FOX-Inspired Optimizer with Support Vector Regression Modeling of Water-Based Ca[CO.sub.3]-CuO-Si[O.sub.2] Trihybrid Nanofluids Thermal Properties: Comparative Study

Recent advances in artificial intelligence have spurred significant interest in accurately predicting the thermophysical properties and rheological behavior of nanofluids. This study introduces four support vector regression (SVR) models optimized using the Dragonfly Algorithm (DA) and the novel FOX...

Full description

Saved in:
Bibliographic Details
Published inCroatica chemica acta Vol. 98; no. 1; p. 15
Main Authors Euldji, Amel, Laidi, Maamar, Hentabli, Mohamed, Madani, Achouak, Hanini, Salah
Format Journal Article
LanguageEnglish
Published Croatica Chemica Acta 01.01.2025
Subjects
Online AccessGet full text
ISSN0011-1643
DOI10.5562/cca4137

Cover

Abstract Recent advances in artificial intelligence have spurred significant interest in accurately predicting the thermophysical properties and rheological behavior of nanofluids. This study introduces four support vector regression (SVR) models optimized using the Dragonfly Algorithm (DA) and the novel FOX-inspired Optimization Algorithm (FOA). The models were evaluated with two cross-validation techniques, Leave-M-Out (LMO) and Holdout, to estimate the thermal properties of trihybrid nanofluids (THNFs). Trained and tested on a diverse dataset compiled from published experimental studies, these models exhibited exceptional predictive accuracy. Performance evaluation using metrics such as mean squared error (MSE) and Theil's [U.sup.2] revealed remarkably low error values, with all models achieving correlation coefficients (R) and determination coefficients ([R.sup.2]) exceeding 0.999. The results demonstrate the superior capability of these models to predict dynamic viscosity and thermal conductivity with high precision. This study's findings hold substantial industrial significance, particularly in energy, thermal management, and manufacturing sectors. Keywords: FOX-inspired optimization algorithm, Rheology, Support vector machine, Dragonfly algorithm, Trihybrid Nanofluid, Thermophysical Properties.
AbstractList Recent advances in artificial intelligence have spurred significant interest in accurately predicting the thermophysical properties and rheological behavior of nanofluids. This study introduces four support vector regression (SVR) models optimized using the Dragonfly Algorithm (DA) and the novel FOX-inspired Optimization Algorithm (FOA). The models were evaluated with two cross-validation techniques, Leave-M-Out (LMO) and Holdout, to estimate the thermal properties of trihybrid nanofluids (THNFs). Trained and tested on a diverse dataset compiled from published experimental studies, these models exhibited exceptional predictive accuracy. Performance evaluation using metrics such as mean squared error (MSE) and Theil's [U.sup.2] revealed remarkably low error values, with all models achieving correlation coefficients (R) and determination coefficients ([R.sup.2]) exceeding 0.999. The results demonstrate the superior capability of these models to predict dynamic viscosity and thermal conductivity with high precision. This study's findings hold substantial industrial significance, particularly in energy, thermal management, and manufacturing sectors.
Recent advances in artificial intelligence have spurred significant interest in accurately predicting the thermophysical properties and rheological behavior of nanofluids. This study introduces four support vector regression (SVR) models optimized using the Dragonfly Algorithm (DA) and the novel FOX-inspired Optimization Algorithm (FOA). The models were evaluated with two cross-validation techniques, Leave-M-Out (LMO) and Holdout, to estimate the thermal properties of trihybrid nanofluids (THNFs). Trained and tested on a diverse dataset compiled from published experimental studies, these models exhibited exceptional predictive accuracy. Performance evaluation using metrics such as mean squared error (MSE) and Theil's [U.sup.2] revealed remarkably low error values, with all models achieving correlation coefficients (R) and determination coefficients ([R.sup.2]) exceeding 0.999. The results demonstrate the superior capability of these models to predict dynamic viscosity and thermal conductivity with high precision. This study's findings hold substantial industrial significance, particularly in energy, thermal management, and manufacturing sectors. Keywords: FOX-inspired optimization algorithm, Rheology, Support vector machine, Dragonfly algorithm, Trihybrid Nanofluid, Thermophysical Properties.
Audience Academic
Author Madani, Achouak
Hentabli, Mohamed
Euldji, Amel
Laidi, Maamar
Hanini, Salah
Author_xml – sequence: 1
  fullname: Euldji, Amel
– sequence: 2
  fullname: Laidi, Maamar
– sequence: 3
  fullname: Hentabli, Mohamed
– sequence: 4
  fullname: Madani, Achouak
– sequence: 5
  fullname: Hanini, Salah
BookMark eNptUc1KxDAYzEHBX3yFgOeuTdN2s960-AerFXdRQUS-JF92I21TklTR9_E9LejBg8xhmGFmLrNDNjrXISEHLJ0URZkdKQU549MNsp2mjCWszPkW2QnhNU2zIi_ENvk6rx-Tqy701qOmdR9taz_R03cb13Qx9L3zkd6jis7TO1x5DMG6jl47jY3tVtQZ-gARfXIKYRyo4KmqJ2GQE_6cVEOdLOzTj86e6dLb9Yf0VtMb6JxpBqsDXa7Rt9DQW-969NFiOKaVa3vwEO0b0kUc9Mce2TTQBNz_5V2yPD9bVpfJvL64qk7myaqciiSXRYFyhDJaogZRQsZlOuUGDXA9y8FwKWdcMVBCiWKmpMhnUkMJRakZ57vk8Gd2BQ2-2M646EG1NqiXE5GLLGesFGNq8k9qhMbWqvEAY0f_T-EbtQ9-0w
ContentType Journal Article
Copyright COPYRIGHT 2025 Croatica Chemica Acta
Copyright_xml – notice: COPYRIGHT 2025 Croatica Chemica Acta
DOI 10.5562/cca4137
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
ExternalDocumentID A848241168
GeographicLocations Algeria
GeographicLocations_xml – name: Algeria
GroupedDBID 29F
2WC
5GY
5VS
6J9
8FE
8FG
8FH
8R4
8R5
AAFWJ
ABDBF
ABJCF
ABUWG
ACGFO
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AEUYN
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
BPHCQ
BYOGL
CCPQU
D1I
DU5
E3Z
EBS
EJD
EOJEC
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
KB.
KQ8
KWQ
LK5
M7R
ML-
OBODZ
OK1
OVT
P2P
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
Q2X
RNS
TUS
VP8
XSB
~8M
ID FETCH-LOGICAL-g678-4b55ebebecfdbeda86a23b073fefa3d94af3bb93c1ac8c859cb849bda6a56d133
ISSN 0011-1643
IngestDate Wed Jul 23 16:54:01 EDT 2025
Tue Jul 22 03:43:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g678-4b55ebebecfdbeda86a23b073fefa3d94af3bb93c1ac8c859cb849bda6a56d133
ParticipantIDs gale_infotracmisc_A848241168
gale_infotracacademiconefile_A848241168
PublicationCentury 2000
PublicationDate 20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 20250101
  day: 01
PublicationDecade 2020
PublicationTitle Croatica chemica acta
PublicationYear 2025
Publisher Croatica Chemica Acta
Publisher_xml – name: Croatica Chemica Acta
SSID ssj0025458
Score 2.3654408
Snippet Recent advances in artificial intelligence have spurred significant interest in accurately predicting the thermophysical properties and rheological behavior of...
SourceID gale
SourceType Aggregation Database
StartPage 15
SubjectTerms Algorithms
Analysis
Artificial intelligence
Cancer
Copper oxide
Cuprite
Electric properties
Oncology, Experimental
Thermal properties
Title FOX-Inspired Optimizer with Support Vector Regression Modeling of Water-Based Ca[CO.sub.3]-CuO-Si[O.sub.2] Trihybrid Nanofluids Thermal Properties: Comparative Study
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  issn: 0011-1643
  databaseCode: HH5
  dateStart: 19500101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://abc-chemistry.org/
  omitProxy: true
  ssIdentifier: ssj0025458
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  issn: 0011-1643
  databaseCode: KQ8
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  omitProxy: true
  ssIdentifier: ssj0025458
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 0011-1643
  databaseCode: ABDBF
  dateStart: 20071101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0025458
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  issn: 0011-1643
  databaseCode: GX1
  dateStart: 0
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  omitProxy: true
  ssIdentifier: ssj0025458
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVPQU
  databaseName: East Europe, Central Europe Database
  issn: 0011-1643
  databaseCode: BYOGL
  dateStart: 20090101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.proquest.com/eastcentraleurope
  omitProxy: false
  ssIdentifier: ssj0025458
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  issn: 0011-1643
  databaseCode: BENPR
  dateStart: 20090101
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.proquest.com/central
  omitProxy: true
  ssIdentifier: ssj0025458
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  issn: 0011-1643
  databaseCode: 8FG
  dateStart: 20090101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.proquest.com/technologycollection1
  omitProxy: true
  ssIdentifier: ssj0025458
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AAXxFOUFrQHKg6WIfGra26O2yggSg4NEKmqqlmvtzUkdmXiA_0_nPiTzHrXDwqHghRZ0Sa7Wu18nhmPv5kh5EWCu3P2QdpC3W4eSGYzCKUtxyP8eEyO6iKuRx-C2Ufv3dJfDgY_e6ylasNfJVd_zSv5H6niGMpVZcn-g2TbRXEAv6N88YoSxuuNZDydL-23uXpXjm7jHG_-dXaVljq2qtp1omttfarD8niM55rxmtftz1aG7PwZXc3SnqApE1YMe_4kntddsdw9_8COq7l9nOGgHnNwzFqU2cV3leWl9HIhV1UmvinaBur3lco6uFQ8bc2zi3uFxY_bKrZNVYSyULViwUp0xQJV1KO1EIfVSnypaQbROm0pIO8hE5nOL4I1tKTimWK_c53lfVRcwNqka9VhdqFbVlkRavkKvvZjHI5_LcbRbskUUcBJZktGqytaXqDLPTVaPWR_oFeraJ09et1y-OgHorgRz2jV9zvj2FIWI-Yx9HbGAbtFthw0IaMh2YomB5Np-3yv3kFqw6-3o3O01cqvzbrG7vc8mMU9ctc8etBI4-g-GaT5A3I7bjr-PSQ_-niiLZ6owhM1eKIaT7TDE23wRAtJe3iiMZw0aDo1WDoxSDqlLY5ohyNqcEQ7HL2hPRTRGkWPyGJ6uIhntmnjYZ-jJ2R73PdRU6CukIKnAlgAjsvRsshUgitC1A8u56GbjCFhCfPDhDMv5AIC8AMxdt3HZJgXefqE0AQgcHGiC3i8IvBDlwsGgQwEiFAK2CYv1fGeKcFuSkjApJjgbFXl7KyT4TbZ_e2feNBJ7-enN15oh9zpALtLhpuySp-hm7rhzw08fgFDsZw3
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FOX-Inspired+Optimizer+with+Support+Vector+Regression+Modeling+of+Water-Based+Ca%5BCO.sub.3%5D-CuO-Si%5BO.sub.2%5D+Trihybrid+Nanofluids+Thermal+Properties%3A+Comparative+Study&rft.jtitle=Croatica+chemica+acta&rft.au=Euldji%2C+Amel&rft.au=Laidi%2C+Maamar&rft.au=Hentabli%2C+Mohamed&rft.au=Madani%2C+Achouak&rft.date=2025-01-01&rft.pub=Croatica+Chemica+Acta&rft.issn=0011-1643&rft.volume=98&rft.issue=1&rft.spage=15&rft_id=info:doi/10.5562%2Fcca4137&rft.externalDocID=A848241168
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0011-1643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0011-1643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0011-1643&client=summon