φ-FD: A Well-conditioned Finite Difference Method Inspired by φ-FEM for General Geometries on Elliptic PDEs

This paper presents a new finite difference method, called φ -FD, inspired by the φ -FEM approach for solving elliptic partial differential equations (PDEs) on general geometries. The proposed method uses Cartesian grids, ensuring simplicity in implementation. Moreover, contrary to the previous fini...

Full description

Saved in:
Bibliographic Details
Published inJournal of scientific computing Vol. 104; no. 1; p. 23
Main Authors Duprez, Michel, Lleras, Vanessa, Lozinski, Alexei, Vigon, Vincent, Vuillemot, Killian
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2025
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text
ISSN0885-7474
1573-7691
DOI10.1007/s10915-025-02914-0

Cover

Abstract This paper presents a new finite difference method, called φ -FD, inspired by the φ -FEM approach for solving elliptic partial differential equations (PDEs) on general geometries. The proposed method uses Cartesian grids, ensuring simplicity in implementation. Moreover, contrary to the previous finite difference scheme on the non-rectangular domain, the associated matrix is well-conditioned. The use of a level-set function for the geometry description makes this approach relatively flexible. We prove the quasi-optimal convergence rates in several norms and the fact that the matrix is well-conditioned. Additionally, the paper explores the use of multigrid techniques to further accelerate the computation. Finally, numerical experiments in both 2D and 3D validate the performance of the φ -FD method compared to standard finite element methods and the Shortley-Weller approach.
AbstractList This paper presents a new finite difference method, called φ -FD, inspired by the φ -FEM approach for solving elliptic partial differential equations (PDEs) on general geometries. The proposed method uses Cartesian grids, ensuring simplicity in implementation. Moreover, contrary to the previous finite difference scheme on the non-rectangular domain, the associated matrix is well-conditioned. The use of a level-set function for the geometry description makes this approach relatively flexible. We prove the quasi-optimal convergence rates in several norms and the fact that the matrix is well-conditioned. Additionally, the paper explores the use of multigrid techniques to further accelerate the computation. Finally, numerical experiments in both 2D and 3D validate the performance of the φ -FD method compared to standard finite element methods and the Shortley-Weller approach.
This paper presents a new finite difference method, called φ-FD, inspired by the φ-FEM approach for solving elliptic partial differential equations (PDEs) on general geometries. The proposed method uses Cartesian grids, ensuring simplicity in implementation. Moreover, contrary to the previous finite difference scheme on the non-rectangular domain, the associated matrix is well-conditioned. The use of a level-set function for the geometry description makes this approach relatively flexible. We prove the quasi-optimal convergence rates in several norms and the fact that the matrix is well-conditioned. Additionally, the paper explores the use of multigrid techniques to further accelerate the computation. Finally, numerical experiments in both 2D and 3D validate the performance of the φ-FD method compared to standard finite element methods and the Shortley-Weller approach.
This paper presents a new finite difference method, called phi-FD, inspired by the phi-FEM approach for solving elliptic partial differential equations (PDEs) on general geometries. The proposed method uses Cartesian grids, ensuring simplicity in implementation. Moreover, contrary to the previous finite difference scheme on non-rectangular domain, the associated matrix is well-conditioned. The use of a level-set function for the geometry description makes this approach relatively flexible. We prove the quasi-optimal convergence rates in several norms and the fact that the matrix is well-conditioned. Additionally, the paper explores the use of multigrid techniques to further accelerate the computation. Finally, numerical experiments in both 2D and 3D validate the performance of the phi-FD method compared to standard finite element methods and the Shortley-Weller approach.
Author Vuillemot, Killian
Duprez, Michel
Lozinski, Alexei
Lleras, Vanessa
Vigon, Vincent
Author_xml – sequence: 1
  givenname: Michel
  orcidid: 0000-0002-2059-2811
  surname: Duprez
  fullname: Duprez, Michel
  email: michel.duprez@inria.fr
  organization: MIMESIS team, Inria de l’Université de Lorraine MLMS team, Université de Strasbourg
– sequence: 2
  givenname: Vanessa
  surname: Lleras
  fullname: Lleras, Vanessa
  organization: MIMESIS team, Inria de l’Université de Lorraine MLMS team, Université de Strasbourg, IMAG, Univ Montpellier, CNRS UMR 5149
– sequence: 3
  givenname: Alexei
  surname: Lozinski
  fullname: Lozinski, Alexei
  organization: Université de Franche-Comté, Laboratoire de mathématiques de Besançon, UMR CNRS 6623
– sequence: 4
  givenname: Vincent
  surname: Vigon
  fullname: Vigon, Vincent
  organization: Université de Strasbourg et CNRS, Tonus team, Inria de l’Université de Lorraine
– sequence: 5
  givenname: Killian
  surname: Vuillemot
  fullname: Vuillemot, Killian
  organization: MIMESIS team, Inria de l’Université de Lorraine MLMS team, Université de Strasbourg, IMAG, Univ Montpellier, CNRS UMR 5149
BackLink https://hal.science/hal-04731164$$DView record in HAL
BookMark eNpFkcFuEzEQhi1UJNLCC3CyxImDYcb22rvcoiZpK6WCA4ij5ezOElcbO9jbSn0BXo9XwiFIHEYjjb75Z6Tvkl3EFImxtwgfEMB-LAgdNgLkqTrUAl6wBTZWCWs6vGALaNtGWG31K3ZZygMAdG0nF-zw-5fYrD7xJf9O0yT6FIcwhxo-8E2IYSa-CuNImWJP_J7mfRr4XSzHkCuxe-an9fU9H1PmNxQp-6n2dKA5Byo8Rb6epnCcQ8-_rNblNXs5-qnQm3_9in3brL9e34rt55u76-VW7KVRs7DYoWy8as1gNVA3GtCt7tGPBI2x3YDSS6kM7ozajda3Td_DgKTJDkZ1qK7Y-3Pu3k_umMPB52eXfHC3y607zUBbhWj0k6zsuzN7zOnnI5XZPaTHHOt7TklE20C9WCl1pkqNiz8o_6cQ3MmBOztw1YH768CB-gOVAHls
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jul 2025
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jul 2025
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID JQ2
1XC
VOOES
DOI 10.1007/s10915-025-02914-0
DatabaseName ProQuest Computer Science Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-7691
ExternalDocumentID oai:HAL:hal-04731164v2
10_1007_s10915_025_02914_0
GrantInformation_xml – fundername: Agence Nationale de la Recherche
  grantid: ANR-22- CE46-0003
  funderid: http://dx.doi.org/10.13039/501100001665
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PHGZM
PHGZT
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~A9
~EX
ABRTQ
JQ2
1XC
VOOES
ID FETCH-LOGICAL-h263t-719125a386d740e9f60484c1afe05679d12a22361b63bf7a85cc0d1e4e7d63913
IEDL.DBID U2A
ISSN 0885-7474
IngestDate Tue Oct 28 06:40:52 EDT 2025
Fri Jul 25 09:20:27 EDT 2025
Fri Jun 20 01:11:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Partial differential equations
Unfitted method
65N06
General geometries
74S20
65N55
Finite difference method
general geometry
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h263t-719125a386d740e9f60484c1afe05679d12a22361b63bf7a85cc0d1e4e7d63913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2059-2811
0000-0003-0745-0365
0000-0003-1358-9558
OpenAccessLink https://hal.science/hal-04731164
PQID 3211750679
PQPubID 2043771
ParticipantIDs hal_primary_oai_HAL_hal_04731164v2
proquest_journals_3211750679
springer_journals_10_1007_s10915_025_02914_0
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of scientific computing
PublicationTitleAbbrev J Sci Comput
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
SSID ssj0009892
Score 2.407184
Snippet This paper presents a new finite difference method, called φ -FD, inspired by the φ -FEM approach for solving elliptic partial differential equations (PDEs) on...
This paper presents a new finite difference method, called φ-FD, inspired by the φ-FEM approach for solving elliptic partial differential equations (PDEs) on...
This paper presents a new finite difference method, called phi-FD, inspired by the phi-FEM approach for solving elliptic partial differential equations (PDEs)...
SourceID hal
proquest
springer
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 23
SubjectTerms Algorithms
Analysis of PDEs
Boundary conditions
Computational Mathematics and Numerical Analysis
Elliptic differential equations
Elliptic functions
Finite difference method
Finite element analysis
Finite element method
Fourier transforms
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Numerical Analysis
Parabolic differential equations
Partial differential equations
Python
Theorems
Theoretical
Title φ-FD: A Well-conditioned Finite Difference Method Inspired by φ-FEM for General Geometries on Elliptic PDEs
URI https://link.springer.com/article/10.1007/s10915-025-02914-0
https://www.proquest.com/docview/3211750679
https://hal.science/hal-04731164
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7691
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: AFBBN
  dateStart: 19860301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9swEBejedkeypJ1NFtaxNjDBhXYkmzZfXOWeNmflD40NH0ylizTQuuMOi30C_Tr9SvtTlGWUPqyByOwZWN0Ot3vpLvfEfJZaJFYEWvGk0AyKdOApakEgcRIV6Q0uLm4Dzk9iScz-XMezX1SWLuOdl8fSbqVeivZLQ0xmxivNJQMHPVOhHReMItnPNtQ7SauFDKoT8QALEufKvPyN8CkXGIE5Ba8fHYi6gxN_pbseoRIs5VIu-SVbXrkzfQfvWrbI12vkS394mmjv74jN0-PLB8d04ye2-trBn5uteIhqmh-hciSjnwxFGPp1BWOpj8aPGiHHvqB4uvjKQUQS_1HoV3cuIpbLV00FMM7YIEx9HQ0bvfILB-ffZswX0yBXfJYLJkCx4xHpUjiSsnApnUMuitNWNYWMJBKq5CXHJlYdCx0rcokMiaoQiutqgDFhOI92Wngn_cJVQbMvgFbr6yW2oDHZuIyrUNVO3452SefYEyLPyu6jAIJrCfZ7wLvBVKJEDy0e94ng_WQF15t2kJwZA7Fva0-OVqLYfN4Q7GMYixAjIUTYxF8-L_uH8lr7iYBht0OyM7y9s4eALhY6kPSyfLh8ATb7xe_xodubv0FFpvFYA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH5C5cA4wGBDKzBmTTtsEkaJ7cYJt4q2lNGgHahgJyt2HDFBW0QKEvwB_Hv8SzynzooQFw5RpMSxHH3-8T37ve8B_OCax5ZHmrI4EFSIJKBJIhCQyMkVSY1mrtuHTE-i_lD8Pm-d-6CwsvZ2r48kq5n6RbBbErpoYncloaBoqC8KNFBYAxbbh3-Pu3Ox3bhKhowDqEWRLgsfLPN2LbioXDgfyBcE89WZaLXU9FZhWDdy5mFyuXc71Xvm4ZV-43v_4iOseO5J2rPOsgYLdrwOy-l_4dZyHdb8WC_JTy9I_esTjJ4eaa-zT9rkzF5dUbSg85nCUU56_xxnJR2fZsVYklYpqcnR2B3hYwl9T9zn3ZQgPSa-UrxPRlUur5JMxsQ5juDUZcifTrf8DMNe9_SgT32aBnrBIj6lEk0-1sp4HOVSBDYpIpwVhAmzwiK7kkkesow5jRcdcV3ILG4ZE-ShFVbmyI9CvgGNMbb5CxBpkFAYZBHSaqEN2oImypIilEWlXCea8B2xUtczIQ7lpLH77YFyzwIheYi23x1rwnYNpfIDslScOU1St2vWhN0amfnruXizg0chPKqCRwWb7yv-DZb6p-lADY5OjrfgA6uAds6929CY3tzar0hhpnrH99hn8XLiKw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iIHoQn7g-g3hQMNgm2ab1trhb1seKBxe9hSZNUdAqdhX8A_49_5Iz2a67iBcPpdCmoc1kmm8yM98Qsi-MiJ2IDONxIJmUScCSRIJAIqQrUgbMXNyH7F1F3b48v2veTWTx-2j3kUtymNOALE3l4PglL44nEt-SEDOL8UhCycBon5FIlAAzus9bY9rd2JdFBlVqMgDOsk6b-bsPWF7uMRpyAmr-8o76RSddJAs1WqStoXiXyJQrl8l874dqtVomS7V2VvSgppA-XCFPX58sbZ_QFr11j48MPi4fchLlNH1AlEnbdWEU62jPF5GmZyU63aGF-aD4eKdHAdDSulM4Pz_56lsVfS4phnrAz8bS63anWiX9tHNz2mV1YQV2zyMxYAqMNN7MRBzlSgYuKSLQY2nDrHCAh1SShzzjyMpiImEKlcVNa4M8dNKpHBBNKNbIdAnvvE6osgABLKz7yhlpLFhvNsqSIlSF55qTDbIHY6pfhtQZGsmsu61LjdcCqUQI1to7b5Ct0ZDrWoUqLTiyiOI-V4McjcQwvj2mW0YxahCj9mLUwcb_mu-S2et2qi_Pri42yRz38wGjcbfI9OD1zW0D5hiYHT-tvgHkWsl4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%CF%86-FD%3A+A+Well-conditioned+Finite+Difference+Method+Inspired+by+%CF%86-FEM+for+General+Geometries+on+Elliptic+PDEs&rft.jtitle=Journal+of+scientific+computing&rft.au=Duprez%2C+Michel&rft.au=Lleras%2C+Vanessa&rft.au=Lozinski%2C+Alexei&rft.au=Vigon%2C+Vincent&rft.date=2025-07-01&rft.pub=Springer+US&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=104&rft.issue=1&rft_id=info:doi/10.1007%2Fs10915-025-02914-0&rft.externalDocID=10_1007_s10915_025_02914_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon