MD-GAN: Multi-Discriminator Generative Adversarial Networks for Distributed Datasets
A recent technical breakthrough in the domain of machine learning is the discovery and the multiple applications of Generative Adversarial Networks (GANs). Those generative models are computationally demanding, as a GAN is composed of two deep neural networks, and because it trains on large datasets...
Saved in:
| Published in | Proceedings - IEEE International Parallel and Distributed Processing Symposium pp. 866 - 877 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.05.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1530-2075 |
| DOI | 10.1109/IPDPS.2019.00095 |
Cover
| Abstract | A recent technical breakthrough in the domain of machine learning is the discovery and the multiple applications of Generative Adversarial Networks (GANs). Those generative models are computationally demanding, as a GAN is composed of two deep neural networks, and because it trains on large datasets. A GAN is generally trained on a single server. In this paper, we address the problem of distributing GANs so that they are able to train over datasets that are spread on multiple workers. MD-GAN is exposed as the first solution for this problem: we propose a novel learning procedure for GANs so that they fit this distributed setup. We then compare the performance of MD-GAN to an adapted version of federated learning to GANs, using the MNIST, CIFAR10 and CelebA datasets. MD-GAN exhibits a reduction by a factor of two of the learning complexity on each worker node, while providing better or identical performances with the adaptation of federated learning. We finally discuss the practical implications of distributing GANs. |
|---|---|
| AbstractList | A recent technical breakthrough in the domain of machine learning is the discovery and the multiple applications of Generative Adversarial Networks (GANs). Those generative models are computationally demanding, as a GAN is composed of two deep neural networks, and because it trains on large datasets. A GAN is generally trained on a single server. In this paper, we address the problem of distributing GANs so that they are able to train over datasets that are spread on multiple workers. MD-GAN is exposed as the first solution for this problem: we propose a novel learning procedure for GANs so that they fit this distributed setup. We then compare the performance of MD-GAN to an adapted version of federated learning to GANs, using the MNIST, CIFAR10 and CelebA datasets. MD-GAN exhibits a reduction by a factor of two of the learning complexity on each worker node, while providing better or identical performances with the adaptation of federated learning. We finally discuss the practical implications of distributing GANs. |
| Author | Sericola, Bruno Hardy, Corentin Le Merrer, Erwan |
| Author_xml | – sequence: 1 givenname: Corentin surname: Hardy fullname: Hardy, Corentin email: Corentin.Hardy@technicolor.com organization: Technicolor and INRIA Rennes – sequence: 2 givenname: Erwan surname: Le Merrer fullname: Le Merrer, Erwan email: erwan.le-merrer@inria.fr organization: INRIA Rennes – sequence: 3 givenname: Bruno surname: Sericola fullname: Sericola, Bruno email: bruno.sericola@inria.fr organization: INRIA Rennes |
| BookMark | eNotjlFLwzAUhaMouE7fBV_6B1pv0qZJfCur1sE2B07wbaTNLUZrK0k28d9b0KdzHr7vcCJyNowDEnJNIaUU1O1yW22fUwZUpQCg-AmJqGCSUpYXr6dkRnkGCQPBL0jk_TsAgyxXM7JbV0ldbu7i9aEPNqmsb539tIMOo4trHNDpYI8Yl-aIzmtndR9vMHyP7sPH3cRMRnC2OQQ0caWD9hj8JTnvdO_x6j_n5OXhfrd4TFZP9XJRrpI3JnhIlASBpuFGSZ4JWXRZoZCiMLJrJRXYosRWmkJ3ktEcQTBqcmZ0M3WeS5PNyc3frkXE_dd0XLufvZxoYDz7Bd4_UgE |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/IPDPS.2019.00095 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings Accès ENAC - IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 172811246X 9781728112466 |
| EISSN | 1530-2075 |
| EndPage | 877 |
| ExternalDocumentID | 8821025 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL |
| ID | FETCH-LOGICAL-h275t-9807edb5d9853786f369e1e7d8fc817ece8ec8d6af8214e0721d42dab4e0548d3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:35:21 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-h275t-9807edb5d9853786f369e1e7d8fc817ece8ec8d6af8214e0721d42dab4e0548d3 |
| OpenAccessLink | https://inria.hal.science/hal-01946665 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_8821025 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-01 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings - IEEE International Parallel and Distributed Processing Symposium |
| PublicationTitleAbbrev | IPDPS |
| PublicationYear | 2019 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020349 |
| Score | 2.2222283 |
| Snippet | A recent technical breakthrough in the domain of machine learning is the discovery and the multiple applications of Generative Adversarial Networks (GANs).... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 866 |
| SubjectTerms | Computational modeling Deep Learning Distributed Datasets Gallium nitride Generative Adversarial Network Generative adversarial networks Generators Machine learning Servers Training |
| Title | MD-GAN: Multi-Discriminator Generative Adversarial Networks for Distributed Datasets |
| URI | https://ieeexplore.ieee.org/document/8821025 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXaTkwFWsS3PDDiNh9O7LAhQilIrSrRSt0qx74IhNQiki78eu6StiDEwGZlSXJO_O7sd-8xdpVYiygfSgF-pIUEEwjjS0zkgjhSMouyemtgNI6HM_k0j-YNdr3rhQGAinwGPRpWZ_luZde0VdbHbBDxMGqyptJx3au1K65IZ2V7DOkl_cdJOnkm5hbJUXrkHvHDPKXCjkGbjbZ3rSkjb711mfXs5y9Bxv8-1j7rfnfp8ckOfw5YA5aHrL21aeCbv7bDpqNUPNyOb3jVbCvSV1opiAGD5TavZadpzeOVN3Nh6Ivk45odXnDMaXlK4rrkiwWOp6ZE3CuLLpsN7qd3Q7ExUxAvgYpKkWhPgcsilyBAY_jyME7AB-V0brWvwIIGq11scnwbCSSb5mTgTIZjrGpceMRay9USjhnHYlyq0DjIZChtmGgV4ox7eWC8GAFRn7AOBWnxXutlLDbxOf378hnbo2mqSYTnrFV-rOECgb7MLqsZ_gLBKaju |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsBUoEV844ERt_mwE4cNEUoLTVSJVupWOfZFIKQW0XTh12MnbUGIgc3KksSX-N3Z794DuIqUMijvM4ouF5Sh9Kh0mUnkvICHLONZtTWQpEFvzB4nfFKD600vDCKW5DNs22F5lq_namm3yjomGzR4yLdgmzPGeNWttSmvrNLK-iDSiTr9YTx8ttwtK0jpWP-IH_YpJXp0G5Cs71uRRt7ayyJrq89fkoz_fbA9aH336ZHhBoH2oYazA2isjRrI6r9twiiJ6cNtekPKdlsav9q1wnJgTMFNKuFpu-qR0p15Ie03SdKKH74gJqslsZXXtc5YqEksC4N8xaIF4-796K5HV3YK9MULeUEj4YSoM64jA9GhCHI_iNDFUItcCTdEhQKV0IHMzdswtMJpmnlaZmZs6hrtH0J9Np_hERBTjrPQlxoz5jPlRyL0Tcyd3JNOYCBRHEPTTtL0vVLMmK7m5-Tvy5ew0xslg-mgnz6dwq4NWUUpPIN68bHEcwP7RXZRRvsLxxmsOw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+IEEE+International+Parallel+and+Distributed+Processing+Symposium&rft.atitle=MD-GAN%3A+Multi-Discriminator+Generative+Adversarial+Networks+for+Distributed+Datasets&rft.au=Hardy%2C+Corentin&rft.au=Le+Merrer%2C+Erwan&rft.au=Sericola%2C+Bruno&rft.date=2019-05-01&rft.pub=IEEE&rft.eissn=1530-2075&rft.spage=866&rft.epage=877&rft_id=info:doi/10.1109%2FIPDPS.2019.00095&rft.externalDocID=8821025 |