Discovering closed frequent itemsets on multicore: Parallelizing computations and optimizing memory accesses
The problem of closed frequent itemset discovery is a fundamental problem of data mining, having applications in numerous domains. It is thus very important to have efficient parallel algorithms to solve this problem, capable of efficiently harnessing the power of multicore processors that exists in...
Saved in:
| Published in | 2010 International Conference on High Performance Computing and Simulation pp. 521 - 528 |
|---|---|
| Main Authors | , , , |
| Format | Conference Proceeding |
| Language | English Japanese |
| Published |
IEEE
01.06.2010
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 9781424468270 1424468272 |
| DOI | 10.1109/HPCS.2010.5547082 |
Cover
| Abstract | The problem of closed frequent itemset discovery is a fundamental problem of data mining, having applications in numerous domains. It is thus very important to have efficient parallel algorithms to solve this problem, capable of efficiently harnessing the power of multicore processors that exists in our computers (notebooks as well as desktops). In this paper we present PLCM QS , a parallel algorithm based on the LCM algorithm, recognized as the most efficient algorithm for sequential discovery of closed frequent itemsets. We also present a simple yet powerfull parallelism interface based on the concept of Tuple Space, which allows an efficient dynamic sharing of the work. Thanks to a detailed experimental study, we show that PLCM QS is efficient on both on sparse and dense databases. |
|---|---|
| AbstractList | The problem of closed frequent itemset discovery is a fundamental problem of data mining, having applications in numerous domains. It is thus very important to have efficient parallel algorithms to solve this problem, capable of efficiently harnessing the power of multicore processors that exists in our computers (notebooks as well as desktops). In this paper we present PLCM QS , a parallel algorithm based on the LCM algorithm, recognized as the most efficient algorithm for sequential discovery of closed frequent itemsets. We also present a simple yet powerfull parallelism interface based on the concept of Tuple Space, which allows an efficient dynamic sharing of the work. Thanks to a detailed experimental study, we show that PLCM QS is efficient on both on sparse and dense databases. |
| Author | Termier, A Negrevergne, B Méhaut, J Uno, T |
| Author_xml | – sequence: 1 givenname: B surname: Negrevergne fullname: Negrevergne, B email: Benjamin.Negrevergne@imag.fr organization: Lab. d'Inf. de Grenoble, Grenoble, France – sequence: 2 givenname: A surname: Termier fullname: Termier, A email: Alexandre.Termier@imag.fr organization: Lab. d'Inf. de Grenoble, Grenoble, France – sequence: 3 givenname: J surname: Méhaut fullname: Méhaut, J email: Jean-Francois.Mehaut@imag.fr organization: Lab. d'Inf. de Grenoble, Grenoble, France – sequence: 4 givenname: T surname: Uno fullname: Uno, T email: uno@nii.jp organization: Nat. Inst. of Inf., Tokyo, Japan |
| BookMark | eNo1UNtKAzEUjKigrf0A8SU_0Jpks7uJb1IvFQoW7HvJJqcayaUmWaF-vYut8zIzDHPgzAidhRgAoWtKZpQSebtYzd9mjAy2rnlLBDtBI8oZ541gUp6iiWzFv2_JBZrk_EkG8JoxSi-Re7BZx29INrxj7WIGg7cJvnoIBdsCPkPJOAbse1esjgnu8Eol5Rw4-_NXin7XF1VsDBmrYHDcFesPmQcf0x4rrSFnyFfofKtchsmRx2j99LieL6bL1-eX-f1y-sGoLFPacaoIp5oYNvwoGgNSGN5VhhvSNZXWLa2rQXApQYEwimkpFW8MZZ0g1RjdHM5aANjskvUq7TfHfapfOaJdpQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/HPCS.2010.5547082 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1424468299 9781424468300 9781424468294 1424468302 |
| EndPage | 528 |
| ExternalDocumentID | 5547082 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
| ID | FETCH-LOGICAL-h219t-1b41a041c0d210986de98d4b3d4d0b63cc7153b63499eae8da2c99a46d12b803 |
| IEDL.DBID | RIE |
| ISBN | 9781424468270 1424468272 |
| IngestDate | Wed Aug 27 02:54:29 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English Japanese |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-h219t-1b41a041c0d210986de98d4b3d4d0b63cc7153b63499eae8da2c99a46d12b803 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_5547082 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-06-01 |
| PublicationDateYYYYMMDD | 2010-06-01 |
| PublicationDate_xml | – month: 06 year: 2010 text: 2010-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | 2010 International Conference on High Performance Computing and Simulation |
| PublicationTitleAbbrev | HPCSIM |
| PublicationYear | 2010 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000452211 |
| Score | 1.5579244 |
| Snippet | The problem of closed frequent itemset discovery is a fundamental problem of data mining, having applications in numerous domains. It is thus very important to... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 521 |
| SubjectTerms | Data mining frequent closed itemset Itemsets memory accesses multicore Multicore processing pattern mining Program processors |
| Title | Discovering closed frequent itemsets on multicore: Parallelizing computations and optimizing memory accesses |
| URI | https://ieeexplore.ieee.org/document/5547082 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG2Akyc1YPyBpgePDtatrK1XlBATDImYcCP9RSTCZtg4yF_v127DaDx467psabrmfevX972H0K0wEDUGTAQxVSpwXg4BB0gIDIuUNmGiiJfYmDwn41f6NB_MG-juUAtjrfXkM9tzTX-WbzK9c6myPoQ-BiGriZqMJ2Wt1iGf4qXBCalrtxIesaiWdKqu61NNEor-eDp8KYld1Ut_uKv44DI6RpN6WCWn5L23K1RP738pNv533Ceo813Gh6eHAHWKGjZto_XDKteOtwldWK-z3Bq83HpCdYG9L5stcpyl2FMNncjlPZ7KrbNcWa_2_iFvBFFm-rBMDc4AdjblvY0j7n5i6W0Ybd5Bs9HjbDgOKsuF4A2gqwiIokSGlOjQwF5Q8MRYwQ1VsaEmVEmsNQOIhAZslKy03MhICyFpYkikeBifoVaapfYcYYAKA4ChB2bpLLG4ZDGLrVrSEFaHFPQCtd1ELT5KUY1FNUeXf3dfoSP4WFFJl-6iVrHd2Wv4GyjUjV8GXygfspQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4QD97UgPHbHjw6WLfuo15RMhUIiZhwI_0iGmEzbBzk1_u22zAaD966Lluarnne9e3zPg9C10xB1Agi5vhUCMd4OTgxQIKjIk9I5YaCWImN4ShMXujjNJg20M22FkZrbclnumOa9ixfZXJtUmVdCH0RhKwdtBtQSoOyWmubUbHi4ITU1Vth7EVeLepUXdfnmsRl3WTcey6pXdVrf_ir2PDS30fDemAlq-S9sy5ER25-aTb-d-QHqP1dyIfH2xB1iBo6baHF3VsuDXMTurBcZLlWeL6ylOoCW2c2XeQ4S7ElGxqZy1s85itjurJ429iHrBVEmevDPFU4A-BZlveWhrr7ibk1YtR5G03695Ne4lSmC84rgFfhEEEJdymRroLdIItDpVmsqPAVVa4IfSkjAElowFZJcx0r7knGOA0V8UTs-keomWapPkYYwEIBZMhAzY0pVswjP_K1mFMX1gdn9AS1zETNPkpZjVk1R6d_d1-hvWQyHMwGD6OnM_jEtiLeJEPOUbNYrfUF_BsU4tIuiS-xarXh |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+International+Conference+on+High+Performance+Computing+and+Simulation&rft.atitle=Discovering+closed+frequent+itemsets+on+multicore%3A+Parallelizing+computations+and+optimizing+memory+accesses&rft.au=Negrevergne%2C+B&rft.au=Termier%2C+A&rft.au=Me%CC%81haut%2C+J&rft.au=Uno%2C+T&rft.date=2010-06-01&rft.pub=IEEE&rft.isbn=9781424468270&rft.spage=521&rft.epage=528&rft_id=info:doi/10.1109%2FHPCS.2010.5547082&rft.externalDocID=5547082 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424468270/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424468270/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424468270/sc.gif&client=summon&freeimage=true |