PaDiM: A Patch Distribution Modeling Framework for Anomaly Detection and Localization
We present a new framework for Patch Distribution Modeling, PaDiM, to concurrently detect and localize anomalies in images in a one-class learning setting. PaDiM makes use of a pretrained convolutional neural network (CNN) for patch embedding, and of multivariate Gaussian distributions to get a prob...
Saved in:
| Published in | Lecture notes in computer science Vol. 12664; pp. 475 - 489 |
|---|---|
| Main Authors | , , , |
| Format | Book Chapter |
| Language | English |
| Published |
Switzerland
Springer International Publishing AG
2021
Springer International Publishing |
| Series | Lecture Notes in Computer Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9783030687984 3030687988 |
| ISSN | 0302-9743 1611-3349 1611-3349 |
| DOI | 10.1007/978-3-030-68799-1_35 |
Cover
| Abstract | We present a new framework for Patch Distribution Modeling, PaDiM, to concurrently detect and localize anomalies in images in a one-class learning setting. PaDiM makes use of a pretrained convolutional neural network (CNN) for patch embedding, and of multivariate Gaussian distributions to get a probabilistic representation of the normal class. It also exploits correlations between the different semantic levels of CNN to better localize anomalies. PaDiM outperforms current state-of-the-art approaches for both anomaly detection and localization on the MVTec AD and STC datasets. To match real-world visual industrial inspection, we extend the evaluation protocol to assess performance of anomaly localization algorithms on non-aligned dataset. The state-of-the-art performance and low complexity of PaDiM make it a good candidate for many industrial applications. |
|---|---|
| AbstractList | We present a new framework for Patch Distribution Modeling, PaDiM, to concurrently detect and localize anomalies in images in a one-class learning setting. PaDiM makes use of a pretrained convolutional neural network (CNN) for patch embedding, and of multivariate Gaussian distributions to get a probabilistic representation of the normal class. It also exploits correlations between the different semantic levels of CNN to better localize anomalies. PaDiM outperforms current state-of-the-art approaches for both anomaly detection and localization on the MVTec AD and STC datasets. To match real-world visual industrial inspection, we extend the evaluation protocol to assess performance of anomaly localization algorithms on non-aligned dataset. The state-of-the-art performance and low complexity of PaDiM make it a good candidate for many industrial applications. |
| Author | Setkov, Aleksandr Audigier, Romaric Defard, Thomas Loesch, Angelique |
| Author_xml | – sequence: 1 givenname: Thomas orcidid: 0000-0003-1225-7092 surname: Defard fullname: Defard, Thomas – sequence: 2 givenname: Aleksandr orcidid: 0000-0002-1714-7389 surname: Setkov fullname: Setkov, Aleksandr email: aleksandr.setkov@cea.fr – sequence: 3 givenname: Angelique orcidid: 0000-0001-5427-3010 surname: Loesch fullname: Loesch, Angelique – sequence: 4 givenname: Romaric orcidid: 0000-0002-4757-2052 surname: Audigier fullname: Audigier, Romaric |
| BookMark | eNqFkMFOGzEQhl0KiEDzBj34BdzaHnttc4tIKZWCyqGcLa8zS7Zs7ODdKEqfvpukF049zeif_5vDd03OU05IyGfBvwjOzVdnLAPGgbPKGueY8KA_kOkYwxgeM3FGJqISggEo9_HdzapzMhl3yZxRcEmuhVQAQgtXXZFp3__mnEvNJWg9Ic9PYd4-3tIZfQpDXNF52w-lrbdDmxN9zEvs2vRC70tY4y6XV9rkQmcpr0O3p3McMB6LIS3pIsfQtX_CIfhELprQ9Tj9N2_I8_23X3cPbPHz-4-72YKtgCvNlkZGiLWLSlmrl5UB2yjZGFuDi7ZGGyRatA4rVGicDCo601islFHSOA03RJ_-btMm7Heh6_ymtOtQ9l5wf3DpRzEe_KjDH735g8uRkyeuH-vpBYuvc37t_wepE7Qp-W2L_eDxQEVMQwldXIXNgKX3lRYCjPNagFfWwV9An4Kz |
| ContentType | Book Chapter |
| Copyright | Springer Nature Switzerland AG 2021 |
| Copyright_xml | – notice: Springer Nature Switzerland AG 2021 |
| DBID | FFUUA ABOKW UNPAY |
| DOI | 10.1007/978-3-030-68799-1_35 |
| DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only Unpaywall for CDI: Monographs and Miscellaneous Content Unpaywall |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISBN | 9783030687991 3030687996 |
| EISSN | 1611-3349 |
| Editor | Del Bimbo, Alberto Bertini, Marco Vezzani, Roberto Sclaroff, Stan Mei, Tao Farinella, Giovanni Maria Cucchiara, Rita Escalante, Hugo Jair |
| Editor_xml | – sequence: 1 fullname: Del Bimbo, Alberto – sequence: 2 fullname: Bertini, Marco – sequence: 3 fullname: Vezzani, Roberto – sequence: 4 fullname: Sclaroff, Stan – sequence: 5 fullname: Mei, Tao – sequence: 6 fullname: Farinella, Giovanni Maria – sequence: 7 fullname: Cucchiara, Rita – sequence: 8 fullname: Escalante, Hugo Jair |
| EndPage | 489 |
| ExternalDocumentID | oai:HAL:cea-03251821v1 EBC6511379_513_489 |
| GroupedDBID | 38. AABBV AABLV ABNDO ACWLQ AEDXK AEJLV AEKFX AELOD AIYYB ALMA_UNASSIGNED_HOLDINGS ARRAB BAHJK BBABE CZZ DBWEY FFUUA I4C IEZ OCUHQ ORHYB SBO TPJZQ TSXQS Z7R Z7U Z7X Z81 Z82 Z83 Z84 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RNI RSU SVGTG VI1 ~02 ABOKW UNPAY |
| ID | FETCH-LOGICAL-h3045-d72c3cb9c44885d6738f42f78b39c8be8a2e8e89e6e4e792a4c97f8e647427953 |
| IEDL.DBID | UNPAY |
| ISBN | 9783030687984 3030687988 |
| ISSN | 0302-9743 1611-3349 |
| IngestDate | Sun Oct 26 04:15:13 EDT 2025 Wed Sep 17 05:06:16 EDT 2025 Tue Oct 21 09:23:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCallNum | TA1501-1820 |
| Language | English |
| License | other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-h3045-d72c3cb9c44885d6738f42f78b39c8be8a2e8e89e6e4e792a4c97f8e647427953 |
| OCLC | 1243315196 |
| ORCID | 0000-0003-1225-7092 0000-0002-4757-2052 0000-0002-1714-7389 0000-0001-5427-3010 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://cea.hal.science/cea-03251821 |
| PQID | EBC6511379_513_489 |
| PageCount | 15 |
| ParticipantIDs | unpaywall_primary_10_1007_978_3_030_68799_1_35 springer_books_10_1007_978_3_030_68799_1_35 proquest_ebookcentralchapters_6511379_513_489 |
| PublicationCentury | 2000 |
| PublicationDate | 2021 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Cham |
| PublicationSeriesSubtitle | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
| PublicationSeriesTitle | Lecture Notes in Computer Science |
| PublicationSeriesTitleAlternate | Lect.Notes Computer |
| PublicationSubtitle | Virtual Event, January 10-15, 2021, Proceedings, Part IV |
| PublicationTitle | Lecture notes in computer science |
| PublicationYear | 2021 |
| Publisher | Springer International Publishing AG Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
| RelatedPersons | Hartmanis, Juris Gao, Wen Bertino, Elisa Woeginger, Gerhard Goos, Gerhard Steffen, Bernhard Yung, Moti |
| RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Gerhard orcidid: 0000-0001-8816-2693 surname: Woeginger fullname: Woeginger, Gerhard – sequence: 7 givenname: Moti surname: Yung fullname: Yung, Moti |
| SSID | ssj0002502355 ssj0002792 |
| Score | 2.4832456 |
| Snippet | We present a new framework for Patch Distribution Modeling, PaDiM, to concurrently detect and localize anomalies in images in a one-class learning setting.... |
| SourceID | unpaywall springer proquest |
| SourceType | Open Access Repository Publisher |
| StartPage | 475 |
| SubjectTerms | Anomaly detection Anomaly localization Computer vision |
| Title | PaDiM: A Patch Distribution Modeling Framework for Anomaly Detection and Localization |
| URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6511379&ppg=489 http://link.springer.com/10.1007/978-3-030-68799-1_35 https://cea.hal.science/cea-03251821 |
| UnpaywallVersion | submittedVersion |
| Volume | 12664 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB2kPYge_MaKSg7eJKXdbL68FdsiotKDFT2FbDalYl1FW6T-eifdrBQPiseFZAnzspmXnXkzACciR5rcajna4rmg6K8d1V45KnMk24lPPV_8Gri-ERfD9PKe36_ASaWFcd42x8g64_kfnmmLoRNWQS1eFxwZdw3qw5tB56EMECRUxzx6ESrysVQvKeTK4D-OokJJrWnbxL5uFZf8Dn-uweqseLXzDzuZLHmY_gb0qrWViSVPzdk0a7rPH2Ub_1r8JqwH9QIJsgK02Bas-GIbNqreDSR-yjswHNju4_UZ6ZABHsZj0g0FdGPvKxIapAWZOulXqVsEuS3pFC_PdjInXT9dJHAVxBY5uQreMKo5d2HY792eX9DYYoGOQ4iU5jJxzGXa4S1NIVqSqVGajKTKmHYq88omXnmlvUDYpE5s6rQcKS9SvFJLzdke1IqXwu8DCREcMUpsm-c-tdJpnujc4ntCD9Cc-wbQyuxmEQiO2aeuNMi7Ecj9mNSGt5lJlW7AaYWNCcPfTVVhGUE1zCCoZgGqCaA2oPkNn3ktC3X8OuHgvxMOoTZ9m_kj5CDT7Bjqnd7l1d1x3IpfxkTWcg |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB2kHkQPfmNFJQdvktJuNl_eirWIqPRgoZ5CNptSsW6LbRH99U66WSkeFI8LyRLmZTMvO_NmAM5FjjS52XS0yXNB0V87qr1yVOZIthOfer78NXD_IG766e2AD9bgvNLCOG8bI2Sd8fwPz7TJ0AmroBZfFxwZdw3W-w-99lMZIEiojnn0IlTkY6leUciVwX8cRYWSWtOWiX3dKi75Hf7chI1FMbUf73Y8XvEw3W24rtZWJpa8NBbzrOE-f5Rt_GvxO7AV1AskyArQYruw5os92K56N5D4Ke9Dv2c7z_eXpE16eBiPSCcU0I29r0hokBZk6qRbpW4R5LakXUxe7fiDdPx8mcBVEFvk5C54w6jmPIB-9_rx6obGFgt0FEKkNJeJYy7TDm9pCtGSTA3TZChVxrRTmVc28cor7QXCJnViU6flUHmR4pVaas4OoVZMCn8EJERwxDCxLZ771EqneaJzi-8JPUBz7utAK7ObZSA4Zp-60iAzI5D7MakNbzGTKl2HiwobE4bPTFVhGUE1zCCoZgmqCaDWofENn5mWhTp-nXD83wknUJu_LfwpcpB5dha34Bcap9Td |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Pattern+Recognition.+ICPR+International+Workshops+and+Challenges&rft.atitle=PaDiM%3A+A+Patch+Distribution+Modeling+Framework+for+Anomaly+Detection+and+Localization&rft.date=2021-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030687984&rft.volume=12664&rft_id=info:doi/10.1007%2F978-3-030-68799-1_35&rft.externalDBID=489&rft.externalDocID=EBC6511379_513_489 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6511379-l.jpg |