FOX-Inspired Optimizer with Support Vector Regression Modeling of Water-Based Ca[CO.sub.3]-CuO-Si[O.sub.2] Trihybrid Nanofluids Thermal Properties: Comparative Study
Recent advances in artificial intelligence have spurred significant interest in accurately predicting the thermophysical properties and rheological behavior of nanofluids. This study introduces four support vector regression (SVR) models optimized using the Dragonfly Algorithm (DA) and the novel FOX...
Saved in:
| Published in | Croatica chemica acta Vol. 98; no. 1; p. 15 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Croatica Chemica Acta
01.01.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0011-1643 |
| DOI | 10.5562/cca4137 |
Cover
| Abstract | Recent advances in artificial intelligence have spurred significant interest in accurately predicting the thermophysical properties and rheological behavior of nanofluids. This study introduces four support vector regression (SVR) models optimized using the Dragonfly Algorithm (DA) and the novel FOX-inspired Optimization Algorithm (FOA). The models were evaluated with two cross-validation techniques, Leave-M-Out (LMO) and Holdout, to estimate the thermal properties of trihybrid nanofluids (THNFs). Trained and tested on a diverse dataset compiled from published experimental studies, these models exhibited exceptional predictive accuracy. Performance evaluation using metrics such as mean squared error (MSE) and Theil's [U.sup.2] revealed remarkably low error values, with all models achieving correlation coefficients (R) and determination coefficients ([R.sup.2]) exceeding 0.999. The results demonstrate the superior capability of these models to predict dynamic viscosity and thermal conductivity with high precision. This study's findings hold substantial industrial significance, particularly in energy, thermal management, and manufacturing sectors. Keywords: FOX-inspired optimization algorithm, Rheology, Support vector machine, Dragonfly algorithm, Trihybrid Nanofluid, Thermophysical Properties. |
|---|---|
| AbstractList | Recent advances in artificial intelligence have spurred significant interest in accurately predicting the thermophysical properties and rheological behavior of nanofluids. This study introduces four support vector regression (SVR) models optimized using the Dragonfly Algorithm (DA) and the novel FOX-inspired Optimization Algorithm (FOA). The models were evaluated with two cross-validation techniques, Leave-M-Out (LMO) and Holdout, to estimate the thermal properties of trihybrid nanofluids (THNFs). Trained and tested on a diverse dataset compiled from published experimental studies, these models exhibited exceptional predictive accuracy. Performance evaluation using metrics such as mean squared error (MSE) and Theil's [U.sup.2] revealed remarkably low error values, with all models achieving correlation coefficients (R) and determination coefficients ([R.sup.2]) exceeding 0.999. The results demonstrate the superior capability of these models to predict dynamic viscosity and thermal conductivity with high precision. This study's findings hold substantial industrial significance, particularly in energy, thermal management, and manufacturing sectors. Recent advances in artificial intelligence have spurred significant interest in accurately predicting the thermophysical properties and rheological behavior of nanofluids. This study introduces four support vector regression (SVR) models optimized using the Dragonfly Algorithm (DA) and the novel FOX-inspired Optimization Algorithm (FOA). The models were evaluated with two cross-validation techniques, Leave-M-Out (LMO) and Holdout, to estimate the thermal properties of trihybrid nanofluids (THNFs). Trained and tested on a diverse dataset compiled from published experimental studies, these models exhibited exceptional predictive accuracy. Performance evaluation using metrics such as mean squared error (MSE) and Theil's [U.sup.2] revealed remarkably low error values, with all models achieving correlation coefficients (R) and determination coefficients ([R.sup.2]) exceeding 0.999. The results demonstrate the superior capability of these models to predict dynamic viscosity and thermal conductivity with high precision. This study's findings hold substantial industrial significance, particularly in energy, thermal management, and manufacturing sectors. Keywords: FOX-inspired optimization algorithm, Rheology, Support vector machine, Dragonfly algorithm, Trihybrid Nanofluid, Thermophysical Properties. |
| Audience | Academic |
| Author | Madani, Achouak Hentabli, Mohamed Euldji, Amel Laidi, Maamar Hanini, Salah |
| Author_xml | – sequence: 1 fullname: Euldji, Amel – sequence: 2 fullname: Laidi, Maamar – sequence: 3 fullname: Hentabli, Mohamed – sequence: 4 fullname: Madani, Achouak – sequence: 5 fullname: Hanini, Salah |
| BookMark | eNptUc1KxDAYzEHBX3yFgOeuTdN2s960-AerFXdRQUS-JF92I21TklTR9_E9LejBg8xhmGFmLrNDNjrXISEHLJ0URZkdKQU549MNsp2mjCWszPkW2QnhNU2zIi_ENvk6rx-Tqy701qOmdR9taz_R03cb13Qx9L3zkd6jis7TO1x5DMG6jl47jY3tVtQZ-gARfXIKYRyo4KmqJ2GQE_6cVEOdLOzTj86e6dLb9Yf0VtMb6JxpBqsDXa7Rt9DQW-969NFiOKaVa3vwEO0b0kUc9Mce2TTQBNz_5V2yPD9bVpfJvL64qk7myaqciiSXRYFyhDJaogZRQsZlOuUGDXA9y8FwKWdcMVBCiWKmpMhnUkMJRakZ57vk8Gd2BQ2-2M646EG1NqiXE5GLLGesFGNq8k9qhMbWqvEAY0f_T-EbtQ9-0w |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 Croatica Chemica Acta |
| Copyright_xml | – notice: COPYRIGHT 2025 Croatica Chemica Acta |
| DOI | 10.5562/cca4137 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| ExternalDocumentID | A848241168 |
| GeographicLocations | Algeria |
| GeographicLocations_xml | – name: Algeria |
| GroupedDBID | 29F 2WC 5GY 5VS 6J9 8FE 8FG 8FH 8R4 8R5 AAFWJ ABDBF ABJCF ABUWG ACGFO ACIWK ACUHS ADBBV AEGXH AENEX AEUYN AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ BHPHI BKSAR BPHCQ BYOGL CCPQU D1I DU5 E3Z EBS EJD EOJEC ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC KB. KQ8 KWQ LK5 M7R ML- OBODZ OK1 OVT P2P PCBAR PDBOC PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC Q2X RNS TUS VP8 XSB ~8M |
| ID | FETCH-LOGICAL-g678-4b55ebebecfdbeda86a23b073fefa3d94af3bb93c1ac8c859cb849bda6a56d133 |
| ISSN | 0011-1643 |
| IngestDate | Wed Jul 23 16:54:01 EDT 2025 Tue Jul 22 03:43:54 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-g678-4b55ebebecfdbeda86a23b073fefa3d94af3bb93c1ac8c859cb849bda6a56d133 |
| ParticipantIDs | gale_infotracmisc_A848241168 gale_infotracacademiconefile_A848241168 |
| PublicationCentury | 2000 |
| PublicationDate | 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 20250101 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Croatica chemica acta |
| PublicationYear | 2025 |
| Publisher | Croatica Chemica Acta |
| Publisher_xml | – name: Croatica Chemica Acta |
| SSID | ssj0025458 |
| Score | 2.3654408 |
| Snippet | Recent advances in artificial intelligence have spurred significant interest in accurately predicting the thermophysical properties and rheological behavior of... |
| SourceID | gale |
| SourceType | Aggregation Database |
| StartPage | 15 |
| SubjectTerms | Algorithms Analysis Artificial intelligence Cancer Copper oxide Cuprite Electric properties Oncology, Experimental Thermal properties |
| Title | FOX-Inspired Optimizer with Support Vector Regression Modeling of Water-Based Ca[CO.sub.3]-CuO-Si[O.sub.2] Trihybrid Nanofluids Thermal Properties: Comparative Study |
| Volume | 98 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry issn: 0011-1643 databaseCode: HH5 dateStart: 19500101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: http://abc-chemistry.org/ omitProxy: true ssIdentifier: ssj0025458 providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library issn: 0011-1643 databaseCode: KQ8 dateStart: 19980101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html omitProxy: true ssIdentifier: ssj0025458 providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate issn: 0011-1643 databaseCode: ABDBF dateStart: 20071101 customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn omitProxy: true ssIdentifier: ssj0025458 providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals issn: 0011-1643 databaseCode: GX1 dateStart: 0 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php omitProxy: true ssIdentifier: ssj0025458 providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVPQU databaseName: East Europe, Central Europe Database issn: 0011-1643 databaseCode: BYOGL dateStart: 20090101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.proquest.com/eastcentraleurope omitProxy: false ssIdentifier: ssj0025458 providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central issn: 0011-1643 databaseCode: BENPR dateStart: 20090101 customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.proquest.com/central omitProxy: true ssIdentifier: ssj0025458 providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection issn: 0011-1643 databaseCode: 8FG dateStart: 20090101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.proquest.com/technologycollection1 omitProxy: true ssIdentifier: ssj0025458 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AAXxFOUFrQHKg6WIfGra26O2yggSg4NEKmqqlmvtzUkdmXiA_0_nPiTzHrXDwqHghRZ0Sa7Wu18nhmPv5kh5EWCu3P2QdpC3W4eSGYzCKUtxyP8eEyO6iKuRx-C2Ufv3dJfDgY_e6ylasNfJVd_zSv5H6niGMpVZcn-g2TbRXEAv6N88YoSxuuNZDydL-23uXpXjm7jHG_-dXaVljq2qtp1omttfarD8niM55rxmtftz1aG7PwZXc3SnqApE1YMe_4kntddsdw9_8COq7l9nOGgHnNwzFqU2cV3leWl9HIhV1UmvinaBur3lco6uFQ8bc2zi3uFxY_bKrZNVYSyULViwUp0xQJV1KO1EIfVSnypaQbROm0pIO8hE5nOL4I1tKTimWK_c53lfVRcwNqka9VhdqFbVlkRavkKvvZjHI5_LcbRbskUUcBJZktGqytaXqDLPTVaPWR_oFeraJ09et1y-OgHorgRz2jV9zvj2FIWI-Yx9HbGAbtFthw0IaMh2YomB5Np-3yv3kFqw6-3o3O01cqvzbrG7vc8mMU9ctc8etBI4-g-GaT5A3I7bjr-PSQ_-niiLZ6owhM1eKIaT7TDE23wRAtJe3iiMZw0aDo1WDoxSDqlLY5ohyNqcEQ7HL2hPRTRGkWPyGJ6uIhntmnjYZ-jJ2R73PdRU6CukIKnAlgAjsvRsshUgitC1A8u56GbjCFhCfPDhDMv5AIC8AMxdt3HZJgXefqE0AQgcHGiC3i8IvBDlwsGgQwEiFAK2CYv1fGeKcFuSkjApJjgbFXl7KyT4TbZ_e2feNBJ7-enN15oh9zpALtLhpuySp-hm7rhzw08fgFDsZw3 |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FOX-Inspired+Optimizer+with+Support+Vector+Regression+Modeling+of+Water-Based+Ca%5BCO.sub.3%5D-CuO-Si%5BO.sub.2%5D+Trihybrid+Nanofluids+Thermal+Properties%3A+Comparative+Study&rft.jtitle=Croatica+chemica+acta&rft.au=Euldji%2C+Amel&rft.au=Laidi%2C+Maamar&rft.au=Hentabli%2C+Mohamed&rft.au=Madani%2C+Achouak&rft.date=2025-01-01&rft.pub=Croatica+Chemica+Acta&rft.issn=0011-1643&rft.volume=98&rft.issue=1&rft.spage=15&rft_id=info:doi/10.5562%2Fcca4137&rft.externalDocID=A848241168 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0011-1643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0011-1643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0011-1643&client=summon |