Discovering closed frequent itemsets on multicore: Parallelizing computations and optimizing memory accesses

The problem of closed frequent itemset discovery is a fundamental problem of data mining, having applications in numerous domains. It is thus very important to have efficient parallel algorithms to solve this problem, capable of efficiently harnessing the power of multicore processors that exists in...

Full description

Saved in:
Bibliographic Details
Published in2010 International Conference on High Performance Computing and Simulation pp. 521 - 528
Main Authors Negrevergne, B, Termier, A, Méhaut, J, Uno, T
Format Conference Proceeding
LanguageEnglish
Japanese
Published IEEE 01.06.2010
Subjects
Online AccessGet full text
ISBN9781424468270
1424468272
DOI10.1109/HPCS.2010.5547082

Cover

Abstract The problem of closed frequent itemset discovery is a fundamental problem of data mining, having applications in numerous domains. It is thus very important to have efficient parallel algorithms to solve this problem, capable of efficiently harnessing the power of multicore processors that exists in our computers (notebooks as well as desktops). In this paper we present PLCM QS , a parallel algorithm based on the LCM algorithm, recognized as the most efficient algorithm for sequential discovery of closed frequent itemsets. We also present a simple yet powerfull parallelism interface based on the concept of Tuple Space, which allows an efficient dynamic sharing of the work. Thanks to a detailed experimental study, we show that PLCM QS is efficient on both on sparse and dense databases.
AbstractList The problem of closed frequent itemset discovery is a fundamental problem of data mining, having applications in numerous domains. It is thus very important to have efficient parallel algorithms to solve this problem, capable of efficiently harnessing the power of multicore processors that exists in our computers (notebooks as well as desktops). In this paper we present PLCM QS , a parallel algorithm based on the LCM algorithm, recognized as the most efficient algorithm for sequential discovery of closed frequent itemsets. We also present a simple yet powerfull parallelism interface based on the concept of Tuple Space, which allows an efficient dynamic sharing of the work. Thanks to a detailed experimental study, we show that PLCM QS is efficient on both on sparse and dense databases.
Author Termier, A
Negrevergne, B
Méhaut, J
Uno, T
Author_xml – sequence: 1
  givenname: B
  surname: Negrevergne
  fullname: Negrevergne, B
  email: Benjamin.Negrevergne@imag.fr
  organization: Lab. d'Inf. de Grenoble, Grenoble, France
– sequence: 2
  givenname: A
  surname: Termier
  fullname: Termier, A
  email: Alexandre.Termier@imag.fr
  organization: Lab. d'Inf. de Grenoble, Grenoble, France
– sequence: 3
  givenname: J
  surname: Méhaut
  fullname: Méhaut, J
  email: Jean-Francois.Mehaut@imag.fr
  organization: Lab. d'Inf. de Grenoble, Grenoble, France
– sequence: 4
  givenname: T
  surname: Uno
  fullname: Uno, T
  email: uno@nii.jp
  organization: Nat. Inst. of Inf., Tokyo, Japan
BookMark eNo1UNtKAzEUjKigrf0A8SU_0Jpks7uJb1IvFQoW7HvJJqcayaUmWaF-vYut8zIzDHPgzAidhRgAoWtKZpQSebtYzd9mjAy2rnlLBDtBI8oZ541gUp6iiWzFv2_JBZrk_EkG8JoxSi-Re7BZx29INrxj7WIGg7cJvnoIBdsCPkPJOAbse1esjgnu8Eol5Rw4-_NXin7XF1VsDBmrYHDcFesPmQcf0x4rrSFnyFfofKtchsmRx2j99LieL6bL1-eX-f1y-sGoLFPacaoIp5oYNvwoGgNSGN5VhhvSNZXWLa2rQXApQYEwimkpFW8MZZ0g1RjdHM5aANjskvUq7TfHfapfOaJdpQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/HPCS.2010.5547082
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1424468299
9781424468300
9781424468294
1424468302
EndPage 528
ExternalDocumentID 5547082
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-h219t-1b41a041c0d210986de98d4b3d4d0b63cc7153b63499eae8da2c99a46d12b803
IEDL.DBID RIE
ISBN 9781424468270
1424468272
IngestDate Wed Aug 27 02:54:29 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h219t-1b41a041c0d210986de98d4b3d4d0b63cc7153b63499eae8da2c99a46d12b803
PageCount 8
ParticipantIDs ieee_primary_5547082
PublicationCentury 2000
PublicationDate 2010-06-01
PublicationDateYYYYMMDD 2010-06-01
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-06-01
  day: 01
PublicationDecade 2010
PublicationTitle 2010 International Conference on High Performance Computing and Simulation
PublicationTitleAbbrev HPCSIM
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452211
Score 1.5579244
Snippet The problem of closed frequent itemset discovery is a fundamental problem of data mining, having applications in numerous domains. It is thus very important to...
SourceID ieee
SourceType Publisher
StartPage 521
SubjectTerms Data mining
frequent closed itemset
Itemsets
memory accesses
multicore
Multicore processing
pattern mining
Program processors
Title Discovering closed frequent itemsets on multicore: Parallelizing computations and optimizing memory accesses
URI https://ieeexplore.ieee.org/document/5547082
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG2Akyc1YPyBpgePDtatrK1XlBATDImYcCP9RSTCZtg4yF_v127DaDx467psabrmfevX972H0K0wEDUGTAQxVSpwXg4BB0gIDIuUNmGiiJfYmDwn41f6NB_MG-juUAtjrfXkM9tzTX-WbzK9c6myPoQ-BiGriZqMJ2Wt1iGf4qXBCalrtxIesaiWdKqu61NNEor-eDp8KYld1Ut_uKv44DI6RpN6WCWn5L23K1RP738pNv533Ceo813Gh6eHAHWKGjZto_XDKteOtwldWK-z3Bq83HpCdYG9L5stcpyl2FMNncjlPZ7KrbNcWa_2_iFvBFFm-rBMDc4AdjblvY0j7n5i6W0Ybd5Bs9HjbDgOKsuF4A2gqwiIokSGlOjQwF5Q8MRYwQ1VsaEmVEmsNQOIhAZslKy03MhICyFpYkikeBifoVaapfYcYYAKA4ChB2bpLLG4ZDGLrVrSEFaHFPQCtd1ELT5KUY1FNUeXf3dfoSP4WFFJl-6iVrHd2Wv4GyjUjV8GXygfspQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4QD97UgPHbHjw6WLfuo15RMhUIiZhwI_0iGmEzbBzk1_u22zAaD966Lluarnne9e3zPg9C10xB1Agi5vhUCMd4OTgxQIKjIk9I5YaCWImN4ShMXujjNJg20M22FkZrbclnumOa9ixfZXJtUmVdCH0RhKwdtBtQSoOyWmubUbHi4ITU1Vth7EVeLepUXdfnmsRl3WTcey6pXdVrf_ir2PDS30fDemAlq-S9sy5ER25-aTb-d-QHqP1dyIfH2xB1iBo6baHF3VsuDXMTurBcZLlWeL6ylOoCW2c2XeQ4S7ElGxqZy1s85itjurJ429iHrBVEmevDPFU4A-BZlveWhrr7ibk1YtR5G03695Ne4lSmC84rgFfhEEEJdymRroLdIItDpVmsqPAVVa4IfSkjAElowFZJcx0r7knGOA0V8UTs-keomWapPkYYwEIBZMhAzY0pVswjP_K1mFMX1gdn9AS1zETNPkpZjVk1R6d_d1-hvWQyHMwGD6OnM_jEtiLeJEPOUbNYrfUF_BsU4tIuiS-xarXh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+International+Conference+on+High+Performance+Computing+and+Simulation&rft.atitle=Discovering+closed+frequent+itemsets+on+multicore%3A+Parallelizing+computations+and+optimizing+memory+accesses&rft.au=Negrevergne%2C+B&rft.au=Termier%2C+A&rft.au=Me%CC%81haut%2C+J&rft.au=Uno%2C+T&rft.date=2010-06-01&rft.pub=IEEE&rft.isbn=9781424468270&rft.spage=521&rft.epage=528&rft_id=info:doi/10.1109%2FHPCS.2010.5547082&rft.externalDocID=5547082
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424468270/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424468270/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424468270/sc.gif&client=summon&freeimage=true