A deep-learning based algorithm for image reconstruction in Compton tomography

In this paper we study the applications of deep-learning to the problem of image reconstruction in Compton scatter tomography, a field where deep-learning techniques are still unexplored. Particularly, we focus on a new design with uncollimated detectors that simplifies some previous configurations...

Full description

Saved in:
Bibliographic Details
Published inInternational Workshops on Image Processing Theory, Tools, and Applications pp. 1 - 6
Main Authors Ayad, Ishak, Tarpau, Cecilia, Cebeiro, Javier, Nguyen, Mai K.
Format Conference Proceeding
LanguageEnglish
Published IEEE 16.10.2023
Subjects
Online AccessGet full text
ISSN2154-512X
DOI10.1109/IPTA59101.2023.10320071

Cover

Abstract In this paper we study the applications of deep-learning to the problem of image reconstruction in Compton scatter tomography, a field where deep-learning techniques are still unexplored. Particularly, we focus on a new design with uncollimated detectors that simplifies some previous configurations of Compton scanners. The system inherits attractive advantages such as non-moving components and the ability to combine with other imaging modes. Since there is no an analytic inverse formula for image reconstruction, we developed a GAN based algorithm that provides an efficient mapping between data and image domains. We compare our method against several algorithmic approaches and show that high quality image reconstruction is feasible. Results encourage further research in the application of deep-learning reconstruction techniques in Compton scatter tomography, particularly when inverse reconstruction formulas are unknown.
AbstractList In this paper we study the applications of deep-learning to the problem of image reconstruction in Compton scatter tomography, a field where deep-learning techniques are still unexplored. Particularly, we focus on a new design with uncollimated detectors that simplifies some previous configurations of Compton scanners. The system inherits attractive advantages such as non-moving components and the ability to combine with other imaging modes. Since there is no an analytic inverse formula for image reconstruction, we developed a GAN based algorithm that provides an efficient mapping between data and image domains. We compare our method against several algorithmic approaches and show that high quality image reconstruction is feasible. Results encourage further research in the application of deep-learning reconstruction techniques in Compton scatter tomography, particularly when inverse reconstruction formulas are unknown.
Author Ayad, Ishak
Tarpau, Cecilia
Nguyen, Mai K.
Cebeiro, Javier
Author_xml – sequence: 1
  givenname: Ishak
  surname: Ayad
  fullname: Ayad, Ishak
  email: ishak.ayad@cyu.fr
  organization: CY Cergy Paris Université,ETIS UMR 8051 and AGM UMR 8088,Cergy-Pontoise,France
– sequence: 2
  givenname: Cecilia
  surname: Tarpau
  fullname: Tarpau, Cecilia
  email: c.tarpau@hw.ac.uk
  organization: Heriot-Watt University Edinburgh,School of Mathematical and Computer Sciences,United Kingdom
– sequence: 3
  givenname: Javier
  surname: Cebeiro
  fullname: Cebeiro, Javier
  email: jcebeiro@unsam.edu.ar
  organization: ECyT Centro de Matemática Aplicada (CEDEMA) Comisión de Investigaciones Científicas,CIC, ITECA UNSAM-CONICET,Provincia de Buenos Aires,Argentina
– sequence: 4
  givenname: Mai K.
  surname: Nguyen
  fullname: Nguyen, Mai K.
  email: mai.nguyen-verger@cyu.fr
  organization: CY Cergy Paris Université,ETIS UMR 8051,Cergy-Pontoise,France
BookMark eNo1UM1KxDAYjKLguvYNBPMCrfnSJk2Ppei6sKiHFbwtafL1R9qkpPWwb29BPc0MzAzD3JIr5x0S8gAsAWDF4_79WIoCGCSc8TQBlnLGcrggUZEXKhWrFhnIS7LhILJYAP-8IdE8fzHGgCvJldqQ15JaxCkeUAfXu5bWekZL9dD60C_dSBsfaD_qFmlA4928hG-z9N7R3tHKj9Oy0sWPvg166s535LrRw4zRH27Jx_PTsXqJD2-7fVUe4g5EusTYGMlyq2qmjDASa9vITJhGIKLQoFVhLErBueHFapFgjcyFbVBxUHkO6Zbc__b2a-I0hXVhOJ_-L0h_AKlyU6c
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IPTA59101.2023.10320071
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9798350325416
EISSN 2154-512X
EndPage 6
ExternalDocumentID 10320071
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-h153t-efc607d8b08c5c6ebdf645cf5eee5a1a89cde6522c2908c61dc675dfe82187713
IEDL.DBID RIE
IngestDate Wed Aug 27 02:23:09 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h153t-efc607d8b08c5c6ebdf645cf5eee5a1a89cde6522c2908c61dc675dfe82187713
PageCount 6
ParticipantIDs ieee_primary_10320071
PublicationCentury 2000
PublicationDate 2023-Oct.-16
PublicationDateYYYYMMDD 2023-10-16
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-16
  day: 16
PublicationDecade 2020
PublicationTitle International Workshops on Image Processing Theory, Tools, and Applications
PublicationTitleAbbrev IPTA
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001286288
Score 1.8505542
Snippet In this paper we study the applications of deep-learning to the problem of image reconstruction in Compton scatter tomography, a field where deep-learning...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Attenuation
Brain modeling
circular Radon transform
Compton tomography
deep-learning image reconstruction
Detectors
GANs
Image quality
Tomography
Transforms
Title A deep-learning based algorithm for image reconstruction in Compton tomography
URI https://ieeexplore.ieee.org/document/10320071
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwELYKUyf6oOpbHro6kOAkzoiqIlqpiAEkNuTHGVBLgtqw9Nf3nBj6kCp1i6Iksn3KfffZd98Rcmc1Ui5rLeOgJOOZ5ExayBhEYDMLDvPcie7zKBlO-dMsnvli9aoWBgCq5DMI3GV1lm8KvXVbZR0n_uYwsUEaqUjqYq1vGyrCtc71OVxhN-s8jif9GOHQ0cCoF-ze_tFHpYKRQYuMdgOos0degm2pAv3xS5vx3yM8Iu2vij063mPRMTmA_IS0fIhJ_Q_8fkpGfWoANsw3i1hQh2KGytdF8bYql2uKMSxdrdHJ0Ioq7-Vl6SqnzndgqEjLYu2FrttkOniY3A-Zb6nAlujaSgZom25qhOoKHesElLEJj7WNcSaxDKXItEEDRZGOMnwkCY1GRmEsCAwFUiS0Z6SZFzmcE8pTIbVTu1NCIhJyYYzEz0guVA-BP70gbbc-802tmjHfLc3lH_evyKEzk8OFMLkmTZwf3CDgl-q2MvQnReSsEg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwELZaOrQTfVD1XQ9dHSDYiTOiqhW0EDGAxIYc-wyoJUFtWPrrew6BPqRK3aIoiWyfct999t13hNxZjZTLWss4JIrxSHGmLEQMfLCRBYd57kS3HwedEX8ai3FZrF7UwgBAkXwGnrsszvJNplduq6zuxN8cJu6SPcE5F-tyrW9bKtI1zy2zuJqNqN4dDNsCAdERQb_lbd7_0UmlAJLHKok3Q1jnj7x4qzzx9McvdcZ_j_GQ1L5q9uhgi0ZHZAfSY1Itg0xa_sLvJyRuUwOwZGW7iCl1OGaoep1mb_N8tqAYxdL5At0MLcjyVmCWzlPqvAcGizTPFqXUdY2MHh-G9x1WNlVgM3RuOQO0TiM0MmlILXQAibEBF9oKnIlQTSUjbdBEvq_9CB8JmkYjpzAWJAYDIVLaU1JJsxTOCOWhVNrp3SVSIRZyaYzCzygukxZCf3hOam59Jsu1bsZkszQXf9y_JfudYb836XXj50ty4EzmUKIZXJEKzhWuEf7z5KYw-id4Va9f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Workshops+on+Image+Processing+Theory%2C+Tools%2C+and+Applications&rft.atitle=A+deep-learning+based+algorithm+for+image+reconstruction+in+Compton+tomography&rft.au=Ayad%2C+Ishak&rft.au=Tarpau%2C+Cecilia&rft.au=Cebeiro%2C+Javier&rft.au=Nguyen%2C+Mai+K.&rft.date=2023-10-16&rft.pub=IEEE&rft.eissn=2154-512X&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FIPTA59101.2023.10320071&rft.externalDocID=10320071