A Comprehensive Learning-Based Flow for Cell-Aware Model Generation

As the semiconductor industry continues to shrink the transistor feature size, new fault models need to be invented and deployed to ensure manufacturing test and diagnostic of the highest quality. The Cell-Aware (CA) test and diagnosis methodology targets the detection of defects inside standard (st...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE International Test Conference (ITC) pp. 484 - 488
Main Authors D'Hondt, P., Ladhar, A., Girard, P., Virazel, A.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2022
Subjects
Online AccessGet full text
ISSN2378-2250
DOI10.1109/ITC50671.2022.00057

Cover

Abstract As the semiconductor industry continues to shrink the transistor feature size, new fault models need to be invented and deployed to ensure manufacturing test and diagnostic of the highest quality. The Cell-Aware (CA) test and diagnosis methodology targets the detection of defects inside standard (std) cells, at the transistor level. While becoming an industry standard, the CA methodology, has a large and costly deployment overhead, involving numerous analog simulations. In [1], we presented an innovative flow using Machine-Learning (ML) to reduce the CA test method runtime and ease its adoption for industrial usage. Experiments using different technology nodes demonstrated an over 99% runtime reduction for 80% of combinational cells. In this paper, new elements are presented to more widely take advantage of the ML flow for CA characterization. This includes a new decision algorithm, leveraging ML techniques to decide whether the CA characterization of a new std cell should be ML-based or simulation-based, thus allowing to decrease the CA characterization runtime while maintaining high quality CA models for all cells. Experimental results demonstrate the high performance of the new decision algorithm. The fault coverage on real cell-internal defects of ATPG patterns using ML predicted CA data proves that our predicted CA data can accurately replace those obtained by running extensive analog simulations, thus proving the effectiveness and pertinence of the proposed methodology.
AbstractList As the semiconductor industry continues to shrink the transistor feature size, new fault models need to be invented and deployed to ensure manufacturing test and diagnostic of the highest quality. The Cell-Aware (CA) test and diagnosis methodology targets the detection of defects inside standard (std) cells, at the transistor level. While becoming an industry standard, the CA methodology, has a large and costly deployment overhead, involving numerous analog simulations. In [1], we presented an innovative flow using Machine-Learning (ML) to reduce the CA test method runtime and ease its adoption for industrial usage. Experiments using different technology nodes demonstrated an over 99% runtime reduction for 80% of combinational cells. In this paper, new elements are presented to more widely take advantage of the ML flow for CA characterization. This includes a new decision algorithm, leveraging ML techniques to decide whether the CA characterization of a new std cell should be ML-based or simulation-based, thus allowing to decrease the CA characterization runtime while maintaining high quality CA models for all cells. Experimental results demonstrate the high performance of the new decision algorithm. The fault coverage on real cell-internal defects of ATPG patterns using ML predicted CA data proves that our predicted CA data can accurately replace those obtained by running extensive analog simulations, thus proving the effectiveness and pertinence of the proposed methodology.
Author Ladhar, A.
D'Hondt, P.
Girard, P.
Virazel, A.
Author_xml – sequence: 1
  givenname: P.
  surname: D'Hondt
  fullname: D'Hondt, P.
  email: pierre.dhondt@st.com
  organization: STMicroelectronics,Crolles,France
– sequence: 2
  givenname: A.
  surname: Ladhar
  fullname: Ladhar, A.
  email: aymen.ladhar@st.com
  organization: STMicroelectronics,Crolles,France
– sequence: 3
  givenname: P.
  surname: Girard
  fullname: Girard, P.
  email: girard@lirmm.fr
  organization: LIRMM - Univ. of Montpellier / CNRS,Montpellier,France
– sequence: 4
  givenname: A.
  surname: Virazel
  fullname: Virazel, A.
  email: virazel@lirmm.fr
  organization: LIRMM - Univ. of Montpellier / CNRS,Montpellier,France
BookMark eNo90MtOwzAQhWGDQKItPEE3foGUsR07zrJE9CIVsSnraFJPaJDrVE4h6tvTC2I1q3-O9A3ZXWgDMTYWMBEC8uflutBgMjGRIOUEAHR2w4bCGJ0amYG4ZQOpMptIqeGBDbvuC0CCljBgxZQX7W4faUuha36IrwhjaMJn8oIdOT7zbc_rNvKCvE-mPUbib60jz-cUKOKhacMju6_Rd_T0d0fsY_a6LhbJ6n2-LKarZCttekgIdF1TBSnZStRZWiMYIwCQnAY0UjkUKgenNFbKWrHRpCtjVC6ccUaQGrH0-vc77PHYo_flPjY7jMdSQHmWKJvD5iJRniXKi8QpG1-zhoj-izy3pxGrfgHQUVty
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
ADTOC
UNPAY
DOI 10.1109/ITC50671.2022.00057
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library (LUT)
IEEE Proceedings Order Plans (POP) 1998-present
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665462701
9781665462709
EISSN 2378-2250
EndPage 488
ExternalDocumentID oai:HAL:lirmm-03770147v1
9983888
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ADTOC
UNPAY
ID FETCH-LOGICAL-h284t-e05ffeb04e8b1f74fa066100aed50a623da1390d35ab3881c5e5b66391d6d61e3
IEDL.DBID RIE
IngestDate Sun Oct 26 01:36:21 EDT 2025
Wed Aug 27 02:28:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h284t-e05ffeb04e8b1f74fa066100aed50a623da1390d35ab3881c5e5b66391d6d61e3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal-lirmm.ccsd.cnrs.fr/lirmm-03770147
PageCount 5
ParticipantIDs ieee_primary_9983888
unpaywall_primary_10_1109_itc50671_2022_00057
PublicationCentury 2000
PublicationDate 2022-Sept.
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-Sept.
PublicationDecade 2020
PublicationTitle 2022 IEEE International Test Conference (ITC)
PublicationTitleAbbrev ITC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020520
Score 2.2033017
Snippet As the semiconductor industry continues to shrink the transistor feature size, new fault models need to be invented and deployed to ensure manufacturing test...
SourceID unpaywall
ieee
SourceType Open Access Repository
Publisher
StartPage 484
SubjectTerms cell-aware models
Computational modeling
Intra-cell defects
Machine-learning
Manufacturing
Prediction algorithms
Predictive models
Runtime
Standard cell characterization
Test and diagnostic
Training
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UDsaLGjBi1PTgtaNl7bYekUiIiYSDJHha2u1NiGWQMUL0r7f7ARpPeu2abntf2u97Sd_3ELr3QHPugyRKKkp4L_GIVIoT6TJt6SoAr7TMfx57oyl_molZXaxe1MLMlSFmkS2XThRtYidKs42TZN1yiFDX962k949R0xNWejdQczqe9F9rNyFGZXeRR8IewEXm1yutOMW-b8opOtmma_WxU8b8oJDhGRrvX17dHHl3trl2os9fvox__rpz1P6u1sOTAw9doCNIW2jQx8VWz2Be3VDHtZHqG3mwvBXjoVntsBWseADGkP5OZYCLvmgGV0bUBV5tNB0-vgxGpG6YQOaWZXICVCQJaMoh0CzxeaKsoGCUKogFVVboxMoKPhq7Qmk3CFgkQGgrOSSLvdhj4F6iRrpK4QphVZmLcauWOJe-0jJxKQScMfs3AKKDWkVQw3XliRHarM2uGHQQOQT58KzMM6gM99iEBTZhic31P-ffoEaebeHWCoFc39XwfwHpJrMY
  priority: 102
  providerName: Unpaywall
Title A Comprehensive Learning-Based Flow for Cell-Aware Model Generation
URI https://ieeexplore.ieee.org/document/9983888
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03770147
UnpaywallVersion submittedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB2qHtSLH1X8LHvw6La7ZjfNHmuwVKHFQwv1FHaTiYqhlZJS9Ne7m6RRxIO3wIYwmUl23ktm3gBc-WiE6KKiWmlGxU3qU6W1oMrjxqarAP1CMn848gcT8TCV0wZc170wiFgUn2HbHRb_8pN5vHSfyjqWGniWsW3ARjfwy16tmly5eo5KVYgz1bkfh9JuxI4B3hSSnHI9P2UXtpezd_2x0ln2I5X092C4NqKsIHlrL3PTjj9_6TP-18p9OPpu2iOPdTo6gAbODmH3h95gE8Iece__Al_KsnVSqas-01ubzBLSz-YrYlEsCTHLaG-lF0jcsLSMlOrULohHMOnfjcMBraYo0BebenKKTKYpGiYwMDztilRblMEZ05hIpi36SbRFgSzxpDbWbh5LlMbiEMUTP_E5esewOZvP8ASILhXHhIVQQqiuNir1GAaCc3tviPIUms4d0XsplBFVnjgFWnu8XivIB1PRax4XgYpcoKIiUGd_X-Ycdtw5ZYHXBWzmiyVeWkSQm1bxKLRgazJ67D19AU1btSc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0gHpSLXxi_3YNHF3bpbmGP2EhQgXjAxFuzS6dibIohJUR_vbstVmI8eGuyTTM70-y81868Abjy0QjRRkW10oyKVuxTpbWgyuPGpqsO-rlk_nDk95_E_bN8rsB12QuDiHnxGTbcZf4vP5pNFu5TWdNSA88ytg3YlEIIWXRrlfTKVXSsdIU4U827cSDtUew4YCsX5ZTfE1RqsLVI3_XHUifJWjLp7cDw24yihuStschMY_L5S6Hxv3buQv2nbY88lglpDyqY7kNtTXHwAIIucSfAHKdF4TpZ6au-0BubziLSS2ZLYnEsCTBJaHep50jcuLSEFPrULox1eOrdjoM-Xc1RoFObfDKKTMYxGiawY3jcFrG2OIMzpjGSTFv8E2mLA1nkSW2s3XwiURqLRBSP_Mjn6B1CNZ2leAREF5pj1vuWiKm2Nir2GHYE53ZviPIYDpw7wvdCKiNceeIYaOnxci2nH0yFr9kkD1ToAhXmgTr5-zGXsNUfDwfh4G70cArb7v6i3OsMqtl8gecWH2TmIn8tvgBBCbbE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UDsaLGjBi1PTgtaNl7bYekUiIiYSDJHha2u1NiGWQMUL0r7f7ARpPeu2abntf2u97Sd_3ELr3QHPugyRKKkp4L_GIVIoT6TJt6SoAr7TMfx57oyl_molZXaxe1MLMlSFmkS2XThRtYidKs42TZN1yiFDX962k949R0xNWejdQczqe9F9rNyFGZXeRR8IewEXm1yutOMW-b8opOtmma_WxU8b8oJDhGRrvX17dHHl3trl2os9fvox__rpz1P6u1sOTAw9doCNIW2jQx8VWz2Be3VDHtZHqG3mwvBXjoVntsBWseADGkP5OZYCLvmgGV0bUBV5tNB0-vgxGpG6YQOaWZXICVCQJaMoh0CzxeaKsoGCUKogFVVboxMoKPhq7Qmk3CFgkQGgrOSSLvdhj4F6iRrpK4QphVZmLcauWOJe-0jJxKQScMfs3AKKDWkVQw3XliRHarM2uGHQQOQT58KzMM6gM99iEBTZhic31P-ffoEaebeHWCoFc39XwfwHpJrMY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+International+Test+Conference&rft.atitle=A+Comprehensive+Learning-Based+Flow+for+Cell-Aware+Model+Generation&rft.au=D%27Hondt%2C+P.&rft.au=Ladhar%2C+A.&rft.au=Girard%2C+P.&rft.au=Virazel%2C+A.&rft.date=2022-09-01&rft.pub=IEEE&rft.eissn=2378-2250&rft.spage=484&rft.epage=488&rft_id=info:doi/10.1109%2FITC50671.2022.00057&rft.externalDocID=9983888