Using Neural Networks for Classifying Human-Robot Contact Situations

State-of-the-art robotic manipulators come with functions that detect unforeseen contact situations with the environment. However, for collaborative manipulators that are specifically designed to allow physical Human-Robot Interaction (pHRI), contact situations can be either intended (the operator m...

Full description

Saved in:
Bibliographic Details
Published in2019 18th European Control Conference (ECC) pp. 3279 - 3285
Main Authors Briquet-Kerestedjian, Nolwenn, Wahrburg, Arne, Grossard, Mathieu, Makarov, Maria, Rodriguez-Ayerbe, Pedro
Format Conference Proceeding
LanguageEnglish
Published EUCA 01.06.2019
Subjects
Online AccessGet full text
DOI10.23919/ECC.2019.8795649

Cover

Abstract State-of-the-art robotic manipulators come with functions that detect unforeseen contact situations with the environment. However, for collaborative manipulators that are specifically designed to allow physical Human-Robot Interaction (pHRI), contact situations can be either intended (the operator may intentionally interact with the robot for instance to modify its trajectory) or undesired (a human accidentally runs into the robot). An appropriate reaction strategy for the robot manipulator depends on a correct classification and localization of the contact situation. To this end, this work proposes an approach using supervised learning techniques to distinguish between unintended contact situations (labeled collisions) and foreseen ones (labeled interactions), and to infer whether a contact occured on the upper or lower arm of the robot. A neural network is trained on measurement data gathered from different contact situations between a human subject and an ABB YuMi robot. The proposed method is then evaluated online on the robot using simple reaction strategies on both the person who trained the network and on other human individuals.
AbstractList State-of-the-art robotic manipulators come with functions that detect unforeseen contact situations with the environment. However, for collaborative manipulators that are specifically designed to allow physical Human-Robot Interaction (pHRI), contact situations can be either intended (the operator may intentionally interact with the robot for instance to modify its trajectory) or undesired (a human accidentally runs into the robot). An appropriate reaction strategy for the robot manipulator depends on a correct classification and localization of the contact situation. To this end, this work proposes an approach using supervised learning techniques to distinguish between unintended contact situations (labeled collisions) and foreseen ones (labeled interactions), and to infer whether a contact occured on the upper or lower arm of the robot. A neural network is trained on measurement data gathered from different contact situations between a human subject and an ABB YuMi robot. The proposed method is then evaluated online on the robot using simple reaction strategies on both the person who trained the network and on other human individuals.
Author Wahrburg, Arne
Briquet-Kerestedjian, Nolwenn
Rodriguez-Ayerbe, Pedro
Grossard, Mathieu
Makarov, Maria
Author_xml – sequence: 1
  givenname: Nolwenn
  surname: Briquet-Kerestedjian
  fullname: Briquet-Kerestedjian, Nolwenn
  email: nolwenn.briquet@cea.fr
  organization: CEA, LIST, Interactive Robotics Laboratory, Gif-sur-Yvette, F-91191, France
– sequence: 2
  givenname: Arne
  surname: Wahrburg
  fullname: Wahrburg, Arne
  email: arne.wahrburg@de.abb.com
  organization: ABB Corporate Research Germany, Wallstadter Str. 59, Ladenburg, 68526, Germany
– sequence: 3
  givenname: Mathieu
  surname: Grossard
  fullname: Grossard, Mathieu
  email: mathieu.grossard@cea.fr
  organization: CEA, LIST, Interactive Robotics Laboratory, Gif-sur-Yvette, F-91191, France
– sequence: 4
  givenname: Maria
  surname: Makarov
  fullname: Makarov, Maria
  email: maria.makarov@centralesupelec.fr
  organization: Laboratoire des Signaux et Systèmes (L2S), CentraleSupélec-CNRS-Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, F91192, France
– sequence: 5
  givenname: Pedro
  surname: Rodriguez-Ayerbe
  fullname: Rodriguez-Ayerbe, Pedro
  email: pedro.rodriguez@centralesupelec.fr
  organization: Laboratoire des Signaux et Systèmes (L2S), CentraleSupélec-CNRS-Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, F91192, France
BookMark eNotj91KwzAYQCPohc49gHjTF2jNX9N8lxKnE4aD6a7H1zbRYJdIkyJ7ezfc1bk4cODckMsQgyXkjtGKC2DwsDCm4pRBpRuolYQLModGC6ANk5JSfU2etsmHz-LNTiMOR-TfOH6nwsWxMAOm5N3h5JfTHkO5iW3MhYkhY5eLd58nzD6GdEuuHA7Jzs-cke3z4sMsy9X65dU8rsovTiGXskPaSnS91FpJjbaXbcfRurYGhUyh6FkHGpjrFDrHec-lYsIdvUNWczEj9_9db63d_Yx-j-Nhd34Tf4otSUQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/ECC.2019.8795649
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISBN 9783907144008
3907144007
EndPage 3285
ExternalDocumentID 8795649
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-h209t-4ca0b4afd488648aed4bc2aefb596a16a3d1c9891fc6aff22d24613ffb5fa1523
IEDL.DBID RIE
IngestDate Wed Sep 03 07:09:11 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h209t-4ca0b4afd488648aed4bc2aefb596a16a3d1c9891fc6aff22d24613ffb5fa1523
PageCount 7
ParticipantIDs ieee_primary_8795649
PublicationCentury 2000
PublicationDate 2019-June
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-June
PublicationDecade 2010
PublicationTitle 2019 18th European Control Conference (ECC)
PublicationTitleAbbrev ECC
PublicationYear 2019
Publisher EUCA
Publisher_xml – name: EUCA
Score 1.8363845
Snippet State-of-the-art robotic manipulators come with functions that detect unforeseen contact situations with the environment. However, for collaborative...
SourceID ieee
SourceType Publisher
StartPage 3279
SubjectTerms Collision avoidance
Europe
Human-robot interaction
Location awareness
Manipulators
Neural networks
Physics
Supervised learning
Training
Trajectory
Title Using Neural Networks for Classifying Human-Robot Contact Situations
URI https://ieeexplore.ieee.org/document/8795649
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFL20BcGVj1Z8k4VLM53MZB5Z15YiVEQtdFeSTIJFmREn3fj15lErigtXGZKBhFyGcyc551yAKwtqFgZKhTPJqP1BEQQzSWOcqcJltCkhhRMnz-7y6ZzeLrJFB663WhillCefqcg9-rv8qpFrd1Q2dIWxc8q60C0KFrRa4aIySRlhw_Fo5LhaNvjhvR8FUzxeTPZg9jVToIm8RGsjIvnxy4Txv0vZh8G3Mg_dbzHnADqqPoQdT-OUbR9uPAMAOccN_mobT_FukU1Mka9-ufKqJuRP7vFDIxqDnD0VlwY9rkxw_W4HMJ-Mn0ZTvKmTgJ-TmBlMJY8F5bqyH2NOS64qKmTClRYZyznJeVoRyUpGtMy51klSORO5VNtxzS1-p0fQq5taHQPihXQZidCF1rRkGZeEKVESJV3mpOMT6Lu9WL4FK4zlZhtO_-4-g10Xj8CsOoeeeV-rC4vhRlz64H0CG12emQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFL3UiujKRyu-zcKlaSczmUfWtaVqW0Rb6K4kmQSLMiM23fj1JplaUVy4ypAMzJBLODfJOecCXFlQszCQKRxLRu0GRRDMJA1wrFKX0UaEpE6cPBwl_Qm9m8bTGlyvtTBKKU8-Uy336O_y81Iu3VFZ2xXGTijbgM3Y7irSSq1VXVWGESOs3e10HFvLhr9680fJFI8YvV0Yfn2rIoq8tJZGtOTHLxvG__7MHjS_tXnoYY06-1BTxQFseSKnXDTgxnMAkPPc4K-28STvBbKpKfL1L-de14T82T1-LEVpkDOo4tKgp7mpfL8XTZj0uuNOH68qJeDnMGAGU8kDQbnO7XJMaMZVToUMudIiZgknCY9yIlnGiJYJ1zoMc2cjF2k7rrlF8OgQ6kVZqCNAPJUuJxE61ZpmLOaSMCUyoqTLnXRwDA03F7O3ygxjtpqGk7-7L2G7Px4OZoPb0f0p7LjYVDyrM6ib96U6t4huxIUP5CedrKHq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+18th+European+Control+Conference+%28ECC%29&rft.atitle=Using+Neural+Networks+for+Classifying+Human-Robot+Contact+Situations&rft.au=Briquet-Kerestedjian%2C+Nolwenn&rft.au=Wahrburg%2C+Arne&rft.au=Grossard%2C+Mathieu&rft.au=Makarov%2C+Maria&rft.date=2019-06-01&rft.pub=EUCA&rft.spage=3279&rft.epage=3285&rft_id=info:doi/10.23919%2FECC.2019.8795649&rft.externalDocID=8795649