Multilevel Pain Assessment with Functional Near-Infrared Spectroscopy: Evaluating ΔIHBO/I[sub.2] and ΔIHHB/I Measures for Comprehensive Analysis
Assessing pain in non-verbal patients is challenging, often depending on clinical judgment which can be unreliable due to fluctuations in vital signs caused by underlying medical conditions. To date, there is a notable absence of objective diagnostic tests to aid healthcare practitioners in pain ass...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 2 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s24020458 |
Cover
Abstract | Assessing pain in non-verbal patients is challenging, often depending on clinical judgment which can be unreliable due to fluctuations in vital signs caused by underlying medical conditions. To date, there is a notable absence of objective diagnostic tests to aid healthcare practitioners in pain assessment, especially affecting critically-ill or advanced dementia patients. Neurophysiological information, i.e., functional near-infrared spectroscopy (fNIRS) or electroencephalogram (EEG), unveils the brain’s active regions and patterns, revealing the neural mechanisms behind the experience and processing of pain. This study focuses on assessing pain via the analysis of fNIRS signals combined with machine learning, utilising multiple fNIRS measures including oxygenated haemoglobin (ΔHBO[sub.2]) and deoxygenated haemoglobin (ΔHHB). Initially, a channel selection process filters out highly contaminated channels with high-frequency and high-amplitude artifacts from the 24-channel fNIRS data. The remaining channels are then preprocessed by applying a low-pass filter and common average referencing to remove cardio-respiratory artifacts and common gain noise, respectively. Subsequently, the preprocessed channels are averaged to create a single time series vector for both ΔHBO[sub.2] and ΔHHB measures. From each measure, ten statistical features are extracted and fusion occurs at the feature level, resulting in a fused feature vector. The most relevant features, selected using the Minimum Redundancy Maximum Relevance method, are passed to a Support Vector Machines classifier. Using leave-one-subject-out cross validation, the system achieved an accuracy of 68.51%±9.02% in a multi-class task (No Pain, Low Pain, and High Pain) using a fusion of ΔHBO[sub.2] and ΔHHB. These two measures collectively demonstrated superior performance compared to when they were used independently. This study contributes to the pursuit of an objective pain assessment and proposes a potential biomarker for human pain using fNIRS. |
---|---|
AbstractList | Assessing pain in non-verbal patients is challenging, often depending on clinical judgment which can be unreliable due to fluctuations in vital signs caused by underlying medical conditions. To date, there is a notable absence of objective diagnostic tests to aid healthcare practitioners in pain assessment, especially affecting critically-ill or advanced dementia patients. Neurophysiological information, i.e., functional near-infrared spectroscopy (fNIRS) or electroencephalogram (EEG), unveils the brain’s active regions and patterns, revealing the neural mechanisms behind the experience and processing of pain. This study focuses on assessing pain via the analysis of fNIRS signals combined with machine learning, utilising multiple fNIRS measures including oxygenated haemoglobin (ΔHBO[sub.2]) and deoxygenated haemoglobin (ΔHHB). Initially, a channel selection process filters out highly contaminated channels with high-frequency and high-amplitude artifacts from the 24-channel fNIRS data. The remaining channels are then preprocessed by applying a low-pass filter and common average referencing to remove cardio-respiratory artifacts and common gain noise, respectively. Subsequently, the preprocessed channels are averaged to create a single time series vector for both ΔHBO[sub.2] and ΔHHB measures. From each measure, ten statistical features are extracted and fusion occurs at the feature level, resulting in a fused feature vector. The most relevant features, selected using the Minimum Redundancy Maximum Relevance method, are passed to a Support Vector Machines classifier. Using leave-one-subject-out cross validation, the system achieved an accuracy of 68.51%±9.02% in a multi-class task (No Pain, Low Pain, and High Pain) using a fusion of ΔHBO[sub.2] and ΔHHB. These two measures collectively demonstrated superior performance compared to when they were used independently. This study contributes to the pursuit of an objective pain assessment and proposes a potential biomarker for human pain using fNIRS. |
Audience | Academic |
Author | Ghahramani, Maryam Chetty, Girija Khan, Muhammad Umar Sousani, Maryam Hirachan, Niraj Joseph, Calvin Fernandez-Rojas, Raul Goecke, Roland |
Author_xml | – sequence: 1 fullname: Khan, Muhammad Umar – sequence: 2 fullname: Sousani, Maryam – sequence: 3 fullname: Hirachan, Niraj – sequence: 4 fullname: Joseph, Calvin – sequence: 5 fullname: Ghahramani, Maryam – sequence: 6 fullname: Chetty, Girija – sequence: 7 fullname: Goecke, Roland – sequence: 8 fullname: Fernandez-Rojas, Raul |
BookMark | eNptkMFOwkAQhjcGEwE9-AabeC5sd9tu6w0ISBMQE7kZQ6bbWVhTtqTbYngN43P5TDbqgYP5D_Pnzzczyd8jHVtaJOTWZwMhEjZ0PGCcBWF8Qbp-wAMv5px1zvwV6Tn3xhgXQsRd8rFsitoUeMSCPoGxdOQcOrdHW9N3U-_orLGqNqWFgj4iVF5qdQUV5vT5gKquSqfKw-meTo9QNFAbu6Vfn-l8vBqmL67JBvyVgs1_svl4mNIlgmsqdFSXFZ2U-0OFO7TOHJGO2h8nZ9w1udRQOLz5m32ynk3Xk7m3WD2kk9HC20aSeyIPZSB4ppMs475SAYDUTEaRhkRIHgmlZSgFCJQKIkgCP-MywDxkMc8Fy0Wf3P2e3UKBG2N1WVeg9sapzUjGLOFREvGWGvxDtcpxb1TbvW7LO1_4BioxeTc |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG |
DOI | 10.3390/s24020458 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | A780926962 |
GeographicLocations | Australia |
GeographicLocations_xml | – name: Australia |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 P2P P62 PHGZM PHGZT PIMPY PMFND PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M |
ID | FETCH-LOGICAL-g672-3d57432bf9bb21cc4aa7f0766fa937263cf7573a3e7ca6a941b274ed5082d30d3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Tue Jun 17 22:23:09 EDT 2025 Tue Jun 10 21:15:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g672-3d57432bf9bb21cc4aa7f0766fa937263cf7573a3e7ca6a941b274ed5082d30d3 |
ParticipantIDs | gale_infotracmisc_A780926962 gale_infotracacademiconefile_A780926962 |
PublicationCentury | 2000 |
PublicationDate | 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 20240101 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
SSID | ssj0023338 |
Score | 2.4108188 |
Snippet | Assessing pain in non-verbal patients is challenging, often depending on clinical judgment which can be unreliable due to fluctuations in vital signs caused by... |
SourceID | gale |
SourceType | Aggregation Database |
SubjectTerms | Health aspects Infrared spectroscopy Neurophysiology Stress (Psychology) |
Title | Multilevel Pain Assessment with Functional Near-Infrared Spectroscopy: Evaluating ΔIHBO/I[sub.2] and ΔIHHB/I Measures for Comprehensive Analysis |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1qvehB_MRqLXsQPMUmu9lNIoi00tIKrSItCCKyu0nqoaSaVrB_Q_xd_iZnklha8OA1ye5hd7Lz3szsG0JORQBOTjiRxeDkA4KifEsLHysAAhFIJw6Vyaot-rIzdG8exEOJ_PbYLBZw-ie1w35Sw3R8_vE2v4If_hIZJ1D2-hQzBJjwWyPr4JAYGnfPXSQTGOdZQ2u802WBP7RzgaHVocWJvORb2ttkqwCFtJHv4g4pRcku2VySCtwjn9lN2TGW-NA7YPO0sZDUpBhLpW1wUHlcj_bBeq1uEqdYXE6xw_wMNSsnr_ML2irUvZMR_f7qdpq39e4jtsFiT1QlYfas06x3aS-PHU4pgFqKh0YaveS17vRXx2SfDNqtwXXHKvopWCPpMYuHAuAC03GgNXOMcZXyYtuTMlaAUZjkJvaExxWPPKOkClxHA2WNQoBwLOR2yA9IOZkk0SGhgbDd0MaMjcfdkAkFM8eMaePrWBvHr5AzXM1n3LZZqowqav1hNMpNPTc83w6YDCSrkOrKl2DcZun10b8nOiYbDPBGHh2pkvIsfY9OAC_MdI2sN1v9u_taxrdrmW38AF6Ywlk |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multilevel+Pain+Assessment+with+Functional+Near-Infrared+Spectroscopy%3A+Evaluating+%CE%94IHBO%2FI%5Bsub.2%5D+and+%CE%94IHHB%2FI+Measures+for+Comprehensive+Analysis&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Khan%2C+Muhammad+Umar&rft.au=Sousani%2C+Maryam&rft.au=Hirachan%2C+Niraj&rft.au=Joseph%2C+Calvin&rft.date=2024-01-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=2&rft_id=info:doi/10.3390%2Fs24020458&rft.externalDocID=A780926962 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |