φ-FD: A Well-conditioned Finite Difference Method Inspired by φ-FEM for General Geometries on Elliptic PDEs
This paper presents a new finite difference method, called φ -FD, inspired by the φ -FEM approach for solving elliptic partial differential equations (PDEs) on general geometries. The proposed method uses Cartesian grids, ensuring simplicity in implementation. Moreover, contrary to the previous fini...
        Saved in:
      
    
          | Published in | Journal of scientific computing Vol. 104; no. 1; p. 23 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.07.2025
     Springer Nature B.V Springer Verlag  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0885-7474 1573-7691  | 
| DOI | 10.1007/s10915-025-02914-0 | 
Cover
| Abstract | This paper presents a new finite difference method, called
φ
-FD, inspired by the
φ
-FEM approach for solving elliptic partial differential equations (PDEs) on general geometries. The proposed method uses Cartesian grids, ensuring simplicity in implementation. Moreover, contrary to the previous finite difference scheme on the non-rectangular domain, the associated matrix is well-conditioned. The use of a level-set function for the geometry description makes this approach relatively flexible. We prove the quasi-optimal convergence rates in several norms and the fact that the matrix is well-conditioned. Additionally, the paper explores the use of multigrid techniques to further accelerate the computation. Finally, numerical experiments in both 2D and 3D validate the performance of the
φ
-FD method compared to standard finite element methods and the Shortley-Weller approach. | 
    
|---|---|
| AbstractList | This paper presents a new finite difference method, called
φ
-FD, inspired by the
φ
-FEM approach for solving elliptic partial differential equations (PDEs) on general geometries. The proposed method uses Cartesian grids, ensuring simplicity in implementation. Moreover, contrary to the previous finite difference scheme on the non-rectangular domain, the associated matrix is well-conditioned. The use of a level-set function for the geometry description makes this approach relatively flexible. We prove the quasi-optimal convergence rates in several norms and the fact that the matrix is well-conditioned. Additionally, the paper explores the use of multigrid techniques to further accelerate the computation. Finally, numerical experiments in both 2D and 3D validate the performance of the
φ
-FD method compared to standard finite element methods and the Shortley-Weller approach. This paper presents a new finite difference method, called φ-FD, inspired by the φ-FEM approach for solving elliptic partial differential equations (PDEs) on general geometries. The proposed method uses Cartesian grids, ensuring simplicity in implementation. Moreover, contrary to the previous finite difference scheme on the non-rectangular domain, the associated matrix is well-conditioned. The use of a level-set function for the geometry description makes this approach relatively flexible. We prove the quasi-optimal convergence rates in several norms and the fact that the matrix is well-conditioned. Additionally, the paper explores the use of multigrid techniques to further accelerate the computation. Finally, numerical experiments in both 2D and 3D validate the performance of the φ-FD method compared to standard finite element methods and the Shortley-Weller approach. This paper presents a new finite difference method, called phi-FD, inspired by the phi-FEM approach for solving elliptic partial differential equations (PDEs) on general geometries. The proposed method uses Cartesian grids, ensuring simplicity in implementation. Moreover, contrary to the previous finite difference scheme on non-rectangular domain, the associated matrix is well-conditioned. The use of a level-set function for the geometry description makes this approach relatively flexible. We prove the quasi-optimal convergence rates in several norms and the fact that the matrix is well-conditioned. Additionally, the paper explores the use of multigrid techniques to further accelerate the computation. Finally, numerical experiments in both 2D and 3D validate the performance of the phi-FD method compared to standard finite element methods and the Shortley-Weller approach.  | 
    
| Author | Vuillemot, Killian Duprez, Michel Lozinski, Alexei Lleras, Vanessa Vigon, Vincent  | 
    
| Author_xml | – sequence: 1 givenname: Michel orcidid: 0000-0002-2059-2811 surname: Duprez fullname: Duprez, Michel email: michel.duprez@inria.fr organization: MIMESIS team, Inria de l’Université de Lorraine MLMS team, Université de Strasbourg – sequence: 2 givenname: Vanessa surname: Lleras fullname: Lleras, Vanessa organization: MIMESIS team, Inria de l’Université de Lorraine MLMS team, Université de Strasbourg, IMAG, Univ Montpellier, CNRS UMR 5149 – sequence: 3 givenname: Alexei surname: Lozinski fullname: Lozinski, Alexei organization: Université de Franche-Comté, Laboratoire de mathématiques de Besançon, UMR CNRS 6623 – sequence: 4 givenname: Vincent surname: Vigon fullname: Vigon, Vincent organization: Université de Strasbourg et CNRS, Tonus team, Inria de l’Université de Lorraine – sequence: 5 givenname: Killian surname: Vuillemot fullname: Vuillemot, Killian organization: MIMESIS team, Inria de l’Université de Lorraine MLMS team, Université de Strasbourg, IMAG, Univ Montpellier, CNRS UMR 5149  | 
    
| BackLink | https://hal.science/hal-04731164$$DView record in HAL | 
    
| BookMark | eNpFkcFuEzEQhi1UJNLCC3CyxImDYcb22rvcoiZpK6WCA4ij5ezOElcbO9jbSn0BXo9XwiFIHEYjjb75Z6Tvkl3EFImxtwgfEMB-LAgdNgLkqTrUAl6wBTZWCWs6vGALaNtGWG31K3ZZygMAdG0nF-zw-5fYrD7xJf9O0yT6FIcwhxo-8E2IYSa-CuNImWJP_J7mfRr4XSzHkCuxe-an9fU9H1PmNxQp-6n2dKA5Byo8Rb6epnCcQ8-_rNblNXs5-qnQm3_9in3brL9e34rt55u76-VW7KVRs7DYoWy8as1gNVA3GtCt7tGPBI2x3YDSS6kM7ozajda3Td_DgKTJDkZ1qK7Y-3Pu3k_umMPB52eXfHC3y607zUBbhWj0k6zsuzN7zOnnI5XZPaTHHOt7TklE20C9WCl1pkqNiz8o_6cQ3MmBOztw1YH768CB-gOVAHls | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jul 2025 Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jul 2025 – notice: Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| DBID | JQ2 1XC VOOES  | 
    
| DOI | 10.1007/s10915-025-02914-0 | 
    
| DatabaseName | ProQuest Computer Science Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access)  | 
    
| DatabaseTitle | ProQuest Computer Science Collection | 
    
| DatabaseTitleList | ProQuest Computer Science Collection  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) Mathematics  | 
    
| EISSN | 1573-7691 | 
    
| ExternalDocumentID | oai:HAL:hal-04731164v2 10_1007_s10915_025_02914_0  | 
    
| GrantInformation_xml | – fundername: Agence Nationale de la Recherche grantid: ANR-22- CE46-0003 funderid: http://dx.doi.org/10.13039/501100001665  | 
    
| GroupedDBID | -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFNX AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF- PHGZM PHGZT PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 ZMTXR ZWQNP ~A9 ~EX ABRTQ JQ2 1XC VOOES  | 
    
| ID | FETCH-LOGICAL-h263t-719125a386d740e9f60484c1afe05679d12a22361b63bf7a85cc0d1e4e7d63913 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0885-7474 | 
    
| IngestDate | Tue Oct 28 06:40:52 EDT 2025 Fri Jul 25 09:20:27 EDT 2025 Fri Jun 20 01:11:53 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Partial differential equations Unfitted method 65N06 General geometries 74S20 65N55 Finite difference method general geometry  | 
    
| Language | English | 
    
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-h263t-719125a386d740e9f60484c1afe05679d12a22361b63bf7a85cc0d1e4e7d63913 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-2059-2811 0000-0003-0745-0365 0000-0003-1358-9558  | 
    
| OpenAccessLink | https://hal.science/hal-04731164 | 
    
| PQID | 3211750679 | 
    
| PQPubID | 2043771 | 
    
| ParticipantIDs | hal_primary_oai_HAL_hal_04731164v2 proquest_journals_3211750679 springer_journals_10_1007_s10915_025_02914_0  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-07-01 | 
    
| PublicationDateYYYYMMDD | 2025-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | Journal of scientific computing | 
    
| PublicationTitleAbbrev | J Sci Comput | 
    
| PublicationYear | 2025 | 
    
| Publisher | Springer US Springer Nature B.V Springer Verlag  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag  | 
    
| SSID | ssj0009892 | 
    
| Score | 2.407184 | 
    
| Snippet | This paper presents a new finite difference method, called
φ
-FD, inspired by the
φ
-FEM approach for solving elliptic partial differential equations (PDEs) on... This paper presents a new finite difference method, called φ-FD, inspired by the φ-FEM approach for solving elliptic partial differential equations (PDEs) on... This paper presents a new finite difference method, called phi-FD, inspired by the phi-FEM approach for solving elliptic partial differential equations (PDEs)...  | 
    
| SourceID | hal proquest springer  | 
    
| SourceType | Open Access Repository Aggregation Database Publisher  | 
    
| StartPage | 23 | 
    
| SubjectTerms | Algorithms Analysis of PDEs Boundary conditions Computational Mathematics and Numerical Analysis Elliptic differential equations Elliptic functions Finite difference method Finite element analysis Finite element method Fourier transforms Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Numerical Analysis Parabolic differential equations Partial differential equations Python Theorems Theoretical  | 
    
| Title | φ-FD: A Well-conditioned Finite Difference Method Inspired by φ-FEM for General Geometries on Elliptic PDEs | 
    
| URI | https://link.springer.com/article/10.1007/s10915-025-02914-0 https://www.proquest.com/docview/3211750679 https://hal.science/hal-04731164  | 
    
| Volume | 104 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7691 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: AFBBN dateStart: 19860301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7691 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7691 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9swEBejedkeypJ1NFtaxNjDBhXYkmzZfXOWeNmflD40NH0ylizTQuuMOi30C_Tr9SvtTlGWUPqyByOwZWN0Ot3vpLvfEfJZaJFYEWvGk0AyKdOApakEgcRIV6Q0uLm4Dzk9iScz-XMezX1SWLuOdl8fSbqVeivZLQ0xmxivNJQMHPVOhHReMItnPNtQ7SauFDKoT8QALEufKvPyN8CkXGIE5Ba8fHYi6gxN_pbseoRIs5VIu-SVbXrkzfQfvWrbI12vkS394mmjv74jN0-PLB8d04ye2-trBn5uteIhqmh-hciSjnwxFGPp1BWOpj8aPGiHHvqB4uvjKQUQS_1HoV3cuIpbLV00FMM7YIEx9HQ0bvfILB-ffZswX0yBXfJYLJkCx4xHpUjiSsnApnUMuitNWNYWMJBKq5CXHJlYdCx0rcokMiaoQiutqgDFhOI92Wngn_cJVQbMvgFbr6yW2oDHZuIyrUNVO3452SefYEyLPyu6jAIJrCfZ7wLvBVKJEDy0e94ng_WQF15t2kJwZA7Fva0-OVqLYfN4Q7GMYixAjIUTYxF8-L_uH8lr7iYBht0OyM7y9s4eALhY6kPSyfLh8ATb7xe_xodubv0FFpvFYA | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH5C5cA4wGBDKzBmTTtsEkaJ7cYJt4q2lNGgHahgJyt2HDFBW0QKEvwB_Hv8SzynzooQFw5RpMSxHH3-8T37ve8B_OCax5ZHmrI4EFSIJKBJIhCQyMkVSY1mrtuHTE-i_lD8Pm-d-6CwsvZ2r48kq5n6RbBbErpoYncloaBoqC8KNFBYAxbbh3-Pu3Ox3bhKhowDqEWRLgsfLPN2LbioXDgfyBcE89WZaLXU9FZhWDdy5mFyuXc71Xvm4ZV-43v_4iOseO5J2rPOsgYLdrwOy-l_4dZyHdb8WC_JTy9I_esTjJ4eaa-zT9rkzF5dUbSg85nCUU56_xxnJR2fZsVYklYpqcnR2B3hYwl9T9zn3ZQgPSa-UrxPRlUur5JMxsQ5juDUZcifTrf8DMNe9_SgT32aBnrBIj6lEk0-1sp4HOVSBDYpIpwVhAmzwiK7kkkesow5jRcdcV3ILG4ZE-ShFVbmyI9CvgGNMbb5CxBpkFAYZBHSaqEN2oImypIilEWlXCea8B2xUtczIQ7lpLH77YFyzwIheYi23x1rwnYNpfIDslScOU1St2vWhN0amfnruXizg0chPKqCRwWb7yv-DZb6p-lADY5OjrfgA6uAds6929CY3tzar0hhpnrH99hn8XLiKw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iIHoQn7g-g3hQMNgm2ab1trhb1seKBxe9hSZNUdAqdhX8A_49_5Iz2a67iBcPpdCmoc1kmm8yM98Qsi-MiJ2IDONxIJmUScCSRIJAIqQrUgbMXNyH7F1F3b48v2veTWTx-2j3kUtymNOALE3l4PglL44nEt-SEDOL8UhCycBon5FIlAAzus9bY9rd2JdFBlVqMgDOsk6b-bsPWF7uMRpyAmr-8o76RSddJAs1WqStoXiXyJQrl8l874dqtVomS7V2VvSgppA-XCFPX58sbZ_QFr11j48MPi4fchLlNH1AlEnbdWEU62jPF5GmZyU63aGF-aD4eKdHAdDSulM4Pz_56lsVfS4phnrAz8bS63anWiX9tHNz2mV1YQV2zyMxYAqMNN7MRBzlSgYuKSLQY2nDrHCAh1SShzzjyMpiImEKlcVNa4M8dNKpHBBNKNbIdAnvvE6osgABLKz7yhlpLFhvNsqSIlSF55qTDbIHY6pfhtQZGsmsu61LjdcCqUQI1to7b5Ct0ZDrWoUqLTiyiOI-V4McjcQwvj2mW0YxahCj9mLUwcb_mu-S2et2qi_Pri42yRz38wGjcbfI9OD1zW0D5hiYHT-tvgHkWsl4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%CF%86-FD%3A+A+Well-conditioned+Finite+Difference+Method+Inspired+by+%CF%86-FEM+for+General+Geometries+on+Elliptic+PDEs&rft.jtitle=Journal+of+scientific+computing&rft.au=Duprez%2C+Michel&rft.au=Lleras%2C+Vanessa&rft.au=Lozinski%2C+Alexei&rft.au=Vigon%2C+Vincent&rft.date=2025-07-01&rft.pub=Springer+US&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=104&rft.issue=1&rft_id=info:doi/10.1007%2Fs10915-025-02914-0&rft.externalDocID=10_1007_s10915_025_02914_0 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon |