Multilevel Pain Assessment with Functional Near-Infrared Spectroscopy: Evaluating ΔIHBO/I[sub.2] and ΔIHHB/I Measures for Comprehensive Analysis

Assessing pain in non-verbal patients is challenging, often depending on clinical judgment which can be unreliable due to fluctuations in vital signs caused by underlying medical conditions. To date, there is a notable absence of objective diagnostic tests to aid healthcare practitioners in pain ass...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 2
Main Authors Khan, Muhammad Umar, Sousani, Maryam, Hirachan, Niraj, Joseph, Calvin, Ghahramani, Maryam, Chetty, Girija, Goecke, Roland, Fernandez-Rojas, Raul
Format Journal Article
LanguageEnglish
Published MDPI AG 01.01.2024
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s24020458

Cover

Abstract Assessing pain in non-verbal patients is challenging, often depending on clinical judgment which can be unreliable due to fluctuations in vital signs caused by underlying medical conditions. To date, there is a notable absence of objective diagnostic tests to aid healthcare practitioners in pain assessment, especially affecting critically-ill or advanced dementia patients. Neurophysiological information, i.e., functional near-infrared spectroscopy (fNIRS) or electroencephalogram (EEG), unveils the brain’s active regions and patterns, revealing the neural mechanisms behind the experience and processing of pain. This study focuses on assessing pain via the analysis of fNIRS signals combined with machine learning, utilising multiple fNIRS measures including oxygenated haemoglobin (ΔHBO[sub.2]) and deoxygenated haemoglobin (ΔHHB). Initially, a channel selection process filters out highly contaminated channels with high-frequency and high-amplitude artifacts from the 24-channel fNIRS data. The remaining channels are then preprocessed by applying a low-pass filter and common average referencing to remove cardio-respiratory artifacts and common gain noise, respectively. Subsequently, the preprocessed channels are averaged to create a single time series vector for both ΔHBO[sub.2] and ΔHHB measures. From each measure, ten statistical features are extracted and fusion occurs at the feature level, resulting in a fused feature vector. The most relevant features, selected using the Minimum Redundancy Maximum Relevance method, are passed to a Support Vector Machines classifier. Using leave-one-subject-out cross validation, the system achieved an accuracy of 68.51%±9.02% in a multi-class task (No Pain, Low Pain, and High Pain) using a fusion of ΔHBO[sub.2] and ΔHHB. These two measures collectively demonstrated superior performance compared to when they were used independently. This study contributes to the pursuit of an objective pain assessment and proposes a potential biomarker for human pain using fNIRS.
AbstractList Assessing pain in non-verbal patients is challenging, often depending on clinical judgment which can be unreliable due to fluctuations in vital signs caused by underlying medical conditions. To date, there is a notable absence of objective diagnostic tests to aid healthcare practitioners in pain assessment, especially affecting critically-ill or advanced dementia patients. Neurophysiological information, i.e., functional near-infrared spectroscopy (fNIRS) or electroencephalogram (EEG), unveils the brain’s active regions and patterns, revealing the neural mechanisms behind the experience and processing of pain. This study focuses on assessing pain via the analysis of fNIRS signals combined with machine learning, utilising multiple fNIRS measures including oxygenated haemoglobin (ΔHBO[sub.2]) and deoxygenated haemoglobin (ΔHHB). Initially, a channel selection process filters out highly contaminated channels with high-frequency and high-amplitude artifacts from the 24-channel fNIRS data. The remaining channels are then preprocessed by applying a low-pass filter and common average referencing to remove cardio-respiratory artifacts and common gain noise, respectively. Subsequently, the preprocessed channels are averaged to create a single time series vector for both ΔHBO[sub.2] and ΔHHB measures. From each measure, ten statistical features are extracted and fusion occurs at the feature level, resulting in a fused feature vector. The most relevant features, selected using the Minimum Redundancy Maximum Relevance method, are passed to a Support Vector Machines classifier. Using leave-one-subject-out cross validation, the system achieved an accuracy of 68.51%±9.02% in a multi-class task (No Pain, Low Pain, and High Pain) using a fusion of ΔHBO[sub.2] and ΔHHB. These two measures collectively demonstrated superior performance compared to when they were used independently. This study contributes to the pursuit of an objective pain assessment and proposes a potential biomarker for human pain using fNIRS.
Audience Academic
Author Ghahramani, Maryam
Chetty, Girija
Khan, Muhammad Umar
Sousani, Maryam
Hirachan, Niraj
Joseph, Calvin
Fernandez-Rojas, Raul
Goecke, Roland
Author_xml – sequence: 1
  fullname: Khan, Muhammad Umar
– sequence: 2
  fullname: Sousani, Maryam
– sequence: 3
  fullname: Hirachan, Niraj
– sequence: 4
  fullname: Joseph, Calvin
– sequence: 5
  fullname: Ghahramani, Maryam
– sequence: 6
  fullname: Chetty, Girija
– sequence: 7
  fullname: Goecke, Roland
– sequence: 8
  fullname: Fernandez-Rojas, Raul
BookMark eNptkMFOwkAQhjcGEwE9-AabeC5sd9tu6w0ISBMQE7kZQ6bbWVhTtqTbYngN43P5TDbqgYP5D_Pnzzczyd8jHVtaJOTWZwMhEjZ0PGCcBWF8Qbp-wAMv5px1zvwV6Tn3xhgXQsRd8rFsitoUeMSCPoGxdOQcOrdHW9N3U-_orLGqNqWFgj4iVF5qdQUV5vT5gKquSqfKw-meTo9QNFAbu6Vfn-l8vBqmL67JBvyVgs1_svl4mNIlgmsqdFSXFZ2U-0OFO7TOHJGO2h8nZ9w1udRQOLz5m32ynk3Xk7m3WD2kk9HC20aSeyIPZSB4ppMs475SAYDUTEaRhkRIHgmlZSgFCJQKIkgCP-MywDxkMc8Fy0Wf3P2e3UKBG2N1WVeg9sapzUjGLOFREvGWGvxDtcpxb1TbvW7LO1_4BioxeTc
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
DOI 10.3390/s24020458
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID A780926962
GeographicLocations Australia
GeographicLocations_xml – name: Australia
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PMFND
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ID FETCH-LOGICAL-g672-3d57432bf9bb21cc4aa7f0766fa937263cf7573a3e7ca6a941b274ed5082d30d3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Tue Jun 17 22:23:09 EDT 2025
Tue Jun 10 21:15:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g672-3d57432bf9bb21cc4aa7f0766fa937263cf7573a3e7ca6a941b274ed5082d30d3
ParticipantIDs gale_infotracmisc_A780926962
gale_infotracacademiconefile_A780926962
PublicationCentury 2000
PublicationDate 20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 20240101
  day: 01
PublicationDecade 2020
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
SSID ssj0023338
Score 2.4108188
Snippet Assessing pain in non-verbal patients is challenging, often depending on clinical judgment which can be unreliable due to fluctuations in vital signs caused by...
SourceID gale
SourceType Aggregation Database
SubjectTerms Health aspects
Infrared spectroscopy
Neurophysiology
Stress (Psychology)
Title Multilevel Pain Assessment with Functional Near-Infrared Spectroscopy: Evaluating ΔIHBO/I[sub.2] and ΔIHHB/I Measures for Comprehensive Analysis
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1qvehB_MRqLXsQPMUmu9lNIoi00tIKrSItCCKyu0nqoaSaVrB_Q_xd_iZnklha8OA1ye5hd7Lz3szsG0JORQBOTjiRxeDkA4KifEsLHysAAhFIJw6Vyaot-rIzdG8exEOJ_PbYLBZw-ie1w35Sw3R8_vE2v4If_hIZJ1D2-hQzBJjwWyPr4JAYGnfPXSQTGOdZQ2u802WBP7RzgaHVocWJvORb2ttkqwCFtJHv4g4pRcku2VySCtwjn9lN2TGW-NA7YPO0sZDUpBhLpW1wUHlcj_bBeq1uEqdYXE6xw_wMNSsnr_ML2irUvZMR_f7qdpq39e4jtsFiT1QlYfas06x3aS-PHU4pgFqKh0YaveS17vRXx2SfDNqtwXXHKvopWCPpMYuHAuAC03GgNXOMcZXyYtuTMlaAUZjkJvaExxWPPKOkClxHA2WNQoBwLOR2yA9IOZkk0SGhgbDd0MaMjcfdkAkFM8eMaePrWBvHr5AzXM1n3LZZqowqav1hNMpNPTc83w6YDCSrkOrKl2DcZun10b8nOiYbDPBGHh2pkvIsfY9OAC_MdI2sN1v9u_taxrdrmW38AF6Ywlk
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multilevel+Pain+Assessment+with+Functional+Near-Infrared+Spectroscopy%3A+Evaluating+%CE%94IHBO%2FI%5Bsub.2%5D+and+%CE%94IHHB%2FI+Measures+for+Comprehensive+Analysis&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Khan%2C+Muhammad+Umar&rft.au=Sousani%2C+Maryam&rft.au=Hirachan%2C+Niraj&rft.au=Joseph%2C+Calvin&rft.date=2024-01-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=2&rft_id=info:doi/10.3390%2Fs24020458&rft.externalDocID=A780926962
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon