract instance features from the observed trajectory of this initial optimizer to determine whether to switch to another optimizer. We test this approach using the CMA-ES as the default solver, and a portfolio of six different optimizers as potential algorithms to switch to. In contrast to other recent work on online per-run algorithm selection, we warm-start the second optimizer using information accumulated during the first optimization phase. We show that our approach outperforms static per-instance algorithm selection. We also compare two different feature extraction principles, based on exploratory landscape analysis and time series analysis of the internal state variables of the CMA-ES, respectively. We show that a combination of both feature sets provides the most accurate recommendations for our test cases, taken from the BBOB function suite from the COCO platform and the YABBOB suite from the Nevergrad platform. | 
    
| Author | Jankovic, Anja Doerr, Carola de Nobel, Jacob Vermetten, Diederick Eftimov, Tome Kostovska, Ana Wang, Hao  | 
    
| Author_xml | – sequence: 1 givenname: Ana orcidid: 0000-0002-5983-7169 surname: Kostovska fullname: Kostovska, Ana – sequence: 2 givenname: Anja orcidid: 0000-0001-9267-4595 surname: Jankovic fullname: Jankovic, Anja email: anja.jankovic@lip6.fr – sequence: 3 givenname: Diederick orcidid: 0000-0003-3040-7162 surname: Vermetten fullname: Vermetten, Diederick – sequence: 4 givenname: Jacob surname: de Nobel fullname: de Nobel, Jacob – sequence: 5 givenname: Hao orcidid: 0000-0002-4933-5181 surname: Wang fullname: Wang, Hao – sequence: 6 givenname: Tome orcidid: 0000-0001-7330-1902 surname: Eftimov fullname: Eftimov, Tome – sequence: 7 givenname: Carola orcidid: 0000-0002-4981-3227 surname: Doerr fullname: Doerr, Carola  | 
    
| BookMark | eNqFkMtOwzAQRc1TtKVfwCY_YLA9ThwvAfGSECAVxNJynUkbSJNiu0L9e9yWDSs2M5o7c2ZxhuSw6zsk5Iyzc86YutCqpEAZcMql4pIKI_fIOKWQsm0k9smAF5xTAKkP_uwgPyQDBkxQrSQckyEHyYXSQuUnZBzCB2NMKADBxYA8vaCnftVll-2s902cL7IJtuhi03fZd5qzd-sXdBKtj003y97Cpr56-5Fuer-mVzZgld2ijSuP4ZQc1bYNOP7tI_J2e_N6fU8fn-8eri8f6Ry4jlS5upBTkCoXrrKlxhxq6wSyui4cl7qWUNia5zlqMVW2mpZYl85pnVdQFszBiMjd31W3tOtv27Zm6ZuF9WvDmdk4NMmIAZOcmK0wkxwmjO-wkK67GXoz7fvP8A8jdszS918rDNHgBnLYRW9bN7fLiD4YxZJSpY3UptDwAy5xgJg | 
    
| ContentType | Book Chapter | 
    
| Copyright | The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 | 
    
| Copyright_xml | – notice: The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 | 
    
| DBID | FFUUA ABOKW UNPAY  | 
    
| DEWEY | 006.3 | 
    
| DOI | 10.1007/978-3-031-14714-2_4 | 
    
| DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only Unpaywall for CDI: Monographs and Miscellaneous Content Unpaywall  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISBN | 9783031147142 3031147146  | 
    
| EISSN | 1611-3349 | 
    
| Editor | Rudolph, Günter Kononova, Anna V Aguirre, Hernán Ochoa, Gabriela Tusar, Tea Kerschke, Pascal  | 
    
| Editor_xml | – sequence: 1 fullname: Ochoa, Gabriela – sequence: 2 fullname: Kononova, Anna V – sequence: 3 fullname: Rudolph, Günter – sequence: 4 fullname: Aguirre, Hernán – sequence: 5 fullname: Tusar, Tea – sequence: 6 fullname: Kerschke, Pascal  | 
    
| EndPage | 60 | 
    
| ExternalDocumentID | oai:HAL:hal-03740760v1 EBC7073379_49_69  | 
    
| GroupedDBID | 38. AABBV AAZWU ABSVR ABTHU ABVND ACBPT ACHZO ACPMC ADNVS AEDXK AEJLV AEKFX AHVRR ALMA_UNASSIGNED_HOLDINGS BBABE CZZ FFUUA IEZ SBO TPJZQ TSXQS Z7R Z7U Z7X Z7Z Z81 Z83 Z84 Z85 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RNI RSU SVGTG VI1 ~02 ABOKW UNPAY  | 
    
| ID | FETCH-LOGICAL-h319t-7cf64b34752cda89e53fac2e0ff6c149f436af155e92b7adb8ef8cc995d3860c3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISBN | 9783031147135 3031147138  | 
    
| ISSN | 0302-9743 1611-3349  | 
    
| IngestDate | Sun Oct 26 04:14:29 EDT 2025 Wed Sep 17 04:06:56 EDT 2025 Thu May 29 00:24:33 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| LCCallNum | QA75.5-76.95 | 
    
| Language | English | 
    
| License | other-oa | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-h319t-7cf64b34752cda89e53fac2e0ff6c149f436af155e92b7adb8ef8cc995d3860c3 | 
    
| OCLC | 1341279275 | 
    
| ORCID | 0000-0002-4933-5181 0000-0002-5983-7169 0000-0003-3040-7162 0000-0001-7330-1902 0000-0002-4981-3227 0000-0001-9267-4595  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal.sorbonne-universite.fr/hal-03740760 | 
    
| PQID | EBC7073379_49_69 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_978_3_031_14714_2_4 springer_books_10_1007_978_3_031_14714_2_4 proquest_ebookcentralchapters_7073379_49_69  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022 | 
    
| PublicationDateYYYYMMDD | 2022-01-01 | 
    
| PublicationDate_xml | – year: 2022 text: 2022  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Switzerland | 
    
| PublicationPlace_xml | – name: Switzerland – name: Cham  | 
    
| PublicationSeriesTitle | Lecture Notes in Computer Science | 
    
| PublicationSeriesTitleAlternate | Lect.Notes Computer | 
    
| PublicationSubtitle | 17th International Conference, PPSN 2022, Dortmund, Germany, September 10-14, 2022, Proceedings, Part I | 
    
| PublicationTitle | Lecture notes in computer science | 
    
| PublicationYear | 2022 | 
    
| Publisher | Springer International Publishing AG Springer International Publishing  | 
    
| Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing  | 
    
| RelatedPersons | Hartmanis, Juris Gao, Wen Steffen, Bernhard Bertino, Elisa Goos, Gerhard Yung, Moti  | 
    
| RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Moti orcidid: 0000-0003-0848-0873 surname: Yung fullname: Yung, Moti  | 
    
| SSID | ssj0002733212 ssj0002792  | 
    
| Score | 2.2844183 | 
    
| Snippet | Per-instance algorithm selection seeks to recommend, for a given problem instance and a given performance criterion, one or several suitable algorithms that... | 
    
| SourceID | unpaywall springer proquest  | 
    
| SourceType | Open Access Repository Publisher  | 
    
| StartPage | 46 | 
    
| SubjectTerms | Algorithm selection Black-box optimization Evolutionary computation Exploratory landscape analysis  | 
    
| Title | Per-run Algorithm Selection with Warm-Starting Using Trajectory-Based Features | 
    
| URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=7073379&ppg=69 http://link.springer.com/10.1007/978-3-031-14714-2_4 https://hal.sorbonne-universite.fr/hal-03740760  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 13398 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2V3QOih7Z8iK1K5UNPRV62tuOsjwtqVVXQrgQL5WTZjt0Fttkqm6gqv4bfwi_rOB8r4IDUW6SMrMQvzjx7Zt4AHPDMOGVGjqL7SKkwo1iszPCKSfQ_qbWhbgf04VyezsTZZXK5AW-6Wpg5Ms7VsrAxy4NWXW6CH4Yi3qJRLSXGkh5BXyZIvnvQn51PJ1-bWAGjqk2pl1Gcjwu11hlqpGQ5DnBEj_CHLCjT4i9WuQ6EPoHHVX5j7m7NYvGHrznZgmn3lE2KyY9hVdqh-_mPgOMDXmMbNmNJA4m1BjiNO7Dh86ew1TV0IO36fgYXU1_QosrJZHG1LL6V82vyse6Tg-CReGL7-9cXU1xTZKhRfOCK1AkHBP3d9_rw_46-RaeYkcgrK9zHP4fZyfGnd6e07bhA57gUS5q6IIXlIk2Yy8xY-YQH45gfhSAd7qWC4NIEpCBeMZuazI59GDunVJLxsRw5_gJ6-TL3L4FYyXzIcEAvjUBbxXEjozwSKuO8Y3IAr7u513VcuE1Gdc1UrHQa20mmSgulpRrAYQePjsYr3cktI6yaa4RV17BqhHUAdA2gvmlEO_5nv_tA-z3olUXlXyEbKe0-9CfHZ-8_77df4j2mAN_J | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB3R5YDaA7QFdVFBPvTUystiO876SBEIVYKu1K5KT5bt2CywZFE2EaK_ht_CL-s4H6vSAxK3SBlZiV-cefbMvAH4xDPjlBk6iu4jpcIMY7Eywysm0f-k1oa6HdDpmTyZiG_nyfkK7HW1MFNknIt5YWOWB6263AQ_CEW8RaNaSowlvYJVmSD57sHq5Gx88LuJFTCq2pR6GcX5uFBLnaFGSpbjAPt0H3_IgjItnrDKZSD0NaxV-a25vzOz2T--5ngdxt1TNikm14OqtAP35z8Bxxe8xga8iSUNJNYa4DS-hRWfv4P1rqEDadf3e_g-9gUtqpwczC7mxWU5vSE_6j45CB6JJ7aPD79McUORoUbxgQtSJxwQ9HdX9eH_Pf2KTjEjkVdWuI_fhMnx0c_DE9p2XKBTXIolTV2QwnKRJsxlZqR8woNxzA9DkA73UkFwaQJSEK-YTU1mRz6MnFMqyfhIDh3fgl4-z_0HIFYyHzIc0Esj0FZx3Mgoj4TKOO-Y7MOXbu51HRduk1FdMxULncZ2kqnSQmmp-vC5g0dH44Xu5JYRVs01wqprWDXC2ge6BFDfNqIdz9lvv9D-I_TKovI7yEZKu9t-gX8Br5zeNA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Parallel+Problem+Solving+from+Nature+%E2%80%93+PPSN+XVII&rft.au=Kostovska%2C+Ana&rft.au=Jankovic%2C+Anja&rft.au=Vermetten%2C+Diederick&rft.au=de+Nobel%2C+Jacob&rft.atitle=Per-run+Algorithm+Selection+with%C2%A0Warm-Starting+Using+Trajectory-Based+Features&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2022-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783031147135&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=46&rft.epage=60&rft_id=info:doi/10.1007%2F978-3-031-14714-2_4 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F7073379-l.jpg |