Weighted-covariance factor fuzzy c-means clustering

In this paper, we propose a factor weighted fuzzy c-means clustering algorithm. Based on the inverse of a covariance factor, which assesses the collinearity between the centers and samples, this factor takes also into account the compactness of the samples within clusters. The proposed clustering al...

Full description

Saved in:
Bibliographic Details
Published in2015 Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE) pp. 144 - 149
Main Authors Rammal, Abbas, Perrin, Eric, Vrabie, Valeriu, Bertrand, Isabelle, Chabbert, Brigitte
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2015
Subjects
Online AccessGet full text
DOI10.1109/TAEECE.2015.7113616

Cover

Abstract In this paper, we propose a factor weighted fuzzy c-means clustering algorithm. Based on the inverse of a covariance factor, which assesses the collinearity between the centers and samples, this factor takes also into account the compactness of the samples within clusters. The proposed clustering algorithm allows to classify spherical and non-spherical structural clusters, contrary to classical fuzzy c-means algorithm that is only adapted for spherical structural clusters. Compared with other algorithms designed for non-spherical structural clusters, such as Gustafson-Kessel, Gath-Geva or adaptive Mahalanobis distance-based fuzzy c-means clustering algorithms, the proposed algorithm gives better numerical results on artificial and real well known data sets. Moreover, this algorithm can be used for high dimensional data, contrary to other algorithms that require the computation of determinants of large matrices. Application on Mid-Infrared spectra acquired on maize root and aerial parts of Miscanthus for the classification of vegetal biomass shows that this algorithm can successfully be applied on high dimensional data.
AbstractList In this paper, we propose a factor weighted fuzzy c-means clustering algorithm. Based on the inverse of a covariance factor, which assesses the collinearity between the centers and samples, this factor takes also into account the compactness of the samples within clusters. The proposed clustering algorithm allows to classify spherical and non-spherical structural clusters, contrary to classical fuzzy c-means algorithm that is only adapted for spherical structural clusters. Compared with other algorithms designed for non-spherical structural clusters, such as Gustafson-Kessel, Gath-Geva or adaptive Mahalanobis distance-based fuzzy c-means clustering algorithms, the proposed algorithm gives better numerical results on artificial and real well known data sets. Moreover, this algorithm can be used for high dimensional data, contrary to other algorithms that require the computation of determinants of large matrices. Application on Mid-Infrared spectra acquired on maize root and aerial parts of Miscanthus for the classification of vegetal biomass shows that this algorithm can successfully be applied on high dimensional data.
Author Bertrand, Isabelle
Vrabie, Valeriu
Perrin, Eric
Rammal, Abbas
Chabbert, Brigitte
Author_xml – sequence: 1
  givenname: Abbas
  surname: Rammal
  fullname: Rammal, Abbas
  email: abbas.rammal@etudiant.univ-reims.fr
  organization: CReSTIC-Chalons, Univ. of Reims Champagne-Ardenne (URCA), Châlons-en-Champagne, France
– sequence: 2
  givenname: Eric
  surname: Perrin
  fullname: Perrin, Eric
  email: eric.perrin@univreims.fr
  organization: CReSTIC-Chalons, Univ. of Reims Champagne-Ardenne (URCA), Châlons-en-Champagne, France
– sequence: 3
  givenname: Valeriu
  surname: Vrabie
  fullname: Vrabie, Valeriu
  email: valeriu.vrabie@univ-reims.fr
  organization: CReSTIC-Chalons, Univ. of Reims Champagne-Ardenne (URCA), Châlons-en-Champagne, France
– sequence: 4
  givenname: Isabelle
  surname: Bertrand
  fullname: Bertrand, Isabelle
  email: brigitte.chabbert@reims.inra.fr
  organization: INRA-URCA, Reims, France
– sequence: 5
  givenname: Brigitte
  surname: Chabbert
  fullname: Chabbert, Brigitte
  email: isabelle.bertrand@supagro.inra.fr
  organization: INRA-URCA, Reims, France
BookMark eNo9j8tqwzAURFVooU2aL8jGP2BX13pYWgbjPiDQTUqXQpavEhdHDn60OF_fhKRdzWI4w5wZuQ1tQEKWQBMAqp82q6LIiySlIJIMgEmQN2QGPNNaSEXFPVn0_RelFLRUAOKBsE-st7sBq9i137arbXAYeeuGtov8eDxOkYv3aEMfuWbsB-zqsH0kd942PS6uOScfz8Umf43X7y9v-Wod71LBh1gxbRnLpKBeMVV6DjQrBaW6SrUQEvD0DjVqoZBJqWTlHSjGpSy5RuEUmxN-2R3DwU4_tmnMoav3tpsMUHMWNoNFdGjOwuYqfMKWF6xGxH_ir_0FY-RU-g
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
ADTOC
UNPAY
DOI 10.1109/TAEECE.2015.7113616
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1479956805
9781479956807
9781479956791
1479956791
EndPage 149
ExternalDocumentID oai:HAL:hal-01187023v1
7113616
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ADTOC
UNPAY
ID FETCH-LOGICAL-h254t-839a337650f838bf4107b5009d295561e616e9e958e36686dfc183466b49e5c83
IEDL.DBID RIE
IngestDate Sun Oct 26 04:16:34 EDT 2025
Wed Aug 27 02:11:59 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h254t-839a337650f838bf4107b5009d295561e616e9e958e36686dfc183466b49e5c83
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.science/hal-01187023
PageCount 6
ParticipantIDs unpaywall_primary_10_1109_taeece_2015_7113616
ieee_primary_7113616
PublicationCentury 2000
PublicationDate 2015-April
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-April
PublicationDecade 2010
PublicationTitle 2015 Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE)
PublicationTitleAbbrev TAEECE
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001968115
Score 1.5887588
Snippet In this paper, we propose a factor weighted fuzzy c-means clustering algorithm. Based on the inverse of a covariance factor, which assesses the collinearity...
SourceID unpaywall
ieee
SourceType Open Access Repository
Publisher
StartPage 144
SubjectTerms Algorithm design and analysis
Biomass
Classification algorithms
Classification of vegetal biomass
Clustering algorithms
Covariance matrices
Covariance-based weight
FCM-CM algorithm
FCM-M algorithm
FCM-SM algorithm
Fuzzy C-Means (FCM) clustering
GG-algorithm
GK-algorithm
Linear programming
Mid-infrared (MIR) spectra
Shape
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7M7SBeVDZxopKD18xsTX_kKOIYgmMHh_NUmvSFgbMb2irbX-9L203xIHgrNIH2hfe-77XJ9wFcoTOiHKQhH0irudSoqA5awQ0VTEongaL8o_swDkZTeT_zZw1g27Mwc2Kcde1317y0wyZc2YNW4BPbbkJrOp7cPNcCQn2hrvME0TjFy77fC51FifMuL61SDmC_yFbJ-jNZLH6gxvCw2r34XooNus0iL70i1z2z-SXF-NcDHUHn-0wem-zQ5hgamLXBeyq_bGLKzfKDul63hKyy0GG22GzWzPBXJDRiZlE4SQSa2oHp8O7xdsRrGwQ-p-4t50RhEo_qgC9s5EXaSurYtE_cKB0oZ26J9MKoUPkRekEQBak1lKcyCLRU6JvIO4FmtszwFBixmSSx1A-npu-okHLpGaKQUqWhiUwX2i5u8apSuojrcHaB7-K4u1d2D0LFVfhjF_7t-LN_jj-HZv5W4AXBe64v6xX-AtRVpN0
  priority: 102
  providerName: Unpaywall
Title Weighted-covariance factor fuzzy c-means clustering
URI https://ieeexplore.ieee.org/document/7113616
https://hal.science/hal-01187023
UnpaywallVersion submittedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb4JAEJ6oPbRe-tCm9mE49NhFFFjYozEY00TjQVN7IrAMaVKLpoE2-us7C_hI00NvJOySWSYz883sPAAeUQ2i7EUO61lxyKwQBenB2GCSFCaJk4FGfqM7nvDR3Hpe2IsKPO1rYRAxTz5DXT3md_nRSmYqVNZx1ACSLq9C1XF5Uat1iKcI7hK6KRsLdQ3RmfU9b-Cp7C1bL3eWI1TqcJol62DzHSyXR9ZkeA7jHR1FEsm7nqWhLre_WjT-l9ALaB7q9rTp3iJdQgWTK6gftRxsgPmSx0IxYnL1RX6yYrpWDN3R4my73WiSfSDZL00uM9VEgXY1YT70ZoMRKwcnsDfy91JGoCcwSXPYRuyabhhb5OOFNqGpqCfUOEwk2lCgsF00OXd5FEuSbIvz0BJoS9e8hlqySvAGNMI_QRCTBx3JrgJPQgm0g4ZliciRrmxBQx3fXxe9Mfzy5C1g-z-8f5f7G4bw0wBRoq8Ys1t_-_dn7uBMrSoyZe6hln5m-EAgIA3bOffbcDKfTPuvP_nbsEE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHpCLDzTiswePbil0-9ijIRBUIB4gcmva7TQmYiGm1cCvd7YthRgP3pq008x2OzPfzM4D4A7VIMpO6LAOjwLGAxSkByODSVKYJE4GGtmJ7mhsD6b8aWbNKnBf1sIgYpZ8hrq6zM7yw4VMVais5agBJG17D_YtzrmVV2ttIyrCdgnfFK2F2oZoTR56vW5P5W9ZekFbDFGpQy2Nl_7q25_Pd-xJ_xBGG07yNJJ3PU0CXa5_NWn8L6tHcLqt3NNeSpt0DBWMT6C-03SwAeZrFg3FkMnFF3nKatu1fOyOFqXr9UqT7APJgmlynqo2CkR1CtN-b9IdsGJ0Ansjjy9hBHt8k3SHZUSu6QYRJy8vsAhPhR2hBmIi8YYCheWiaduuHUaSZJvbdsAFWtI1z6AaL2I8B40QkO9H5EOHsq3gk1Ai7aDBuQgd6comNNTyvWXeHcMrVt4EVn7h8l7mcRjCS3xEiZ7amM3zF3-_5hZqg8lo6A0fx8-XcKAo8ryZK6gmnyleEyRIgpvsT_gB1VKx3g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7M7SBeVDZxopKD18xsTX_kKOIYgmMHh_NUmvSFgbMb2irbX-9L203xIHgrNIH2hfe-77XJ9wFcoTOiHKQhH0irudSoqA5awQ0VTEongaL8o_swDkZTeT_zZw1g27Mwc2Kcde1317y0wyZc2YNW4BPbbkJrOp7cPNcCQn2hrvME0TjFy77fC51FifMuL61SDmC_yFbJ-jNZLH6gxvCw2r34XooNus0iL70i1z2z-SXF-NcDHUHn-0wem-zQ5hgamLXBeyq_bGLKzfKDul63hKyy0GG22GzWzPBXJDRiZlE4SQSa2oHp8O7xdsRrGwQ-p-4t50RhEo_qgC9s5EXaSurYtE_cKB0oZ26J9MKoUPkRekEQBak1lKcyCLRU6JvIO4FmtszwFBixmSSx1A-npu-okHLpGaKQUqWhiUwX2i5u8apSuojrcHaB7-K4u1d2D0LFVfhjF_7t-LN_jj-HZv5W4AXBe64v6xX-AtRVpN0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=TAEECE+%3A+2015+third+International+Conference+on+Technological+Advances+in+Electrical%2C+Electronics+and+Computer+Engineering+%3A+April+29%2C+2015-May+1%2C+2015&rft.atitle=Weighted-covariance+factor+fuzzy+c-means+clustering&rft.au=Rammal%2C+Abbas&rft.au=Perrin%2C+Eric&rft.au=Vrabie%2C+Valeriu&rft.au=Bertrand%2C+Isabelle&rft.date=2015-04-01&rft.pub=IEEE&rft.spage=144&rft.epage=149&rft_id=info:doi/10.1109%2FTAEECE.2015.7113616&rft.externalDocID=7113616