Using Neural Networks for Classifying Human-Robot Contact Situations
State-of-the-art robotic manipulators come with functions that detect unforeseen contact situations with the environment. However, for collaborative manipulators that are specifically designed to allow physical Human-Robot Interaction (pHRI), contact situations can be either intended (the operator m...
Saved in:
Published in | 2019 18th European Control Conference (ECC) pp. 3279 - 3285 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
EUCA
01.06.2019
|
Subjects | |
Online Access | Get full text |
DOI | 10.23919/ECC.2019.8795649 |
Cover
Abstract | State-of-the-art robotic manipulators come with functions that detect unforeseen contact situations with the environment. However, for collaborative manipulators that are specifically designed to allow physical Human-Robot Interaction (pHRI), contact situations can be either intended (the operator may intentionally interact with the robot for instance to modify its trajectory) or undesired (a human accidentally runs into the robot). An appropriate reaction strategy for the robot manipulator depends on a correct classification and localization of the contact situation. To this end, this work proposes an approach using supervised learning techniques to distinguish between unintended contact situations (labeled collisions) and foreseen ones (labeled interactions), and to infer whether a contact occured on the upper or lower arm of the robot. A neural network is trained on measurement data gathered from different contact situations between a human subject and an ABB YuMi robot. The proposed method is then evaluated online on the robot using simple reaction strategies on both the person who trained the network and on other human individuals. |
---|---|
AbstractList | State-of-the-art robotic manipulators come with functions that detect unforeseen contact situations with the environment. However, for collaborative manipulators that are specifically designed to allow physical Human-Robot Interaction (pHRI), contact situations can be either intended (the operator may intentionally interact with the robot for instance to modify its trajectory) or undesired (a human accidentally runs into the robot). An appropriate reaction strategy for the robot manipulator depends on a correct classification and localization of the contact situation. To this end, this work proposes an approach using supervised learning techniques to distinguish between unintended contact situations (labeled collisions) and foreseen ones (labeled interactions), and to infer whether a contact occured on the upper or lower arm of the robot. A neural network is trained on measurement data gathered from different contact situations between a human subject and an ABB YuMi robot. The proposed method is then evaluated online on the robot using simple reaction strategies on both the person who trained the network and on other human individuals. |
Author | Wahrburg, Arne Briquet-Kerestedjian, Nolwenn Rodriguez-Ayerbe, Pedro Grossard, Mathieu Makarov, Maria |
Author_xml | – sequence: 1 givenname: Nolwenn surname: Briquet-Kerestedjian fullname: Briquet-Kerestedjian, Nolwenn email: nolwenn.briquet@cea.fr organization: CEA, LIST, Interactive Robotics Laboratory, Gif-sur-Yvette, F-91191, France – sequence: 2 givenname: Arne surname: Wahrburg fullname: Wahrburg, Arne email: arne.wahrburg@de.abb.com organization: ABB Corporate Research Germany, Wallstadter Str. 59, Ladenburg, 68526, Germany – sequence: 3 givenname: Mathieu surname: Grossard fullname: Grossard, Mathieu email: mathieu.grossard@cea.fr organization: CEA, LIST, Interactive Robotics Laboratory, Gif-sur-Yvette, F-91191, France – sequence: 4 givenname: Maria surname: Makarov fullname: Makarov, Maria email: maria.makarov@centralesupelec.fr organization: Laboratoire des Signaux et Systèmes (L2S), CentraleSupélec-CNRS-Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, F91192, France – sequence: 5 givenname: Pedro surname: Rodriguez-Ayerbe fullname: Rodriguez-Ayerbe, Pedro email: pedro.rodriguez@centralesupelec.fr organization: Laboratoire des Signaux et Systèmes (L2S), CentraleSupélec-CNRS-Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, F91192, France |
BookMark | eNotj91KwzAYQCPohc49gHjTF2jNX9N8lxKnE4aD6a7H1zbRYJdIkyJ7ezfc1bk4cODckMsQgyXkjtGKC2DwsDCm4pRBpRuolYQLModGC6ANk5JSfU2etsmHz-LNTiMOR-TfOH6nwsWxMAOm5N3h5JfTHkO5iW3MhYkhY5eLd58nzD6GdEuuHA7Jzs-cke3z4sMsy9X65dU8rsovTiGXskPaSnS91FpJjbaXbcfRurYGhUyh6FkHGpjrFDrHec-lYsIdvUNWczEj9_9db63d_Yx-j-Nhd34Tf4otSUQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.23919/ECC.2019.8795649 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISBN | 9783907144008 3907144007 |
EndPage | 3285 |
ExternalDocumentID | 8795649 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-h209t-4ca0b4afd488648aed4bc2aefb596a16a3d1c9891fc6aff22d24613ffb5fa1523 |
IEDL.DBID | RIE |
IngestDate | Wed Sep 03 07:09:11 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-h209t-4ca0b4afd488648aed4bc2aefb596a16a3d1c9891fc6aff22d24613ffb5fa1523 |
PageCount | 7 |
ParticipantIDs | ieee_primary_8795649 |
PublicationCentury | 2000 |
PublicationDate | 2019-June |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-June |
PublicationDecade | 2010 |
PublicationTitle | 2019 18th European Control Conference (ECC) |
PublicationTitleAbbrev | ECC |
PublicationYear | 2019 |
Publisher | EUCA |
Publisher_xml | – name: EUCA |
Score | 1.8363845 |
Snippet | State-of-the-art robotic manipulators come with functions that detect unforeseen contact situations with the environment. However, for collaborative... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3279 |
SubjectTerms | Collision avoidance Europe Human-robot interaction Location awareness Manipulators Neural networks Physics Supervised learning Training Trajectory |
Title | Using Neural Networks for Classifying Human-Robot Contact Situations |
URI | https://ieeexplore.ieee.org/document/8795649 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFL20BcGVj1Z8k4VLM53MZB5Z15YiVEQtdFeSTIJFmREn3fj15lErigtXGZKBhFyGcyc551yAKwtqFgZKhTPJqP1BEQQzSWOcqcJltCkhhRMnz-7y6ZzeLrJFB663WhillCefqcg9-rv8qpFrd1Q2dIWxc8q60C0KFrRa4aIySRlhw_Fo5LhaNvjhvR8FUzxeTPZg9jVToIm8RGsjIvnxy4Txv0vZh8G3Mg_dbzHnADqqPoQdT-OUbR9uPAMAOccN_mobT_FukU1Mka9-ufKqJuRP7vFDIxqDnD0VlwY9rkxw_W4HMJ-Mn0ZTvKmTgJ-TmBlMJY8F5bqyH2NOS64qKmTClRYZyznJeVoRyUpGtMy51klSORO5VNtxzS1-p0fQq5taHQPihXQZidCF1rRkGZeEKVESJV3mpOMT6Lu9WL4FK4zlZhtO_-4-g10Xj8CsOoeeeV-rC4vhRlz64H0CG12emQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFL3UiujKRyu-zcKlaSczmUfWtaVqW0Rb6K4kmQSLMiM23fj1JplaUVy4ypAMzJBLODfJOecCXFlQszCQKRxLRu0GRRDMJA1wrFKX0UaEpE6cPBwl_Qm9m8bTGlyvtTBKKU8-Uy336O_y81Iu3VFZ2xXGTijbgM3Y7irSSq1VXVWGESOs3e10HFvLhr9680fJFI8YvV0Yfn2rIoq8tJZGtOTHLxvG__7MHjS_tXnoYY06-1BTxQFseSKnXDTgxnMAkPPc4K-28STvBbKpKfL1L-de14T82T1-LEVpkDOo4tKgp7mpfL8XTZj0uuNOH68qJeDnMGAGU8kDQbnO7XJMaMZVToUMudIiZgknCY9yIlnGiJYJ1zoMc2cjF2k7rrlF8OgQ6kVZqCNAPJUuJxE61ZpmLOaSMCUyoqTLnXRwDA03F7O3ygxjtpqGk7-7L2G7Px4OZoPb0f0p7LjYVDyrM6ib96U6t4huxIUP5CedrKHq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+18th+European+Control+Conference+%28ECC%29&rft.atitle=Using+Neural+Networks+for+Classifying+Human-Robot+Contact+Situations&rft.au=Briquet-Kerestedjian%2C+Nolwenn&rft.au=Wahrburg%2C+Arne&rft.au=Grossard%2C+Mathieu&rft.au=Makarov%2C+Maria&rft.date=2019-06-01&rft.pub=EUCA&rft.spage=3279&rft.epage=3285&rft_id=info:doi/10.23919%2FECC.2019.8795649&rft.externalDocID=8795649 |