Efficient and Privacy-Preserving k-Means Clustering for Big Data Mining
Recent advances in sensing and storing technologies have led to big data age where a huge amount of data are distributed across sites to be stored and analysed. Indeed, cluster analysis is one of the data mining tasks that aims to discover patterns and knowledge through different algorithmic techniq...
        Saved in:
      
    
          | Published in | 2016 IEEE Trustcom/BigDataSE/ISPA pp. 791 - 798 | 
|---|---|
| Main Authors | , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.08.2016
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2324-9013 | 
| DOI | 10.1109/TrustCom.2016.0140 | 
Cover
| Abstract | Recent advances in sensing and storing technologies have led to big data age where a huge amount of data are distributed across sites to be stored and analysed. Indeed, cluster analysis is one of the data mining tasks that aims to discover patterns and knowledge through different algorithmic techniques such as k-means. Nevertheless, running k-means over distributed big data stores has given rise to serious privacy issues. Accordingly, many proposed works attempted to tackle this concern using cryptographic protocols. However, these cryptographic solutions introduced performance degradation issues in analysis tasks which does not meet big data properties. In this work, we propose a novel privacy-preserving k-means algorithm based on a simple yet secure and efficient multiparty additive scheme that is cryptography-free. We designed our solution for horizontally partitioned data. Moreover, we demonstrate that our scheme resists against adversaries passive model. | 
    
|---|---|
| AbstractList | Recent advances in sensing and storing technologies have led to big data age where a huge amount of data are distributed across sites to be stored and analysed. Indeed, cluster analysis is one of the data mining tasks that aims to discover patterns and knowledge through different algorithmic techniques such as k-means. Nevertheless, running k-means over distributed big data stores has given rise to serious privacy issues. Accordingly, many proposed works attempted to tackle this concern using cryptographic protocols. However, these cryptographic solutions introduced performance degradation issues in analysis tasks which does not meet big data properties. In this work, we propose a novel privacy-preserving k-means algorithm based on a simple yet secure and efficient multiparty additive scheme that is cryptography-free. We designed our solution for horizontally partitioned data. Moreover, we demonstrate that our scheme resists against adversaries passive model. | 
    
| Author | Gheid, Zakaria Challal, Yacine  | 
    
| Author_xml | – sequence: 1 givenname: Zakaria surname: Gheid fullname: Gheid, Zakaria email: z_gheid@esi.dz organization: Ecole Nat. SupIrieure d'Inf., Lab. des Methodes de Conception des Syst., Algiers, Algeria – sequence: 2 givenname: Yacine surname: Challal fullname: Challal, Yacine email: y_challal@esi.dz organization: Ecole Nat. SupIrieure d'Inf., Lab. des Methodes de Conception des Syst., Algiers, Algeria  | 
    
| BookMark | eNo9kEFOwzAQRQ0CiVJ6AdjkAiljO07sJYRSkFrRRVlHk2RSDKlTOWmr3p5ERaxG-qP3v_Ru2ZVrHDF2z2HKOZjHtd-3XdpspwJ4PAUewQWbmERzBQakAMUv2UhIEYUGuLxhk7b9BgAhYiOVHrH5rKpsYcl1AboyWHl7wOIUrjy15A_WbYKfcEno2iCt-yXyQ1Q1Pni2m-AFOwyW1vXZHbuusG5p8nfH7PN1tk7fwsXH_D19WoRfPNYQYkkmVxHkBeSIipSACBKNsSqlKRXmlSFltE7yIjaUR9qUkquK-rcqUaEcM3nu3bsdno5Y19nO2y36U8YhG5Rk3aCkaLbZoCQblPTUw5myRPQPJDpKQEj5C9HOYOw | 
    
| CODEN | IEEPAD | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL ADTOC UNPAY  | 
    
| DOI | 10.1109/TrustCom.2016.0140 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISBN | 9781509032051 1509032053  | 
    
| EISSN | 2324-9013 | 
    
| EndPage | 798 | 
    
| ExternalDocumentID | oai:HAL:hal-01466904v1 7847023  | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-h1680-ade9b540bc0baa5e5204078a65d39d5abf9e59887bc69eb489d315fe5d35da5a3 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Wed Oct 29 14:04:44 EDT 2025 Wed Aug 27 02:07:47 EDT 2025  | 
    
| IsDoiOpenAccess | false | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| License | other-oa | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-h1680-ade9b540bc0baa5e5204078a65d39d5abf9e59887bc69eb489d315fe5d35da5a3 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal.archives-ouvertes.fr/hal-01466904 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | ieee_primary_7847023 unpaywall_primary_10_1109_trustcom_2016_0140  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2016-Aug. | 
    
| PublicationDateYYYYMMDD | 2016-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2016 text: 2016-Aug.  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | 2016 IEEE Trustcom/BigDataSE/ISPA | 
    
| PublicationTitleAbbrev | TrustCom | 
    
| PublicationYear | 2016 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0002269358 ssj0003204185  | 
    
| Score | 1.8375412 | 
    
| Snippet | Recent advances in sensing and storing technologies have led to big data age where a huge amount of data are distributed across sites to be stored and... | 
    
| SourceID | unpaywall ieee  | 
    
| SourceType | Open Access Repository Publisher  | 
    
| StartPage | 791 | 
    
| SubjectTerms | Big data Clustering algorithms Data privacy Distributed databases efficiency horizontally partitioned data k-means clustering privacy Protocols Security  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BTgIxEG0UDsaLGjBi1PTg0eLCbrvboyJoTCAcJMHTZqbbBQJZiAENfr3TZUHjSa-dJrvpJH3vpTNvGLv2ES2aQItIWRIoBgIRoTJCIci0CUkoMa_y7amnQfA8lMOiWd31woyJcULhuSrmKzeTmARj-uYCwhmdkJoL9llZSaLeJVYe9Pp3r9tmGE_f5p0Krg6EgE3VnXwoxqYcsoNVtoD1B8xmPxCkc8R6229vCkem9dUS6-bzly3jn3_umFW_m_V4fwdDJ2zPZhX22M6tIQhROGQJxSfvYNbCFVy4yyEb8anoWoIp3pqtnFeCWyL-yu8nI_4AS-DdfHJElQ067ZfWkyhmJohxQ0WegMRqJBaGxkMAaWXTcy91oGTi60QCptpKTTcLGqUtBpFO_IZMLYVlAhL8U1bK5pk9Y1wSeqdRitqYgFArxDBCS3jepNwaH6HGKu5g48XGFiMOCeiIAdTYze6gd7Fcang63qYndumJXXrO_7f9gpVo0V4SE1jiVZH_L50GunA priority: 102 providerName: Unpaywall  | 
    
| Title | Efficient and Privacy-Preserving k-Means Clustering for Big Data Mining | 
    
| URI | https://ieeexplore.ieee.org/document/7847023 https://hal.archives-ouvertes.fr/hal-01466904  | 
    
| UnpaywallVersion | submittedVersion | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61MAALb_GWB8ampE3sxCOPFoTUqkMrwRTdOU6pWqUMLQh-Pee0DQgxsCVxbFln33139j0ALgMiSybUXqwsGygGQy8mZTxFKLMmppGkwsu3qx4G4eOTfKpArYyFsdYWzme27h6Lu_x0aubuqOwqYlHKGFOFahSrRaxWeZ7CaoS70ivfg6bv8rKs4mR8fdV3QQzMZc6fS9WdZbGsqLIFG_P8FT_ecTL5AS7tbeisprXwKRnX5zOqm89fGRv_O-8dOPgO4xO9EqB2oWLzPdhe1XEQS7beh_tWkUeCxxCYp9xl9Ibmw3PeGU6S5EMx9jqWMU3cTuYusYL7xMquuBkNxR3OUHSKMhMHMGi3-rcP3rLAgvfSULHvYWo1scpGxidEaSXTjFUGVDINdCqRMm2lZjFERmlLYazToCEzy80yRYnBIazl09wegZAM9VmckTYmZIiLKIrJMvg3eSOYgPAY9h1dktdFDo1kSZJjqJWkL9sKu8TXSRF1wnyXuAVL3IKd_D3KKWy6XxZ-eWewxh3tOesKM7ooNskFrA-6vevnL3dewJU | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICFVxFvPDA2aWjiJF6BlvJIxVAktujOcQBRBYYWBL-ec5IGhBjYktixrLPvvjv7HgDHPpEhHSgnDg0bKBoDJ6ZQOyGhzLuYRZJKL99hOLgLru7l_Ry0m1gYY0zpfGZc-1je5WcvemqPyjoRi1LGmHlYlEEQyCpaqzlRYUXCXuo1737Xs5lZZpEynuqMbBgD85n16Apda1vUNVVWYGlavOLHO47HP-ClvwrJbGKVV8mzO52Qqz9_5Wz878zXoPUdyCduG4hahzlTbMDqrJKDqBl7Ey56ZSYJHkNgkfEvT2-oPxzrn2FlSfEgnp3EMKqJs_HUplawn1jdFadPD-IcJyiSstBEC-76vdHZwKlLLDiPJ2HsOZgZRay0kfYIURrJNGOlAUOZ-SqTSLkyUrEgIh0qQ0GsMv9E5oabZYYS_S1YKF4Ksw1CMtjncU5K64BBLqIoJsPw3-WtoH3CHdi0dElfqywaaU2SHWg3pG_aSsvEU2kZd8Kcl9oFS-2C7f49yhEsDUbJTXpzObzeg2XbvfLS24cFHsQcsOYwocNyw3wBpLDCMg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BTgIxEG0UDsaLGjBi1PTg0eLCbrvboyJoTCAcJMHTZqbbBQJZiAENfr3TZUHjSa-dJrvpJH3vpTNvGLv2ES2aQItIWRIoBgIRoTJCIci0CUkoMa_y7amnQfA8lMOiWd31woyJcULhuSrmKzeTmARj-uYCwhmdkJoL9llZSaLeJVYe9Pp3r9tmGE_f5p0Krg6EgE3VnXwoxqYcsoNVtoD1B8xmPxCkc8R6229vCkem9dUS6-bzly3jn3_umFW_m_V4fwdDJ2zPZhX22M6tIQhROGQJxSfvYNbCFVy4yyEb8anoWoIp3pqtnFeCWyL-yu8nI_4AS-DdfHJElQ067ZfWkyhmJohxQ0WegMRqJBaGxkMAaWXTcy91oGTi60QCptpKTTcLGqUtBpFO_IZMLYVlAhL8U1bK5pk9Y1wSeqdRitqYgFArxDBCS3jepNwaH6HGKu5g48XGFiMOCeiIAdTYze6gd7Fcang63qYndumJXXrO_7f9gpVo0V4SE1jiVZH_L50GunA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Trustcom%2FBigDataSE%2FISPA&rft.atitle=Efficient+and+Privacy-Preserving+k-Means+Clustering+for+Big+Data+Mining&rft.au=Gheid%2C+Zakaria&rft.au=Challal%2C+Yacine&rft.date=2016-08-01&rft.pub=IEEE&rft.eissn=2324-9013&rft.spage=791&rft.epage=798&rft_id=info:doi/10.1109%2FTrustCom.2016.0140&rft.externalDocID=7847023 |