Deep learning assisted quality ranking for list decoding of videos subject to transmission errors

In this paper, we propose a new deep learning-based quality ranking framework to assist video list decoding methods in the context of unreliable video transmissions. The objective is to identify an intact image (corrected video frame) among a list of candidate images generated by a list decoding met...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Conference on Wireless and Mobile Computing, Networking, and Communications (Print) pp. 135 - 142
Main Authors Guichemerre, Alexis, Coulombe, Stephane, Trioux, Anthony, Coudoux, Francois-Xavier, Corlay, Patrick
Format Conference Proceeding
LanguageEnglish
Published IEEE 21.06.2023
Subjects
Online AccessGet full text
ISSN2160-4894
DOI10.1109/WiMob58348.2023.10187827

Cover

Abstract In this paper, we propose a new deep learning-based quality ranking framework to assist video list decoding methods in the context of unreliable video transmissions. The objective is to identify an intact image (corrected video frame) among a list of candidate images generated by a list decoding method, where all candidates, except for the intact image are corrupted. The framework comprises a deep learning-based no-reference image quality assessment (NR-IQA) for non-uniform video distortions (NUD) system to rank the candidate images according to their quality, which allows identifying the best one. To show the validity of our proposed framework, we develop an NR-IQA system relying on a proven patch-based convolutional neural network (CNN) architecture, which we adapt to better account for the non-uniform distortions observed in the candidate images, e.g., H.265 transmission errors during wireless communications. Specifically, we modify the patch size on which our CNN for non-uniform distortions (CNN-NUD) operates to capture a larger and more meaningful spatial context. Moreover, we develop a new training database using images resulting from various bit modifications in the received video packets, to simulate the list decoding process, and train the system using a full reference IQA (FR-IQA) method. Experiments on intra frames of videos encoded using H.265 show the ability of this system to identify an intact image among a set of five candidate images with an average accuracy of 96.6%, whereas traditional NR-IQA metrics or the initially trained CNN system offer poor accuracy ranging between 15.7% and 33.6%, respectively.
AbstractList In this paper, we propose a new deep learning-based quality ranking framework to assist video list decoding methods in the context of unreliable video transmissions. The objective is to identify an intact image (corrected video frame) among a list of candidate images generated by a list decoding method, where all candidates, except for the intact image are corrupted. The framework comprises a deep learning-based no-reference image quality assessment (NR-IQA) for non-uniform video distortions (NUD) system to rank the candidate images according to their quality, which allows identifying the best one. To show the validity of our proposed framework, we develop an NR-IQA system relying on a proven patch-based convolutional neural network (CNN) architecture, which we adapt to better account for the non-uniform distortions observed in the candidate images, e.g., H.265 transmission errors during wireless communications. Specifically, we modify the patch size on which our CNN for non-uniform distortions (CNN-NUD) operates to capture a larger and more meaningful spatial context. Moreover, we develop a new training database using images resulting from various bit modifications in the received video packets, to simulate the list decoding process, and train the system using a full reference IQA (FR-IQA) method. Experiments on intra frames of videos encoded using H.265 show the ability of this system to identify an intact image among a set of five candidate images with an average accuracy of 96.6%, whereas traditional NR-IQA metrics or the initially trained CNN system offer poor accuracy ranging between 15.7% and 33.6%, respectively.
Author Corlay, Patrick
Coulombe, Stephane
Guichemerre, Alexis
Trioux, Anthony
Coudoux, Francois-Xavier
Author_xml – sequence: 1
  givenname: Alexis
  surname: Guichemerre
  fullname: Guichemerre, Alexis
  email: alexis.guichemerre.1@ens.etsmtl.ca
  organization: École de Technologie Supérieure,Dept. of Software and IT Engineering,Montreal,Canada
– sequence: 2
  givenname: Stephane
  surname: Coulombe
  fullname: Coulombe, Stephane
  email: stephane.coulombe@etsmtl.ca
  organization: École de Technologie Supérieure,Dept. of Software and IT Engineering,Montreal,Canada
– sequence: 3
  givenname: Anthony
  surname: Trioux
  fullname: Trioux, Anthony
  email: anthony.trioux@uphf.fr
  organization: UPHF, CNRS, Univ. Lille, UMR 8520 - IEMN,Valenciennes,France
– sequence: 4
  givenname: Francois-Xavier
  surname: Coudoux
  fullname: Coudoux, Francois-Xavier
  email: francois-xavier.coudoux@uphf.fr
  organization: UPHF, CNRS, Univ. Lille, UMR 8520 - IEMN,Valenciennes,France
– sequence: 5
  givenname: Patrick
  surname: Corlay
  fullname: Corlay, Patrick
  email: patrick.corlay@uphf.fr
  organization: UPHF, CNRS, Univ. Lille, UMR 8520 - IEMN,Valenciennes,France
BookMark eNo1kMtKAzEYhaMoWGvfwEVeYGrul6XUK1TcKC7Ln8lfTZ1OajIV-va2qKsD5zt8i3NOTvrcIyGUsynnzF-9pacctJPKTQUTcsoZd9YJe0Qm3nonNZPSGCuOyUhwwxrlvDojk1pXjDEpmNRcjQjcIG5oh1D61L9TqDXVASP92kKXhh0t0H8ewDIX2u0RjdjmeGjykn6niLnSug0rbAc6ZDrs93Wd9pbcUywll3pBTpfQVZz85Zi83t2-zB6a-fP94-x63nwI6YbGSwvodasYWOMADChlgnNRhCh8NF4HxDZ4YaA1USvPXOSBaXCO29YKOSaXv96EiItNSWsou8X_K_IHAZdbIw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WiMob58348.2023.10187827
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350336672
EISSN 2160-4894
EndPage 142
ExternalDocumentID 10187827
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-h238t-937ae95c40a768aa6a446b88d2bd29d695beecb926ac6d54908d1b05a8817c723
IEDL.DBID RIE
IngestDate Wed Aug 27 02:08:34 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h238t-937ae95c40a768aa6a446b88d2bd29d695beecb926ac6d54908d1b05a8817c723
PageCount 8
ParticipantIDs ieee_primary_10187827
PublicationCentury 2000
PublicationDate 2023-June-21
PublicationDateYYYYMMDD 2023-06-21
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-June-21
  day: 21
PublicationDecade 2020
PublicationTitle IEEE International Conference on Wireless and Mobile Computing, Networking, and Communications (Print)
PublicationTitleAbbrev WiMob
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003203514
Score 1.8462636
Snippet In this paper, we propose a new deep learning-based quality ranking framework to assist video list decoding methods in the context of unreliable video...
SourceID ieee
SourceType Publisher
StartPage 135
SubjectTerms Convolutional Neural Network (CNN)
Decoding
Distance measurement
Distortion
H.265
Image quality
List Decoding
Neural networks
Non-uniform Distortions
Training
transmission errors
Video Quality
Wireless communication
wireless communications
Title Deep learning assisted quality ranking for list decoding of videos subject to transmission errors
URI https://ieeexplore.ieee.org/document/10187827
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sT3rxVfHNHrwmTTabze5ZLUVo8WCxt7KPiYrSlDY56K93J2nqAwRvIUvCshPyffP4Zgi58iaOUhA8YMIkAefgAgUmCvxfUktP9wWrs-ejsRhO-N00na7F6rUWBgDq4jMI8bLO5bvCVhgq62N3KY9oWYd0MikasdYmoJIwTIrxtlonUv3Hl1FhUpnUJVwsCdvHfwxSqXFksEvG7Q6a8pHXsCpNaD9-NWf89xb3SO9LskfvN2C0T7ZgfkB2vnUbPCT6BmBB12MinqhnzWhiRxtd5TvF8e244GksffNL1HnXFN9Gi5yiXK9Y0VVlMHBDy4KWiHL-K8FwG4XlsliuemQyuH24HgbrCQvBs4fqMvDcRINKLY-0dzu0Ftp7h0ZKx4xjygmVGgBrFBPaCpdiktDFJkq1lHFmM5Ycke68mMMxocyw3IKzKteWxy5XPHeMQc6l8ZSMsRPSw9OaLZomGrP2oE7_uH9GttFoWJXF4nPSLZcVXHj8L81lbfdP5p6xNA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDMDCq4g3HlgTUsd2kxmoCrQVQyu6VX5cAIGaKk0G-PX4kqY8JCQ2y5Ysy2f5vnt8d4RcOBEHAiT3mNShxzlYLwYdeO6XVJGD-5KV0fP-QHZH_G4sxguyesmFAYAy-Qx8HJaxfJuaAl1ll1hdymm09ipZE5xzUdG1li6VkGFYjNf5OkF8-fjST7WIwjKJi4V-vcGPViqlJulskUF9hiqB5NUvcu2bj1_lGf99yG3S_CLt0YelOtohKzDdJZvf6g3uEXUNMKOLRhFP1OFmFLKlFbPynWIDd1xwQJa-uSVqnXGKu9E0oUjYS-d0Xmh03dA8pTnqOfdO0OFGIcvSbN4ko87N8KrrLXoseM9OWeeeQycKYmF4oJzhoZRUzj7UUWSZtiy2MhYawOiYSWWkFRgmtC0dCBVFrbZps3CfNKbpFA4IZZolBqyJE2V4yyYxTyxjkPBIO1DG2CFp4m1NZlUZjUl9UUd_zJ-T9e6w35v0bgf3x2QDBYg5Wqx1Qhp5VsCpQwO5PivfwCdYs7SB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Wireless+and+Mobile+Computing%2C+Networking%2C+and+Communications+%28Print%29&rft.atitle=Deep+learning+assisted+quality+ranking+for+list+decoding+of+videos+subject+to+transmission+errors&rft.au=Guichemerre%2C+Alexis&rft.au=Coulombe%2C+Stephane&rft.au=Trioux%2C+Anthony&rft.au=Coudoux%2C+Francois-Xavier&rft.date=2023-06-21&rft.pub=IEEE&rft.eissn=2160-4894&rft.spage=135&rft.epage=142&rft_id=info:doi/10.1109%2FWiMob58348.2023.10187827&rft.externalDocID=10187827