Weighted-covariance factor fuzzy c-means clustering
In this paper, we propose a factor weighted fuzzy c-means clustering algorithm. Based on the inverse of a covariance factor, which assesses the collinearity between the centers and samples, this factor takes also into account the compactness of the samples within clusters. The proposed clustering al...
        Saved in:
      
    
          | Published in | 2015 Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE) pp. 144 - 149 | 
|---|---|
| Main Authors | , , , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.04.2015
     | 
| Subjects | |
| Online Access | Get full text | 
| DOI | 10.1109/TAEECE.2015.7113616 | 
Cover
| Abstract | In this paper, we propose a factor weighted fuzzy c-means clustering algorithm. Based on the inverse of a covariance factor, which assesses the collinearity between the centers and samples, this factor takes also into account the compactness of the samples within clusters. The proposed clustering algorithm allows to classify spherical and non-spherical structural clusters, contrary to classical fuzzy c-means algorithm that is only adapted for spherical structural clusters. Compared with other algorithms designed for non-spherical structural clusters, such as Gustafson-Kessel, Gath-Geva or adaptive Mahalanobis distance-based fuzzy c-means clustering algorithms, the proposed algorithm gives better numerical results on artificial and real well known data sets. Moreover, this algorithm can be used for high dimensional data, contrary to other algorithms that require the computation of determinants of large matrices. Application on Mid-Infrared spectra acquired on maize root and aerial parts of Miscanthus for the classification of vegetal biomass shows that this algorithm can successfully be applied on high dimensional data. | 
    
|---|---|
| AbstractList | In this paper, we propose a factor weighted fuzzy c-means clustering algorithm. Based on the inverse of a covariance factor, which assesses the collinearity between the centers and samples, this factor takes also into account the compactness of the samples within clusters. The proposed clustering algorithm allows to classify spherical and non-spherical structural clusters, contrary to classical fuzzy c-means algorithm that is only adapted for spherical structural clusters. Compared with other algorithms designed for non-spherical structural clusters, such as Gustafson-Kessel, Gath-Geva or adaptive Mahalanobis distance-based fuzzy c-means clustering algorithms, the proposed algorithm gives better numerical results on artificial and real well known data sets. Moreover, this algorithm can be used for high dimensional data, contrary to other algorithms that require the computation of determinants of large matrices. Application on Mid-Infrared spectra acquired on maize root and aerial parts of Miscanthus for the classification of vegetal biomass shows that this algorithm can successfully be applied on high dimensional data. | 
    
| Author | Bertrand, Isabelle Vrabie, Valeriu Perrin, Eric Rammal, Abbas Chabbert, Brigitte  | 
    
| Author_xml | – sequence: 1 givenname: Abbas surname: Rammal fullname: Rammal, Abbas email: abbas.rammal@etudiant.univ-reims.fr organization: CReSTIC-Chalons, Univ. of Reims Champagne-Ardenne (URCA), Châlons-en-Champagne, France – sequence: 2 givenname: Eric surname: Perrin fullname: Perrin, Eric email: eric.perrin@univreims.fr organization: CReSTIC-Chalons, Univ. of Reims Champagne-Ardenne (URCA), Châlons-en-Champagne, France – sequence: 3 givenname: Valeriu surname: Vrabie fullname: Vrabie, Valeriu email: valeriu.vrabie@univ-reims.fr organization: CReSTIC-Chalons, Univ. of Reims Champagne-Ardenne (URCA), Châlons-en-Champagne, France – sequence: 4 givenname: Isabelle surname: Bertrand fullname: Bertrand, Isabelle email: brigitte.chabbert@reims.inra.fr organization: INRA-URCA, Reims, France – sequence: 5 givenname: Brigitte surname: Chabbert fullname: Chabbert, Brigitte email: isabelle.bertrand@supagro.inra.fr organization: INRA-URCA, Reims, France  | 
    
| BookMark | eNo9j8tqwzAURFVooU2aL8jGP2BX13pYWgbjPiDQTUqXQpavEhdHDn60OF_fhKRdzWI4w5wZuQ1tQEKWQBMAqp82q6LIiySlIJIMgEmQN2QGPNNaSEXFPVn0_RelFLRUAOKBsE-st7sBq9i137arbXAYeeuGtov8eDxOkYv3aEMfuWbsB-zqsH0kd942PS6uOScfz8Umf43X7y9v-Wod71LBh1gxbRnLpKBeMVV6DjQrBaW6SrUQEvD0DjVqoZBJqWTlHSjGpSy5RuEUmxN-2R3DwU4_tmnMoav3tpsMUHMWNoNFdGjOwuYqfMKWF6xGxH_ir_0FY-RU-g | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL ADTOC UNPAY  | 
    
| DOI | 10.1109/TAEECE.2015.7113616 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISBN | 1479956805 9781479956807 9781479956791 1479956791  | 
    
| EndPage | 149 | 
    
| ExternalDocumentID | oai:HAL:hal-01187023v1 7113616  | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-h254t-839a337650f838bf4107b5009d295561e616e9e958e36686dfc183466b49e5c83 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Sun Oct 26 04:16:34 EDT 2025 Wed Aug 27 02:11:59 EDT 2025  | 
    
| IsDoiOpenAccess | false | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| License | other-oa | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-h254t-839a337650f838bf4107b5009d295561e616e9e958e36686dfc183466b49e5c83 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal.science/hal-01187023 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | unpaywall_primary_10_1109_taeece_2015_7113616 ieee_primary_7113616  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2015-April | 
    
| PublicationDateYYYYMMDD | 2015-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2015 text: 2015-April  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | 2015 Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE) | 
    
| PublicationTitleAbbrev | TAEECE | 
    
| PublicationYear | 2015 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0001968115 | 
    
| Score | 1.5887588 | 
    
| Snippet | In this paper, we propose a factor weighted fuzzy c-means clustering algorithm. Based on the inverse of a covariance factor, which assesses the collinearity... | 
    
| SourceID | unpaywall ieee  | 
    
| SourceType | Open Access Repository Publisher  | 
    
| StartPage | 144 | 
    
| SubjectTerms | Algorithm design and analysis Biomass Classification algorithms Classification of vegetal biomass Clustering algorithms Covariance matrices Covariance-based weight FCM-CM algorithm FCM-M algorithm FCM-SM algorithm Fuzzy C-Means (FCM) clustering GG-algorithm GK-algorithm Linear programming Mid-infrared (MIR) spectra Shape  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7M7SBeVDZxopKD18xsTX_kKOIYgmMHh_NUmvSFgbMb2irbX-9L203xIHgrNIH2hfe-77XJ9wFcoTOiHKQhH0irudSoqA5awQ0VTEongaL8o_swDkZTeT_zZw1g27Mwc2Kcde1317y0wyZc2YNW4BPbbkJrOp7cPNcCQn2hrvME0TjFy77fC51FifMuL61SDmC_yFbJ-jNZLH6gxvCw2r34XooNus0iL70i1z2z-SXF-NcDHUHn-0wem-zQ5hgamLXBeyq_bGLKzfKDul63hKyy0GG22GzWzPBXJDRiZlE4SQSa2oHp8O7xdsRrGwQ-p-4t50RhEo_qgC9s5EXaSurYtE_cKB0oZ26J9MKoUPkRekEQBak1lKcyCLRU6JvIO4FmtszwFBixmSSx1A-npu-okHLpGaKQUqWhiUwX2i5u8apSuojrcHaB7-K4u1d2D0LFVfhjF_7t-LN_jj-HZv5W4AXBe64v6xX-AtRVpN0 priority: 102 providerName: Unpaywall  | 
    
| Title | Weighted-covariance factor fuzzy c-means clustering | 
    
| URI | https://ieeexplore.ieee.org/document/7113616 https://hal.science/hal-01187023  | 
    
| UnpaywallVersion | submittedVersion | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb4JAEJ6oPbRe-tCm9mE49NhFFFjYozEY00TjQVN7IrAMaVKLpoE2-us7C_hI00NvJOySWSYz883sPAAeUQ2i7EUO61lxyKwQBenB2GCSFCaJk4FGfqM7nvDR3Hpe2IsKPO1rYRAxTz5DXT3md_nRSmYqVNZx1ACSLq9C1XF5Uat1iKcI7hK6KRsLdQ3RmfU9b-Cp7C1bL3eWI1TqcJol62DzHSyXR9ZkeA7jHR1FEsm7nqWhLre_WjT-l9ALaB7q9rTp3iJdQgWTK6gftRxsgPmSx0IxYnL1RX6yYrpWDN3R4my73WiSfSDZL00uM9VEgXY1YT70ZoMRKwcnsDfy91JGoCcwSXPYRuyabhhb5OOFNqGpqCfUOEwk2lCgsF00OXd5FEuSbIvz0BJoS9e8hlqySvAGNMI_QRCTBx3JrgJPQgm0g4ZliciRrmxBQx3fXxe9Mfzy5C1g-z-8f5f7G4bw0wBRoq8Ys1t_-_dn7uBMrSoyZe6hln5m-EAgIA3bOffbcDKfTPuvP_nbsEE | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHpCLDzTiswePbil0-9ijIRBUIB4gcmva7TQmYiGm1cCvd7YthRgP3pq008x2OzPfzM4D4A7VIMpO6LAOjwLGAxSkByODSVKYJE4GGtmJ7mhsD6b8aWbNKnBf1sIgYpZ8hrq6zM7yw4VMVais5agBJG17D_YtzrmVV2ttIyrCdgnfFK2F2oZoTR56vW5P5W9ZekFbDFGpQy2Nl_7q25_Pd-xJ_xBGG07yNJJ3PU0CXa5_NWn8L6tHcLqt3NNeSpt0DBWMT6C-03SwAeZrFg3FkMnFF3nKatu1fOyOFqXr9UqT7APJgmlynqo2CkR1CtN-b9IdsGJ0Ansjjy9hBHt8k3SHZUSu6QYRJy8vsAhPhR2hBmIi8YYCheWiaduuHUaSZJvbdsAFWtI1z6AaL2I8B40QkO9H5EOHsq3gk1Ai7aDBuQgd6comNNTyvWXeHcMrVt4EVn7h8l7mcRjCS3xEiZ7amM3zF3-_5hZqg8lo6A0fx8-XcKAo8ryZK6gmnyleEyRIgpvsT_gB1VKx3g | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7M7SBeVDZxopKD18xsTX_kKOIYgmMHh_NUmvSFgbMb2irbX-9L203xIHgrNIH2hfe-77XJ9wFcoTOiHKQhH0irudSoqA5awQ0VTEongaL8o_swDkZTeT_zZw1g27Mwc2Kcde1317y0wyZc2YNW4BPbbkJrOp7cPNcCQn2hrvME0TjFy77fC51FifMuL61SDmC_yFbJ-jNZLH6gxvCw2r34XooNus0iL70i1z2z-SXF-NcDHUHn-0wem-zQ5hgamLXBeyq_bGLKzfKDul63hKyy0GG22GzWzPBXJDRiZlE4SQSa2oHp8O7xdsRrGwQ-p-4t50RhEo_qgC9s5EXaSurYtE_cKB0oZ26J9MKoUPkRekEQBak1lKcyCLRU6JvIO4FmtszwFBixmSSx1A-npu-okHLpGaKQUqWhiUwX2i5u8apSuojrcHaB7-K4u1d2D0LFVfhjF_7t-LN_jj-HZv5W4AXBe64v6xX-AtRVpN0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=TAEECE+%3A+2015+third+International+Conference+on+Technological+Advances+in+Electrical%2C+Electronics+and+Computer+Engineering+%3A+April+29%2C+2015-May+1%2C+2015&rft.atitle=Weighted-covariance+factor+fuzzy+c-means+clustering&rft.au=Rammal%2C+Abbas&rft.au=Perrin%2C+Eric&rft.au=Vrabie%2C+Valeriu&rft.au=Bertrand%2C+Isabelle&rft.date=2015-04-01&rft.pub=IEEE&rft.spage=144&rft.epage=149&rft_id=info:doi/10.1109%2FTAEECE.2015.7113616&rft.externalDocID=7113616 |