A Comprehensive Learning-Based Flow for Cell-Aware Model Generation
As the semiconductor industry continues to shrink the transistor feature size, new fault models need to be invented and deployed to ensure manufacturing test and diagnostic of the highest quality. The Cell-Aware (CA) test and diagnosis methodology targets the detection of defects inside standard (st...
Saved in:
| Published in | 2022 IEEE International Test Conference (ITC) pp. 484 - 488 |
|---|---|
| Main Authors | , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.09.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2378-2250 |
| DOI | 10.1109/ITC50671.2022.00057 |
Cover
| Abstract | As the semiconductor industry continues to shrink the transistor feature size, new fault models need to be invented and deployed to ensure manufacturing test and diagnostic of the highest quality. The Cell-Aware (CA) test and diagnosis methodology targets the detection of defects inside standard (std) cells, at the transistor level. While becoming an industry standard, the CA methodology, has a large and costly deployment overhead, involving numerous analog simulations. In [1], we presented an innovative flow using Machine-Learning (ML) to reduce the CA test method runtime and ease its adoption for industrial usage. Experiments using different technology nodes demonstrated an over 99% runtime reduction for 80% of combinational cells. In this paper, new elements are presented to more widely take advantage of the ML flow for CA characterization. This includes a new decision algorithm, leveraging ML techniques to decide whether the CA characterization of a new std cell should be ML-based or simulation-based, thus allowing to decrease the CA characterization runtime while maintaining high quality CA models for all cells. Experimental results demonstrate the high performance of the new decision algorithm. The fault coverage on real cell-internal defects of ATPG patterns using ML predicted CA data proves that our predicted CA data can accurately replace those obtained by running extensive analog simulations, thus proving the effectiveness and pertinence of the proposed methodology. |
|---|---|
| AbstractList | As the semiconductor industry continues to shrink the transistor feature size, new fault models need to be invented and deployed to ensure manufacturing test and diagnostic of the highest quality. The Cell-Aware (CA) test and diagnosis methodology targets the detection of defects inside standard (std) cells, at the transistor level. While becoming an industry standard, the CA methodology, has a large and costly deployment overhead, involving numerous analog simulations. In [1], we presented an innovative flow using Machine-Learning (ML) to reduce the CA test method runtime and ease its adoption for industrial usage. Experiments using different technology nodes demonstrated an over 99% runtime reduction for 80% of combinational cells. In this paper, new elements are presented to more widely take advantage of the ML flow for CA characterization. This includes a new decision algorithm, leveraging ML techniques to decide whether the CA characterization of a new std cell should be ML-based or simulation-based, thus allowing to decrease the CA characterization runtime while maintaining high quality CA models for all cells. Experimental results demonstrate the high performance of the new decision algorithm. The fault coverage on real cell-internal defects of ATPG patterns using ML predicted CA data proves that our predicted CA data can accurately replace those obtained by running extensive analog simulations, thus proving the effectiveness and pertinence of the proposed methodology. |
| Author | Ladhar, A. D'Hondt, P. Girard, P. Virazel, A. |
| Author_xml | – sequence: 1 givenname: P. surname: D'Hondt fullname: D'Hondt, P. email: pierre.dhondt@st.com organization: STMicroelectronics,Crolles,France – sequence: 2 givenname: A. surname: Ladhar fullname: Ladhar, A. email: aymen.ladhar@st.com organization: STMicroelectronics,Crolles,France – sequence: 3 givenname: P. surname: Girard fullname: Girard, P. email: girard@lirmm.fr organization: LIRMM - Univ. of Montpellier / CNRS,Montpellier,France – sequence: 4 givenname: A. surname: Virazel fullname: Virazel, A. email: virazel@lirmm.fr organization: LIRMM - Univ. of Montpellier / CNRS,Montpellier,France |
| BookMark | eNo90MtOwzAQhWGDQKItPEE3foGUsR07zrJE9CIVsSnraFJPaJDrVE4h6tvTC2I1q3-O9A3ZXWgDMTYWMBEC8uflutBgMjGRIOUEAHR2w4bCGJ0amYG4ZQOpMptIqeGBDbvuC0CCljBgxZQX7W4faUuha36IrwhjaMJn8oIdOT7zbc_rNvKCvE-mPUbib60jz-cUKOKhacMju6_Rd_T0d0fsY_a6LhbJ6n2-LKarZCttekgIdF1TBSnZStRZWiMYIwCQnAY0UjkUKgenNFbKWrHRpCtjVC6ccUaQGrH0-vc77PHYo_flPjY7jMdSQHmWKJvD5iJRniXKi8QpG1-zhoj-izy3pxGrfgHQUVty |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO ADTOC UNPAY |
| DOI | 10.1109/ITC50671.2022.00057 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore Digital Library (LUT) IEEE Proceedings Order Plans (POP) 1998-present Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 1665462701 9781665462709 |
| EISSN | 2378-2250 |
| EndPage | 488 |
| ExternalDocumentID | oai:HAL:lirmm-03770147v1 9983888 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS ADTOC UNPAY |
| ID | FETCH-LOGICAL-h284t-e05ffeb04e8b1f74fa066100aed50a623da1390d35ab3881c5e5b66391d6d61e3 |
| IEDL.DBID | RIE |
| IngestDate | Sun Oct 26 01:36:21 EDT 2025 Wed Aug 27 02:28:23 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| License | other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-h284t-e05ffeb04e8b1f74fa066100aed50a623da1390d35ab3881c5e5b66391d6d61e3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal-lirmm.ccsd.cnrs.fr/lirmm-03770147 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9983888 unpaywall_primary_10_1109_itc50671_2022_00057 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Sept. |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-Sept. |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 IEEE International Test Conference (ITC) |
| PublicationTitleAbbrev | ITC |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020520 |
| Score | 2.2033017 |
| Snippet | As the semiconductor industry continues to shrink the transistor feature size, new fault models need to be invented and deployed to ensure manufacturing test... |
| SourceID | unpaywall ieee |
| SourceType | Open Access Repository Publisher |
| StartPage | 484 |
| SubjectTerms | cell-aware models Computational modeling Intra-cell defects Machine-learning Manufacturing Prediction algorithms Predictive models Runtime Standard cell characterization Test and diagnostic Training |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UDsaLGjBi1PTgtaNl7bYekUiIiYSDJHha2u1NiGWQMUL0r7f7ARpPeu2abntf2u97Sd_3ELr3QHPugyRKKkp4L_GIVIoT6TJt6SoAr7TMfx57oyl_molZXaxe1MLMlSFmkS2XThRtYidKs42TZN1yiFDX962k949R0xNWejdQczqe9F9rNyFGZXeRR8IewEXm1yutOMW-b8opOtmma_WxU8b8oJDhGRrvX17dHHl3trl2os9fvox__rpz1P6u1sOTAw9doCNIW2jQx8VWz2Be3VDHtZHqG3mwvBXjoVntsBWseADGkP5OZYCLvmgGV0bUBV5tNB0-vgxGpG6YQOaWZXICVCQJaMoh0CzxeaKsoGCUKogFVVboxMoKPhq7Qmk3CFgkQGgrOSSLvdhj4F6iRrpK4QphVZmLcauWOJe-0jJxKQScMfs3AKKDWkVQw3XliRHarM2uGHQQOQT58KzMM6gM99iEBTZhic31P-ffoEaebeHWCoFc39XwfwHpJrMY priority: 102 providerName: Unpaywall |
| Title | A Comprehensive Learning-Based Flow for Cell-Aware Model Generation |
| URI | https://ieeexplore.ieee.org/document/9983888 https://hal-lirmm.ccsd.cnrs.fr/lirmm-03770147 |
| UnpaywallVersion | submittedVersion |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB2qHtSLH1X8LHvw6La7ZjfNHmuwVKHFQwv1FHaTiYqhlZJS9Ne7m6RRxIO3wIYwmUl23ktm3gBc-WiE6KKiWmlGxU3qU6W1oMrjxqarAP1CMn848gcT8TCV0wZc170wiFgUn2HbHRb_8pN5vHSfyjqWGniWsW3ARjfwy16tmly5eo5KVYgz1bkfh9JuxI4B3hSSnHI9P2UXtpezd_2x0ln2I5X092C4NqKsIHlrL3PTjj9_6TP-18p9OPpu2iOPdTo6gAbODmH3h95gE8Iece__Al_KsnVSqas-01ubzBLSz-YrYlEsCTHLaG-lF0jcsLSMlOrULohHMOnfjcMBraYo0BebenKKTKYpGiYwMDztilRblMEZ05hIpi36SbRFgSzxpDbWbh5LlMbiEMUTP_E5esewOZvP8ASILhXHhIVQQqiuNir1GAaCc3tviPIUms4d0XsplBFVnjgFWnu8XivIB1PRax4XgYpcoKIiUGd_X-Ycdtw5ZYHXBWzmiyVeWkSQm1bxKLRgazJ67D19AU1btSc |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0gHpSLXxi_3YNHF3bpbmGP2EhQgXjAxFuzS6dibIohJUR_vbstVmI8eGuyTTM70-y81868Abjy0QjRRkW10oyKVuxTpbWgyuPGpqsO-rlk_nDk95_E_bN8rsB12QuDiHnxGTbcZf4vP5pNFu5TWdNSA88ytg3YlEIIWXRrlfTKVXSsdIU4U827cSDtUew4YCsX5ZTfE1RqsLVI3_XHUifJWjLp7cDw24yihuStschMY_L5S6Hxv3buQv2nbY88lglpDyqY7kNtTXHwAIIucSfAHKdF4TpZ6au-0BubziLSS2ZLYnEsCTBJaHep50jcuLSEFPrULox1eOrdjoM-Xc1RoFObfDKKTMYxGiawY3jcFrG2OIMzpjGSTFv8E2mLA1nkSW2s3XwiURqLRBSP_Mjn6B1CNZ2leAREF5pj1vuWiKm2Nir2GHYE53ZviPIYDpw7wvdCKiNceeIYaOnxci2nH0yFr9kkD1ToAhXmgTr5-zGXsNUfDwfh4G70cArb7v6i3OsMqtl8gecWH2TmIn8tvgBBCbbE |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UDsaLGjBi1PTgtaNl7bYekUiIiYSDJHha2u1NiGWQMUL0r7f7ARpPeu2abntf2u97Sd_3ELr3QHPugyRKKkp4L_GIVIoT6TJt6SoAr7TMfx57oyl_molZXaxe1MLMlSFmkS2XThRtYidKs42TZN1yiFDX962k949R0xNWejdQczqe9F9rNyFGZXeRR8IewEXm1yutOMW-b8opOtmma_WxU8b8oJDhGRrvX17dHHl3trl2os9fvox__rpz1P6u1sOTAw9doCNIW2jQx8VWz2Be3VDHtZHqG3mwvBXjoVntsBWseADGkP5OZYCLvmgGV0bUBV5tNB0-vgxGpG6YQOaWZXICVCQJaMoh0CzxeaKsoGCUKogFVVboxMoKPhq7Qmk3CFgkQGgrOSSLvdhj4F6iRrpK4QphVZmLcauWOJe-0jJxKQScMfs3AKKDWkVQw3XliRHarM2uGHQQOQT58KzMM6gM99iEBTZhic31P-ffoEaebeHWCoFc39XwfwHpJrMY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+International+Test+Conference&rft.atitle=A+Comprehensive+Learning-Based+Flow+for+Cell-Aware+Model+Generation&rft.au=D%27Hondt%2C+P.&rft.au=Ladhar%2C+A.&rft.au=Girard%2C+P.&rft.au=Virazel%2C+A.&rft.date=2022-09-01&rft.pub=IEEE&rft.eissn=2378-2250&rft.spage=484&rft.epage=488&rft_id=info:doi/10.1109%2FITC50671.2022.00057&rft.externalDocID=9983888 |