PaDiM: A Patch Distribution Modeling Framework for Anomaly Detection and Localization

We present a new framework for Patch Distribution Modeling, PaDiM, to concurrently detect and localize anomalies in images in a one-class learning setting. PaDiM makes use of a pretrained convolutional neural network (CNN) for patch embedding, and of multivariate Gaussian distributions to get a prob...

Full description

Saved in:
Bibliographic Details
Published inLecture notes in computer science Vol. 12664; pp. 475 - 489
Main Authors Defard, Thomas, Setkov, Aleksandr, Loesch, Angelique, Audigier, Romaric
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783030687984
3030687988
ISSN0302-9743
1611-3349
1611-3349
DOI10.1007/978-3-030-68799-1_35

Cover

Abstract We present a new framework for Patch Distribution Modeling, PaDiM, to concurrently detect and localize anomalies in images in a one-class learning setting. PaDiM makes use of a pretrained convolutional neural network (CNN) for patch embedding, and of multivariate Gaussian distributions to get a probabilistic representation of the normal class. It also exploits correlations between the different semantic levels of CNN to better localize anomalies. PaDiM outperforms current state-of-the-art approaches for both anomaly detection and localization on the MVTec AD and STC datasets. To match real-world visual industrial inspection, we extend the evaluation protocol to assess performance of anomaly localization algorithms on non-aligned dataset. The state-of-the-art performance and low complexity of PaDiM make it a good candidate for many industrial applications.
AbstractList We present a new framework for Patch Distribution Modeling, PaDiM, to concurrently detect and localize anomalies in images in a one-class learning setting. PaDiM makes use of a pretrained convolutional neural network (CNN) for patch embedding, and of multivariate Gaussian distributions to get a probabilistic representation of the normal class. It also exploits correlations between the different semantic levels of CNN to better localize anomalies. PaDiM outperforms current state-of-the-art approaches for both anomaly detection and localization on the MVTec AD and STC datasets. To match real-world visual industrial inspection, we extend the evaluation protocol to assess performance of anomaly localization algorithms on non-aligned dataset. The state-of-the-art performance and low complexity of PaDiM make it a good candidate for many industrial applications.
Author Setkov, Aleksandr
Audigier, Romaric
Defard, Thomas
Loesch, Angelique
Author_xml – sequence: 1
  givenname: Thomas
  orcidid: 0000-0003-1225-7092
  surname: Defard
  fullname: Defard, Thomas
– sequence: 2
  givenname: Aleksandr
  orcidid: 0000-0002-1714-7389
  surname: Setkov
  fullname: Setkov, Aleksandr
  email: aleksandr.setkov@cea.fr
– sequence: 3
  givenname: Angelique
  orcidid: 0000-0001-5427-3010
  surname: Loesch
  fullname: Loesch, Angelique
– sequence: 4
  givenname: Romaric
  orcidid: 0000-0002-4757-2052
  surname: Audigier
  fullname: Audigier, Romaric
BookMark eNqFkMFOGzEQhl0KiEDzBj34BdzaHnttc4tIKZWCyqGcLa8zS7Zs7ODdKEqfvpukF049zeif_5vDd03OU05IyGfBvwjOzVdnLAPGgbPKGueY8KA_kOkYwxgeM3FGJqISggEo9_HdzapzMhl3yZxRcEmuhVQAQgtXXZFp3__mnEvNJWg9Ic9PYd4-3tIZfQpDXNF52w-lrbdDmxN9zEvs2vRC70tY4y6XV9rkQmcpr0O3p3McMB6LIS3pIsfQtX_CIfhELprQ9Tj9N2_I8_23X3cPbPHz-4-72YKtgCvNlkZGiLWLSlmrl5UB2yjZGFuDi7ZGGyRatA4rVGicDCo601islFHSOA03RJ_-btMm7Heh6_ymtOtQ9l5wf3DpRzEe_KjDH735g8uRkyeuH-vpBYuvc37t_wepE7Qp-W2L_eDxQEVMQwldXIXNgKX3lRYCjPNagFfWwV9An4Kz
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DBID FFUUA
ABOKW
UNPAY
DOI 10.1007/978-3-030-68799-1_35
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
Unpaywall for CDI: Monographs and Miscellaneous Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9783030687991
3030687996
EISSN 1611-3349
Editor Del Bimbo, Alberto
Bertini, Marco
Vezzani, Roberto
Sclaroff, Stan
Mei, Tao
Farinella, Giovanni Maria
Cucchiara, Rita
Escalante, Hugo Jair
Editor_xml – sequence: 1
  fullname: Del Bimbo, Alberto
– sequence: 2
  fullname: Bertini, Marco
– sequence: 3
  fullname: Vezzani, Roberto
– sequence: 4
  fullname: Sclaroff, Stan
– sequence: 5
  fullname: Mei, Tao
– sequence: 6
  fullname: Farinella, Giovanni Maria
– sequence: 7
  fullname: Cucchiara, Rita
– sequence: 8
  fullname: Escalante, Hugo Jair
EndPage 489
ExternalDocumentID oai:HAL:cea-03251821v1
EBC6511379_513_489
GroupedDBID 38.
AABBV
AABLV
ABNDO
ACWLQ
AEDXK
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
ARRAB
BAHJK
BBABE
CZZ
DBWEY
FFUUA
I4C
IEZ
OCUHQ
ORHYB
SBO
TPJZQ
TSXQS
Z7R
Z7U
Z7X
Z81
Z82
Z83
Z84
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ABOKW
UNPAY
ID FETCH-LOGICAL-h3045-d72c3cb9c44885d6738f42f78b39c8be8a2e8e89e6e4e792a4c97f8e647427953
IEDL.DBID UNPAY
ISBN 9783030687984
3030687988
ISSN 0302-9743
1611-3349
IngestDate Sun Oct 26 04:15:13 EDT 2025
Wed Sep 17 05:06:16 EDT 2025
Tue Oct 21 09:23:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
LCCallNum TA1501-1820
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h3045-d72c3cb9c44885d6738f42f78b39c8be8a2e8e89e6e4e792a4c97f8e647427953
OCLC 1243315196
ORCID 0000-0003-1225-7092
0000-0002-4757-2052
0000-0002-1714-7389
0000-0001-5427-3010
OpenAccessLink https://proxy.k.utb.cz/login?url=https://cea.hal.science/cea-03251821
PQID EBC6511379_513_489
PageCount 15
ParticipantIDs unpaywall_primary_10_1007_978_3_030_68799_1_35
springer_books_10_1007_978_3_030_68799_1_35
proquest_ebookcentralchapters_6511379_513_489
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Image Processing, Computer Vision, Pattern Recognition, and Graphics
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle Virtual Event, January 10-15, 2021, Proceedings, Part IV
PublicationTitle Lecture notes in computer science
PublicationYear 2021
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002502355
ssj0002792
Score 2.4832456
Snippet We present a new framework for Patch Distribution Modeling, PaDiM, to concurrently detect and localize anomalies in images in a one-class learning setting....
SourceID unpaywall
springer
proquest
SourceType Open Access Repository
Publisher
StartPage 475
SubjectTerms Anomaly detection
Anomaly localization
Computer vision
Title PaDiM: A Patch Distribution Modeling Framework for Anomaly Detection and Localization
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6511379&ppg=489
http://link.springer.com/10.1007/978-3-030-68799-1_35
https://cea.hal.science/cea-03251821
UnpaywallVersion submittedVersion
Volume 12664
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB2kPYge_MaKSg7eJKXdbL68FdsiotKDFT2FbDalYl1FW6T-eifdrBQPiseFZAnzspmXnXkzACciR5rcajna4rmg6K8d1V45KnMk24lPPV_8Gri-ERfD9PKe36_ASaWFcd42x8g64_kfnmmLoRNWQS1eFxwZdw3qw5tB56EMECRUxzx6ESrysVQvKeTK4D-OokJJrWnbxL5uFZf8Dn-uweqseLXzDzuZLHmY_gb0qrWViSVPzdk0a7rPH2Ub_1r8JqwH9QIJsgK02Bas-GIbNqreDSR-yjswHNju4_UZ6ZABHsZj0g0FdGPvKxIapAWZOulXqVsEuS3pFC_PdjInXT9dJHAVxBY5uQreMKo5d2HY792eX9DYYoGOQ4iU5jJxzGXa4S1NIVqSqVGajKTKmHYq88omXnmlvUDYpE5s6rQcKS9SvFJLzdke1IqXwu8DCREcMUpsm-c-tdJpnujc4ntCD9Cc-wbQyuxmEQiO2aeuNMi7Ecj9mNSGt5lJlW7AaYWNCcPfTVVhGUE1zCCoZgGqCaA2oPkNn3ktC3X8OuHgvxMOoTZ9m_kj5CDT7Bjqnd7l1d1x3IpfxkTWcg
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB2kHkQPfmNFJQdvktJuNl_eirWIqPRgoZ5CNptSsW6LbRH99U66WSkeFI8LyRLmZTMvO_NmAM5FjjS52XS0yXNB0V87qr1yVOZIthOfer78NXD_IG766e2AD9bgvNLCOG8bI2Sd8fwPz7TJ0AmroBZfFxwZdw3W-w-99lMZIEiojnn0IlTkY6leUciVwX8cRYWSWtOWiX3dKi75Hf7chI1FMbUf73Y8XvEw3W24rtZWJpa8NBbzrOE-f5Rt_GvxO7AV1AskyArQYruw5os92K56N5D4Ke9Dv2c7z_eXpE16eBiPSCcU0I29r0hokBZk6qRbpW4R5LakXUxe7fiDdPx8mcBVEFvk5C54w6jmPIB-9_rx6obGFgt0FEKkNJeJYy7TDm9pCtGSTA3TZChVxrRTmVc28cor7QXCJnViU6flUHmR4pVaas4OoVZMCn8EJERwxDCxLZ771EqneaJzi-8JPUBz7utAK7ObZSA4Zp-60iAzI5D7MakNbzGTKl2HiwobE4bPTFVhGUE1zCCoZgmqCaDWofENn5mWhTp-nXD83wknUJu_LfwpcpB5dha34Bcap9Td
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Pattern+Recognition.+ICPR+International+Workshops+and+Challenges&rft.atitle=PaDiM%3A+A+Patch+Distribution+Modeling+Framework+for+Anomaly+Detection+and+Localization&rft.date=2021-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030687984&rft.volume=12664&rft_id=info:doi/10.1007%2F978-3-030-68799-1_35&rft.externalDBID=489&rft.externalDocID=EBC6511379_513_489
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6511379-l.jpg