A deep-learning based algorithm for image reconstruction in Compton tomography
In this paper we study the applications of deep-learning to the problem of image reconstruction in Compton scatter tomography, a field where deep-learning techniques are still unexplored. Particularly, we focus on a new design with uncollimated detectors that simplifies some previous configurations...
        Saved in:
      
    
          | Published in | International Workshops on Image Processing Theory, Tools, and Applications pp. 1 - 6 | 
|---|---|
| Main Authors | , , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        16.10.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2154-512X | 
| DOI | 10.1109/IPTA59101.2023.10320071 | 
Cover
| Abstract | In this paper we study the applications of deep-learning to the problem of image reconstruction in Compton scatter tomography, a field where deep-learning techniques are still unexplored. Particularly, we focus on a new design with uncollimated detectors that simplifies some previous configurations of Compton scanners. The system inherits attractive advantages such as non-moving components and the ability to combine with other imaging modes. Since there is no an analytic inverse formula for image reconstruction, we developed a GAN based algorithm that provides an efficient mapping between data and image domains. We compare our method against several algorithmic approaches and show that high quality image reconstruction is feasible. Results encourage further research in the application of deep-learning reconstruction techniques in Compton scatter tomography, particularly when inverse reconstruction formulas are unknown. | 
    
|---|---|
| AbstractList | In this paper we study the applications of deep-learning to the problem of image reconstruction in Compton scatter tomography, a field where deep-learning techniques are still unexplored. Particularly, we focus on a new design with uncollimated detectors that simplifies some previous configurations of Compton scanners. The system inherits attractive advantages such as non-moving components and the ability to combine with other imaging modes. Since there is no an analytic inverse formula for image reconstruction, we developed a GAN based algorithm that provides an efficient mapping between data and image domains. We compare our method against several algorithmic approaches and show that high quality image reconstruction is feasible. Results encourage further research in the application of deep-learning reconstruction techniques in Compton scatter tomography, particularly when inverse reconstruction formulas are unknown. | 
    
| Author | Ayad, Ishak Tarpau, Cecilia Nguyen, Mai K. Cebeiro, Javier  | 
    
| Author_xml | – sequence: 1 givenname: Ishak surname: Ayad fullname: Ayad, Ishak email: ishak.ayad@cyu.fr organization: CY Cergy Paris Université,ETIS UMR 8051 and AGM UMR 8088,Cergy-Pontoise,France – sequence: 2 givenname: Cecilia surname: Tarpau fullname: Tarpau, Cecilia email: c.tarpau@hw.ac.uk organization: Heriot-Watt University Edinburgh,School of Mathematical and Computer Sciences,United Kingdom – sequence: 3 givenname: Javier surname: Cebeiro fullname: Cebeiro, Javier email: jcebeiro@unsam.edu.ar organization: ECyT Centro de Matemática Aplicada (CEDEMA) Comisión de Investigaciones Científicas,CIC, ITECA UNSAM-CONICET,Provincia de Buenos Aires,Argentina – sequence: 4 givenname: Mai K. surname: Nguyen fullname: Nguyen, Mai K. email: mai.nguyen-verger@cyu.fr organization: CY Cergy Paris Université,ETIS UMR 8051,Cergy-Pontoise,France  | 
    
| BookMark | eNo1UM1KxDAYjKLguvYNBPMCrfnSJk2Ppei6sKiHFbwtafL1R9qkpPWwb29BPc0MzAzD3JIr5x0S8gAsAWDF4_79WIoCGCSc8TQBlnLGcrggUZEXKhWrFhnIS7LhILJYAP-8IdE8fzHGgCvJldqQ15JaxCkeUAfXu5bWekZL9dD60C_dSBsfaD_qFmlA4928hG-z9N7R3tHKj9Oy0sWPvg166s535LrRw4zRH27Jx_PTsXqJD2-7fVUe4g5EusTYGMlyq2qmjDASa9vITJhGIKLQoFVhLErBueHFapFgjcyFbVBxUHkO6Zbc__b2a-I0hXVhOJ_-L0h_AKlyU6c | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/IPTA59101.2023.10320071 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences | 
    
| EISBN | 9798350325416 | 
    
| EISSN | 2154-512X | 
    
| EndPage | 6 | 
    
| ExternalDocumentID | 10320071 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS  | 
    
| ID | FETCH-LOGICAL-h153t-efc607d8b08c5c6ebdf645cf5eee5a1a89cde6522c2908c61dc675dfe82187713 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Wed Aug 27 02:23:09 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-h153t-efc607d8b08c5c6ebdf645cf5eee5a1a89cde6522c2908c61dc675dfe82187713 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | ieee_primary_10320071 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-Oct.-16 | 
    
| PublicationDateYYYYMMDD | 2023-10-16 | 
    
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-Oct.-16 day: 16  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | International Workshops on Image Processing Theory, Tools, and Applications | 
    
| PublicationTitleAbbrev | IPTA | 
    
| PublicationYear | 2023 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0001286288 | 
    
| Score | 1.8505542 | 
    
| Snippet | In this paper we study the applications of deep-learning to the problem of image reconstruction in Compton scatter tomography, a field where deep-learning... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1 | 
    
| SubjectTerms | Attenuation Brain modeling circular Radon transform Compton tomography deep-learning image reconstruction Detectors GANs Image quality Tomography Transforms  | 
    
| Title | A deep-learning based algorithm for image reconstruction in Compton tomography | 
    
| URI | https://ieeexplore.ieee.org/document/10320071 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwELYKUyf6oOpbHro6kOAkzoiqIlqpiAEkNuTHGVBLgtqw9Nf3nBj6kCp1i6Iksn3KfffZd98Rcmc1Ui5rLeOgJOOZ5ExayBhEYDMLDvPcie7zKBlO-dMsnvli9aoWBgCq5DMI3GV1lm8KvXVbZR0n_uYwsUEaqUjqYq1vGyrCtc71OVxhN-s8jif9GOHQ0cCoF-ze_tFHpYKRQYuMdgOos0degm2pAv3xS5vx3yM8Iu2vij063mPRMTmA_IS0fIhJ_Q_8fkpGfWoANsw3i1hQh2KGytdF8bYql2uKMSxdrdHJ0Ioq7-Vl6SqnzndgqEjLYu2FrttkOniY3A-Zb6nAlujaSgZom25qhOoKHesElLEJj7WNcSaxDKXItEEDRZGOMnwkCY1GRmEsCAwFUiS0Z6SZFzmcE8pTIbVTu1NCIhJyYYzEz0guVA-BP70gbbc-802tmjHfLc3lH_evyKEzk8OFMLkmTZwf3CDgl-q2MvQnReSsEg | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwELZaOrQTfVD1XQ9dHSDYiTOiqhW0EDGAxIYc-wyoJUFtWPrrew6BPqRK3aIoiWyfct999t13hNxZjZTLWss4JIrxSHGmLEQMfLCRBYd57kS3HwedEX8ai3FZrF7UwgBAkXwGnrsszvJNplduq6zuxN8cJu6SPcE5F-tyrW9bKtI1zy2zuJqNqN4dDNsCAdERQb_lbd7_0UmlAJLHKok3Q1jnj7x4qzzx9McvdcZ_j_GQ1L5q9uhgi0ZHZAfSY1Itg0xa_sLvJyRuUwOwZGW7iCl1OGaoep1mb_N8tqAYxdL5At0MLcjyVmCWzlPqvAcGizTPFqXUdY2MHh-G9x1WNlVgM3RuOQO0TiM0MmlILXQAibEBF9oKnIlQTSUjbdBEvq_9CB8JmkYjpzAWJAYDIVLaU1JJsxTOCOWhVNrp3SVSIRZyaYzCzygukxZCf3hOam59Jsu1bsZkszQXf9y_JfudYb836XXj50ty4EzmUKIZXJEKzhWuEf7z5KYw-id4Va9f | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Workshops+on+Image+Processing+Theory%2C+Tools%2C+and+Applications&rft.atitle=A+deep-learning+based+algorithm+for+image+reconstruction+in+Compton+tomography&rft.au=Ayad%2C+Ishak&rft.au=Tarpau%2C+Cecilia&rft.au=Cebeiro%2C+Javier&rft.au=Nguyen%2C+Mai+K.&rft.date=2023-10-16&rft.pub=IEEE&rft.eissn=2154-512X&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FIPTA59101.2023.10320071&rft.externalDocID=10320071 |