Reaction kinetics and mechanism of catalyzed hydrolysis of waste PET using solid acid catalyst in supercritical CO2
Hydrolysis of waste poly(ethylene terphthalate) (PET) using solid acid catalyst in SCCO2 is presented in this work for the first time. The mechanism of PET chains scission was proved to be a combination of chain end and random chain scission by Fourier transform ‐ infrared spectroscopy (FT‐IR) and t...
Saved in:
Published in | AIChE journal Vol. 61; no. 1; pp. 200 - 214 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
01.01.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0001-1541 1547-5905 |
DOI | 10.1002/aic.14632 |
Cover
Abstract | Hydrolysis of waste poly(ethylene terphthalate) (PET) using solid acid catalyst in SCCO2 is presented in this work for the first time. The mechanism of PET chains scission was proved to be a combination of chain end and random chain scission by Fourier transform ‐ infrared spectroscopy (FT‐IR) and titration analysis. A new reaction kinetics model of PET hydrolysis in SCCO2 was setup by introducing the Arrhenius equation into an ordinary reaction rate equation, the frequency factor and apparent activation energy were expressed in terms of temperature and CO2 pressure, respectively. With this reaction kinetics model, the effects of temperature, and pressure were investigated. An interesting mechanism was proposed to describe the reaction process that both water molecules and hydroniums were carried and penetrated into the amorphous regions of the swollen PET by SCCO2, subsequently hydrolysis reaction preferentially took place in the amorphous regions of both surface and bulk of PET matrix. © 2014 American Institute of Chemical Engineers AIChE J, 61: 200–214, 2015 |
---|---|
AbstractList | Hydrolysis of waste poly(ethylene terphthalate) (PET) using solid acid catalyst in SCCO2 is presented in this work for the first time. The mechanism of PET chains scission was proved to be a combination of chain end and random chain scission by Fourier transform ‐ infrared spectroscopy (FT‐IR) and titration analysis. A new reaction kinetics model of PET hydrolysis in SCCO2 was setup by introducing the Arrhenius equation into an ordinary reaction rate equation, the frequency factor and apparent activation energy were expressed in terms of temperature and CO2 pressure, respectively. With this reaction kinetics model, the effects of temperature, and pressure were investigated. An interesting mechanism was proposed to describe the reaction process that both water molecules and hydroniums were carried and penetrated into the amorphous regions of the swollen PET by SCCO2, subsequently hydrolysis reaction preferentially took place in the amorphous regions of both surface and bulk of PET matrix. © 2014 American Institute of Chemical Engineers AIChE J, 61: 200–214, 2015 |
Author | Guo, Wen-Ze Li, Xue-Kun Lu, Hui Cao, Gui-Ping Shi, Yun-Hai Liu, Hong-Lai |
Author_xml | – sequence: 1 givenname: Xue-Kun surname: Li fullname: Li, Xue-Kun organization: UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, People's Republic of China – sequence: 2 givenname: Hui surname: Lu fullname: Lu, Hui organization: UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, People's Republic of China – sequence: 3 givenname: Wen-Ze surname: Guo fullname: Guo, Wen-Ze organization: UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, People's Republic of China – sequence: 4 givenname: Gui-Ping surname: Cao fullname: Cao, Gui-Ping email: gpcao@ecust.edu.cn organization: UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, People's Republic of China – sequence: 5 givenname: Hong-Lai surname: Liu fullname: Liu, Hong-Lai organization: UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, People's Republic of China – sequence: 6 givenname: Yun-Hai surname: Shi fullname: Shi, Yun-Hai organization: UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, People's Republic of China |
BookMark | eNo9kN1qwjAcxcNwMHW72BvkBapJ2iTNpRSngswxHBu7CWmaamZNpam47ukXdezm_3Hgd-CcAei52hkAHjEaYYTIWFk9wgmLyQ3oY5rwiApEe6CPEMJREPAdGHj_FT7CU9IH_tUo3drawZ11prXaQ-UKuDd6q5z1e1iXUKtWVd2PKeC2K5q66rz1Z_2kfGvgy3QNj966DfR1ZQuodBhXxLfQOuiPB9PoxgZzVcFsRe7Bbakqbx7-9hC8PU3X2TxarmaLbLKMNgliJKKcxQwhIVLMckIRwXGakyTnjBtGc06UoMIIhZMi4TwvlBElTggzBKWlJiwegvHV92Qr08lDY_eq6SRG8lyVDFXJS1VyssguRyCiK2FDsu9_QjU7yXjMqXx_nkkuPsUHonM5j38BiGRu0w |
ContentType | Journal Article |
Copyright | 2014 American Institute of Chemical Engineers |
Copyright_xml | – notice: 2014 American Institute of Chemical Engineers |
DBID | BSCLL |
DOI | 10.1002/aic.14632 |
DatabaseName | Istex |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1547-5905 |
EndPage | 214 |
ExternalDocumentID | AIC14632 ark_67375_WNG_79Z9X05H_H |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) funderid: 20676031; 20876051 |
GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6TJ 702 7PT 7XC 8-0 8-1 8-3 8-4 8-5 88I 8FE 8FG 8FH 8G5 8R4 8R5 8UM 8WZ 930 9M8 A03 A6W AAESR AAEVG AAHQN AAIHA AAIKC AAMMB AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDEX ABDPE ABEML ABIJN ABJCF ABJIA ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYN AEUYR AEYWJ AFBPY AFFPM AFGKR AFKRA AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BLYAC BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DWQXO EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PDBOC PHGZM PHGZT PQGLB PQQKQ PRG PROAC PTHSS PUEGO PYCSY Q.N Q11 Q2X QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 S0X SAMSI SUPJJ TAE TN5 TUS UB1 UHS V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZE2 ZZTAW ~02 ~IA ~KM ~WT 3V. AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RBB RWI UAO WRC WSB |
ID | FETCH-LOGICAL-g4062-576360099816b2502138b24b767e65b72a959e9a14d477bdae9f1426e208fc263 |
IEDL.DBID | DR2 |
ISSN | 0001-1541 |
IngestDate | Wed Jan 22 16:39:20 EST 2025 Sun Sep 21 06:21:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g4062-576360099816b2502138b24b767e65b72a959e9a14d477bdae9f1426e208fc263 |
Notes | istex:8B127C8A4CD66EA8FDCC4882F7C2E190F53CC35E ark:/67375/WNG-79Z9X05H-H ArticleID:AIC14632 National Natural Science Foundation of China (NSFC) - No. 20676031; No. 20876051 |
PageCount | 15 |
ParticipantIDs | wiley_primary_10_1002_aic_14632_AIC14632 istex_primary_ark_67375_WNG_79Z9X05H_H |
PublicationCentury | 2000 |
PublicationDate | January 2015 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: January 2015 |
PublicationDecade | 2010 |
PublicationTitle | AIChE journal |
PublicationTitleAlternate | AIChE J |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Viana ME, Riul A, Carvalho GM, Rubira AF, Muniz EC. Chemical recycling of PET by catalyzed glycolysis: kinetics of the heterogeneous reaction. Chem Eng J. 2011;173:210-219. Genta M, Yano F, Kondo Y, Matsubara W, Oomoto S. Development of chemical recycling process for post-consumer PET bottle by methanolysis in supercritical methanol. Tech Rev. 2003;40:1-4. Li D-C, Liu T, Zhao L, Yuan W-K. Solubility and diffusivity of carbon dioxide in solid-state isotactic polypropylene by the pressure−decay method. Ind Eng Chem Res. 2009;48:7117-7124. Téllez CA, Hollauer E, Mondragon MA, Castaño VM. Fourier transform infrared and Raman spectra, vibrational assignment and ab initio calculations of terephthalic acid and related compounds. Spectrochim Acta A. 2001;57:993-1007. Yoshioka T, Okayama N, Okuwaki A. Kinetics of hydrolysis of PET powder in nitric acid by a modified shrinking-core model. Ind Eng Chem Res. 1998;37:336-340. Arata K, Hino M. Solid catalyst treated with anion: XVIII. Benzoylation of toluene with benzoyl chloride and benzoic anhydride catalysed by solid superacid of sulfate-supported alumina. Appl Catal. 1990;59:197-204. Ciric AR, Miao P. Steady state multiplicities in an ethylene glycol reactive distillation column. Ind Eng Chem Res. 1994;33:2738-2748. Wissinger RG, Paulaitis ME. Swelling and sorption in polymer-CO2 mixtures at elevated pressures. J Polym Sci B. 1987;25:2497-2510. Davey RJ, Maginn SJ. Morphology and polymorphism in molecular crystals: terephthalic acid. J Chem Soc Faraday Trans. 1994;90:1003-1009. Uhlmann DR. A kinetic treatment of glass formation. J Non-Cryst Solids. 1972;7:337-348. Pickett JE, Coyle DJ. Hydrolysis kinetics of condensation polymers under humidity aging conditions. Polym Degrad Stab. 2013;98:1311-1320. Achilias DS, Karayannidis GP. The chemical recycling of PET in the framework of sustainable development. Water Air Soil Pollut Focus. 2004;4:385-396. Corma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev. 1995;95:559-614. Sorrentino L, Di Maio E, Iannace S. Poly(ethylene terephthalate) foams: correlation between the polymer properties and the foaming process. J Appl Polym Sci. 2010;116:27-35. Goto M, Sasaki M, Hirose T. Reactions of polymers in supercritical fluids for chemical recycling of waste plastics. J Mater Sci. 2006;41:1509-1515. Sivalingam G, Agarwal N, Madras G. Distributed midpoint chain scission in ultrasonic degradation of polymers. AIChE J. 2004;50:2258-2265. Matsuhashi H, Miyazaki H, Kawamura Y, Nakamura H, Arata K. Preparation of a solid superacid of sulfated tin oxide with acidity higher than that of sulfated zirconia and its applications to aldol condensation and benzoylation1. Chem Mater. 2001;13:3038-3042. Marimuthu A, Madras G. Continuous distribution kinetics for microwave-assisted oxidative degradation of poly(alkyl methacrylates). AIChE J. 2008;54:2164-2173. Campanelli JR, Kamal MR, Cooper DG. A kinetic study of the hydrolytic degradation of polyethylene terephthalate at high temperatures. J Appl Polym Sci. 1993;48:443-451. Bonavoglia B, Storti G, Morbidelli M, Rajendran A, Mazzotti M. Sorption and swelling of semicrystalline polymers in supercritical CO2. J Polym Sci B. 2006;44:1531-1546. de Almeida RM, Noda LK, Gonçalves NS, Meneghetti SMP, Meneghetti MR. Transesterification reaction of vegetable oils, using superacid sulfated TiO2-base catalysts. Appl Catal A. 2008;347:100-105. Takada M, Ohshima M. Effect of CO2 on crystallization kinetics of poly(ethylene terephthalate). Polym Eng Sci. 2003;43:479-489. Karayannidis GP, Chatziavgoustis AP, Achilias DS. Poly(ethylene terephthalate) recycling and recovery of pure terephthalic acid by alkaline hydrolysis. Adv Polym Tech. 2002;21:250-259. Kazarian SG, Vincent MF, Bright FV, Liotta CL, Eckert CA. Specific intermolecular interaction of carbon dioxide with polymers. J Am Chem Soc. 1996;118:1729-1736. Imran M, Kim B-K, Han M, Cho BG, Kim DH. Sub- and supercritical glycolysis of polyethylene terephthalate (PET) into the monomer bis(2-hydroxyethyl) terephthalate (BHET). Polym Degrad Stab. 2010;95:1686-1693. Mueller R-J. Biological degradation of synthetic polyesters-enzymes as potential catalysts for polyester recycling. Process Biochem. 2006;41:2124-2128. Paszun D, Spychaj T. Chemical recycling of poly(ethylene terephthalate). Ind Eng Chem Res. 1997;36:1373-1383. Chiou JS, Barlow JW, Paul DR. Plasticization of glassy polymers by CO2. J Appl Polym Sci. 1985;30:2633-2642. Yoshioka T, Motoki T, Okuwaki A. Kinetics of hydrolysis of poly(ethylene terephthalate) powder in sulfuric acid by a modified shrinking-core model. Ind Eng Chem Res. 2001;40:75-79. Chiou JS, Barlow JW, Paul DR. Polymer crystallization induced by sorption of CO2 gas. J Appl Polym Sci. 1985;30:3911-3924. Launay A, Thominette F, Verdu J. Hydrolysis of poly(ethylene terephthalate): a kinetic study. Polym Degrad Stab. 1994;46:319-324. Corma A, Fornés V, Juan-Rajadell MI, Nieto JML. Influence of preparation conditions on the structure and catalytic properties of SO42−/ZrO2 superacid catalysts. Appl Catal A. 1994;116:151-163. Siddiqui MN, Achilias DS, Redhwi HH, Bikiaris DN, Katsogiannis KAG, Karayannidis GP. Hydrolytic depolymerization of PET in a microwave reactor. Macromol Mater Eng. 2010;295:575-584. Scheirs J, Long TE. Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters. New York: Wiley, 2004. Goto M. Chemical recycling of plastics using sub- and supercritical fluids. J Supercrit Fluids. 2009;47:500-507. Sinha V, Patel M, Patel J. Pet waste management by chemical recycling: a review. J Polym Environ. 2010;18:8-25. Holland BJ, Hay JN. The thermal degradation of PET and analogous polyesters measured by thermal analysis-Fourier transform infrared spectroscopy. Polymer. 2002;43:1835-1847. Ballara A, Verdu J. Physical aspects of the hydrolysis of polyethylene terephthalate. Polym Degrad Stab. 1989;26:361-374. Liu F, Cui X, Yu S, Li Z, Ge X. Hydrolysis reaction of poly(ethylene terephthalate) using ionic liquids as solvent and catalyst. J Appl Polym Sci. 2009;114:3561-3565. Otton J, Ratton S, Vasnev VA, Markova GD, Nametov KM, Bakhmutov VI, Komarova LI, Vinogradova SV, Korshak VV. Investigation of the formation of poly(ethylene terephthalate) with model molecules: kinetics and mechanisms of the catalytic esterification and alcoholysis reactions. II. Catalysis by metallic derivatives (monofunctional reactants). J Polym Sci A. 1988;26:2199-2224. Piñero-Hernanz R, García-Serna J, Cocero MJ. Nonstationary model of the semicontinuous depolymerization of polycarbonate. AIChE J. 2006;52:4186-4199. Mishra S, Goje AS, Zope VS. Chemical recycling, kinetics, and thermodynamics of hydrolysis of poly(ethylene terephthalate) (PET) waste in sulfuric acid in presence of phosphoric acid. Polym Plast Technol Eng. 2003;42:581-603. Shen X, Wang YX, Hu CW, Qian K, Ji Z, Jin M. One-pot conversion of inulin to furan derivatives catalyzed by sulfated TiO2/mordenite solid acid. ChemCatChem. 2012;4:2013-2019. Dimitrov N, Kratofil KL, Ptiček SA, Hrnjak-Murgić Z. Analysis of recycled PET bottles products by pyrolysis-gas chromatography. Polym Degrad Stab. 2013;98:972-979. Tomasko DL, Li H, Liu D, Han X, Wingert MJ, Lee LJ, Koelling KW. A review of CO2 applications in the processing of polymers. Ind Eng Chem Res. 2003;42:6431-6456. Carta D, Cao G, D'Angeli C. Chemical recycling of poly(ethylene terephthalate) (pet) by hydrolysis and glycolysis. Environ Sci Pollut Res. 2003;10:390-394. Mancini SD, Zanin M. Post consumer pet depolymerization by acid hydrolysis. Polym Plast Technol Eng. 2007;46:135-144. Mishra S, Zope VS, Goje AS. Kinetics and thermodynamics of hydrolytic depolymerization of poly(ethylene terephthalate) at high pressure and temperature. J Appl Polym Sci. 2003;90:3305-3309. Goel SK, Beckman EJ. Nucleation and growth in microcellular materials: supercritical CO2 as foaming agent. AIChE J. 1995;41:357-367. McCoy BJ, Madras G. Degradation kinetics of polymers in solution: dynamics of molecular weight distributions. AIChE J. 1997;43:802-810. Bratek W, Świątkowski A, Pakuła M, Biniak S, Bystrzejewski M, Szmigielski R. Characteristics of activated carbon prepared from waste PET by carbon dioxide activation. J Anal Appl Pyrolysis. 2013;100:192-198. Lin C-C, Guo G-L, Tsai T-L. A bi-order kinetic model for poly(methyl methacrylate) decomposition in HNO3 using microwave irradiation. AIChE J. 2009;55:2150-2158. Madras G, McCoy BJ. Molecular-weight distribution kinetics for ultrasonic reactions of polymers. AIChE J. 2001;47:2341-2348. Steppan DD, Doherty MF, Malone MF. A simplified degradation model for nylon 6,6 polymerization. J Appl Polym Sci. 1991;42:1009-1021. von Schnitzler J, Eggers R. Mass transfer in polymers in a supercritical CO2-atmosphere. J Supercrit Fluids. 1999;16:81-92. Li D, Liu T, Zhao L, Yuan W. Controlling sandwich-structure of PET microcellular foams using coupling of CO2 diffusion and induced crystallization. AIChE J. 2012;58:2512-2523. Karayannidis GP, Achilias DS. Chemical recycling of poly(ethylene terephthalate). Macromol Mater Eng. 2007;292:128-146. Li D-C, Liu T, Zhao L, Lian X-S, Yuan W-K. Foaming of poly(lactic acid) based on its nonisothermal crystallization behavior under compressed carbon dioxide. Ind Eng Chem Res. 2011;50:1997-2007. Li X-K, Cao G-P, Chen L-H, Zhang R-H, Liu H-L, Shi Y-H. Study of the anomalous sorption behavior of CO2 into poly(methyl methacrylate) films in the vicinity of the critical pressure and temperature using a quartz crystal microbalance (QCM). Langmuir. 2013;29:14089-14100. Adschiri T, Sato O, Machida K, Saito N, Arai K. Recovery of terephthalic acid by decomposition of PET in supercritical water. Kag Kog Ronbunshu. 1997;23:505-511. Sharma YC, Singh B, Korstad J. Advancements in solid acid catalysts for ecofriendly and economically viable synthesis of biodiesel. Biofuels Bioprod Biorefin. 2011;5:69-92. Middleton AC, Duckett RA, Ward IM, Mahendrasingam A, Martin C. Real-time FTIR and WAXS studies of drawing behavi 2013; 29 2009; 47 1990; 59 1997; 43 2010; 18 2013; 127 2004; 4 2008; 347 1997; 2 2012; 58 2001; 47 2001; 40 2009; 114 2009; 48 2003; 10 2001; 42 2009; 55 2002; 48 2003; 90 2013; 98 2010; 116 2007; 292 2010; 117 1999; 16 1991; 42 2002; 43 1994; 33 2003; 49 1984; 19 2001; 13 2003; 40 2001; 57 2003; 42 2003; 43 1993; 48 1991; 4 1995; 95 1994; 116 2006; 52 1994; 90 1997; 23 2013; 100 1994; 46 1978; 16 2008; 54 2004 1989; 26 2011; 173 1998; 135 2011; 5 1972; 7 2005; 44 1998; 37 1995; 41 1987; 25 2006; 41 2004; 50 2013; 78 2006; 44 2004; 58 1997; 36 1988; 26 2002; 21 2011; 50 2010; 295 2013; 130 1985; 30 2014 2012; 4 2001; 79 2007; 46 2010; 95 1996; 118 1998; 36 |
References_xml | – reference: Arai K. Conversion of polymers and biomass to chemical intermediates with supercritical water. Macromol Symposia. 1998;135:205-214. – reference: SuriÑach S, Baro MD, Clavaguera-Mora MT, Clavaguera N. Glass formation and crystallization in the GeSe2-Sb2Te3 system. J Mater Sci. 1984;19:3005-3012. – reference: Sivalingam G, Agarwal N, Madras G. Kinetics of microwave-assisted oxidative degradation of polystyrene in solution. AIChE J. 2003;49:1821-1826. – reference: Lin C-C, Guo G-L, Tsai T-L. A bi-order kinetic model for poly(methyl methacrylate) decomposition in HNO3 using microwave irradiation. AIChE J. 2009;55:2150-2158. – reference: Causin V, Marega C, Guzzini G, Marigo A. Forensic analysis of poly(ethylene terephthalate) fibers by infrared spectroscopy. Appl Spectrosc. 2004;58:1272-1276. – reference: Yoshioka T, Okayama N, Okuwaki A. Kinetics of hydrolysis of PET powder in nitric acid by a modified shrinking-core model. Ind Eng Chem Res. 1998;37:336-340. – reference: Pickett JE, Coyle DJ. Hydrolysis kinetics of condensation polymers under humidity aging conditions. Polym Degrad Stab. 2013;98:1311-1320. – reference: Sorrentino L, Di Maio E, Iannace S. Poly(ethylene terephthalate) foams: correlation between the polymer properties and the foaming process. J Appl Polym Sci. 2010;116:27-35. – reference: Ballara A, Verdu J. Physical aspects of the hydrolysis of polyethylene terephthalate. Polym Degrad Stab. 1989;26:361-374. – reference: Piñero-Hernanz R, García-Serna J, Cocero MJ. Nonstationary model of the semicontinuous depolymerization of polycarbonate. AIChE J. 2006;52:4186-4199. – reference: Mancini SD, Zanin M. Post consumer pet depolymerization by acid hydrolysis. Polym Plast Technol Eng. 2007;46:135-144. – reference: Madras G, McCoy BJ. Molecular-weight distribution kinetics for ultrasonic reactions of polymers. AIChE J. 2001;47:2341-2348. – reference: Middleton AC, Duckett RA, Ward IM, Mahendrasingam A, Martin C. Real-time FTIR and WAXS studies of drawing behavior of poly(ethylene terephthalate) films. J Appl Polym Sci. 2001;79:1825-1837. – reference: Karayannidis GP, Chatziavgoustis AP, Achilias DS. Poly(ethylene terephthalate) recycling and recovery of pure terephthalic acid by alkaline hydrolysis. Adv Polym Tech. 2002;21:250-259. – reference: Uhlmann DR. A kinetic treatment of glass formation. J Non-Cryst Solids. 1972;7:337-348. – reference: Koros WJ, Paul DR. CO2 sorption in poly(ethylene terephthalate) above and below the glass transition. J Polym Sci Polym Phys Ed. 1978;16:1947-1963. – reference: Steppan DD, Doherty MF, Malone MF. A simplified degradation model for nylon 6,6 polymerization. J Appl Polym Sci. 1991;42:1009-1021. – reference: Ciric AR, Miao P. Steady state multiplicities in an ethylene glycol reactive distillation column. Ind Eng Chem Res. 1994;33:2738-2748. – reference: Aydemir B, Aslı Sezgi N, Doğu T. Synthesis of TPA impregnated SBA-15 catalysts and their performance in polyethylene degradation reaction. AIChE J. 2012;58:2466-2472. – reference: Campanelli JR, Kamal MR, Cooper DG. A kinetic study of the hydrolytic degradation of polyethylene terephthalate at high temperatures. J Appl Polym Sci. 1993;48:443-451. – reference: Corma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev. 1995;95:559-614. – reference: Karayannidis GP, Achilias DS. Chemical recycling of poly(ethylene terephthalate). Macromol Mater Eng. 2007;292:128-146. – reference: Mancini SD, Nogueira AR, Rangel EC, da Cruz NC. Solid-state hydrolysis of postconsumer polyethylene terephthalate after plasma treatment. J Appl Polym Sci. 2013;127:1989-1996. – reference: Goto M, Sasaki M, Hirose T. Reactions of polymers in supercritical fluids for chemical recycling of waste plastics. J Mater Sci. 2006;41:1509-1515. – reference: von Schnitzler J, Eggers R. Mass transfer in polymers in a supercritical CO2-atmosphere. J Supercrit Fluids. 1999;16:81-92. – reference: Marimuthu A, Madras G. Continuous distribution kinetics for microwave-assisted oxidative degradation of poly(alkyl methacrylates). AIChE J. 2008;54:2164-2173. – reference: Sinha V, Patel M, Patel J. Pet waste management by chemical recycling: a review. J Polym Environ. 2010;18:8-25. – reference: Takada M, Ohshima M. Effect of CO2 on crystallization kinetics of poly(ethylene terephthalate). Polym Eng Sci. 2003;43:479-489. – reference: Chiou JS, Barlow JW, Paul DR. Polymer crystallization induced by sorption of CO2 gas. J Appl Polym Sci. 1985;30:3911-3924. – reference: Bonavoglia B, Storti G, Morbidelli M, Rajendran A, Mazzotti M. Sorption and swelling of semicrystalline polymers in supercritical CO2. J Polym Sci B. 2006;44:1531-1546. – reference: Adschiri T, Sato O, Machida K, Saito N, Arai K. Recovery of terephthalic acid by decomposition of PET in supercritical water. Kag Kog Ronbunshu. 1997;23:505-511. – reference: Goel SK, Beckman EJ. Nucleation and growth in microcellular materials: supercritical CO2 as foaming agent. AIChE J. 1995;41:357-367. – reference: Mueller R-J. Biological degradation of synthetic polyesters-enzymes as potential catalysts for polyester recycling. Process Biochem. 2006;41:2124-2128. – reference: Matsuhashi H, Miyazaki H, Kawamura Y, Nakamura H, Arata K. Preparation of a solid superacid of sulfated tin oxide with acidity higher than that of sulfated zirconia and its applications to aldol condensation and benzoylation1. Chem Mater. 2001;13:3038-3042. – reference: Kazarian SG, Vincent MF, Bright FV, Liotta CL, Eckert CA. Specific intermolecular interaction of carbon dioxide with polymers. J Am Chem Soc. 1996;118:1729-1736. – reference: Imran M, Kim B-K, Han M, Cho BG, Kim DH. Sub- and supercritical glycolysis of polyethylene terephthalate (PET) into the monomer bis(2-hydroxyethyl) terephthalate (BHET). Polym Degrad Stab. 2010;95:1686-1693. – reference: Sharma YC, Singh B, Korstad J. Advancements in solid acid catalysts for ecofriendly and economically viable synthesis of biodiesel. Biofuels Bioprod Biorefin. 2011;5:69-92. – reference: Sivalingam G, Agarwal N, Madras G. Distributed midpoint chain scission in ultrasonic degradation of polymers. AIChE J. 2004;50:2258-2265. – reference: Li D-C, Liu T, Zhao L, Lian X-S, Yuan W-K. Foaming of poly(lactic acid) based on its nonisothermal crystallization behavior under compressed carbon dioxide. Ind Eng Chem Res. 2011;50:1997-2007. – reference: Dimitrov N, Kratofil KL, Ptiček SA, Hrnjak-Murgić Z. Analysis of recycled PET bottles products by pyrolysis-gas chromatography. Polym Degrad Stab. 2013;98:972-979. – reference: Siddiqui MN, Achilias DS, Redhwi HH, Bikiaris DN, Katsogiannis KAG, Karayannidis GP. Hydrolytic depolymerization of PET in a microwave reactor. Macromol Mater Eng. 2010;295:575-584. – reference: Paszun D, Spychaj T. Chemical recycling of poly(ethylene terephthalate). Ind Eng Chem Res. 1997;36:1373-1383. – reference: Mishra S, Zope VS, Goje AS. Kinetics and thermodynamics of hydrolytic depolymerization of poly(ethylene terephthalate) at high pressure and temperature. J Appl Polym Sci. 2003;90:3305-3309. – reference: Achilias DS, Karayannidis GP. The chemical recycling of PET in the framework of sustainable development. Water Air Soil Pollut Focus. 2004;4:385-396. – reference: Goto M. Chemical recycling of plastics using sub- and supercritical fluids. J Supercrit Fluids. 2009;47:500-507. – reference: Arata K, Hino M. Solid catalyst treated with anion: XVIII. Benzoylation of toluene with benzoyl chloride and benzoic anhydride catalysed by solid superacid of sulfate-supported alumina. Appl Catal. 1990;59:197-204. – reference: Genta M, Iwaya T, Sasaki M, Goto M, Hirose T. Depolymerization mechanism of poly(ethylene terephthalate) in supercritical methanol. Ind Eng Chem Res. 2005;44:3894-3900. – reference: Wissinger RG, Paulaitis ME. Swelling and sorption in polymer-CO2 mixtures at elevated pressures. J Polym Sci B. 1987;25:2497-2510. – reference: Zhang R-H, Li X-K, Cao G-P, Shi Y-H, Liu H-L, Yuan W-K, Roberts GW. Improved kinetic model of crystallization for isotactic polypropylene induced by supercritical CO2: introducing pressure and temperature dependence into the Avrami equation. Ind Eng Chem Res. 2011;50:10509-10515. – reference: Chiou JS, Barlow JW, Paul DR. Plasticization of glassy polymers by CO2. J Appl Polym Sci. 1985;30:2633-2642. – reference: Viana ME, Riul A, Carvalho GM, Rubira AF, Muniz EC. Chemical recycling of PET by catalyzed glycolysis: kinetics of the heterogeneous reaction. Chem Eng J. 2011;173:210-219. – reference: Lu XF, Hay JN. Crystallization orientation and relaxation in uniaxially drawn poly(ethylene terephthalate). Polymer. 2001;42:8055-8067. – reference: Li D-C, Liu T, Zhao L, Yuan W-K. Solubility and diffusivity of carbon dioxide in solid-state isotactic polypropylene by the pressure−decay method. Ind Eng Chem Res. 2009;48:7117-7124. – reference: Corma A. Solid acid catalysts. Curr Opin Solid State Mater Sci. 1997;2:63-75. – reference: Liu F, Cui X, Yu S, Li Z, Ge X. Hydrolysis reaction of poly(ethylene terephthalate) using ionic liquids as solvent and catalyst. J Appl Polym Sci. 2009;114:3561-3565. – reference: Yoshioka T, Motoki T, Okuwaki A. Kinetics of hydrolysis of poly(ethylene terephthalate) powder in sulfuric acid by a modified shrinking-core model. Ind Eng Chem Res. 2001;40:75-79. – reference: Scheirs J, Long TE. Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters. New York: Wiley, 2004. – reference: Davey RJ, Maginn SJ. Morphology and polymorphism in molecular crystals: terephthalic acid. J Chem Soc Faraday Trans. 1994;90:1003-1009. – reference: Shen X, Wang YX, Hu CW, Qian K, Ji Z, Jin M. One-pot conversion of inulin to furan derivatives catalyzed by sulfated TiO2/mordenite solid acid. ChemCatChem. 2012;4:2013-2019. – reference: de Almeida RM, Noda LK, Gonçalves NS, Meneghetti SMP, Meneghetti MR. Transesterification reaction of vegetable oils, using superacid sulfated TiO2-base catalysts. Appl Catal A. 2008;347:100-105. – reference: Zhang L, Gao J, Zou J, Yi F. Hydrolysis of poly(ethylene terephthalate) waste bottles in the presence of dual functional phase transfer catalysts. J Appl Polym Sci. 2013;130:2790-2795. – reference: Bratek W, Świątkowski A, Pakuła M, Biniak S, Bystrzejewski M, Szmigielski R. Characteristics of activated carbon prepared from waste PET by carbon dioxide activation. J Anal Appl Pyrolysis. 2013;100:192-198. – reference: Mishra S, Goje AS, Zope VS. Chemical recycling, kinetics, and thermodynamics of hydrolysis of poly(ethylene terephthalate) (PET) waste in sulfuric acid in presence of phosphoric acid. Polym Plast Technol Eng. 2003;42:581-603. – reference: Carta D, Cao G, D'Angeli C. Chemical recycling of poly(ethylene terephthalate) (pet) by hydrolysis and glycolysis. Environ Sci Pollut Res. 2003;10:390-394. – reference: Holland BJ, Hay JN. The thermal degradation of PET and analogous polyesters measured by thermal analysis-Fourier transform infrared spectroscopy. Polymer. 2002;43:1835-1847. – reference: Téllez CA, Hollauer E, Mondragon MA, Castaño VM. Fourier transform infrared and Raman spectra, vibrational assignment and ab initio calculations of terephthalic acid and related compounds. Spectrochim Acta A. 2001;57:993-1007. – reference: McCoy BJ, Madras G. Degradation kinetics of polymers in solution: dynamics of molecular weight distributions. AIChE J. 1997;43:802-810. – reference: Lambert SM, Paulaitis ME. Crystallization of poly(ethylene terephthalate) induced by carbon dioxide sorption at elevated pressures. J Supercrit Fluids. 1991;4:15-23. – reference: Otton J, Ratton S, Vasnev VA, Markova GD, Nametov KM, Bakhmutov VI, Komarova LI, Vinogradova SV, Korshak VV. Investigation of the formation of poly(ethylene terephthalate) with model molecules: kinetics and mechanisms of the catalytic esterification and alcoholysis reactions. II. Catalysis by metallic derivatives (monofunctional reactants). J Polym Sci A. 1988;26:2199-2224. – reference: Li X-K, Cao G-P, Chen L-H, Zhang R-H, Liu H-L, Shi Y-H. Study of the anomalous sorption behavior of CO2 into poly(methyl methacrylate) films in the vicinity of the critical pressure and temperature using a quartz crystal microbalance (QCM). Langmuir. 2013;29:14089-14100. – reference: Goto M, Koyamoto H, Kodama A, Hirose T, Nagaoka S, McCoy BJ. Degradation kinetics of polyethylene terephthalate in supercritical methanol. AIChE J. 2002;48:136-144. – reference: Wang PC, Zhu J, Liu X, Lu TT, Lu M. Regioselective nitration of aromatics with nanomagnetic solid superacid SO42−/ZrO2-MxOy-Fe3O4 and its theoretical studies. ChemPlusChem. 2013;78:310-317. – reference: Zhang Z, Handa YP. An in situ study of plasticization of polymers by high-pressure gases. J Polym Sci B. 1998;36:977-982. – reference: Corma A, Fornés V, Juan-Rajadell MI, Nieto JML. Influence of preparation conditions on the structure and catalytic properties of SO42−/ZrO2 superacid catalysts. Appl Catal A. 1994;116:151-163. – reference: Song X, Zhang S, Zhang D. Catalysis investigation of PET depolymerization under metal oxides by microwave irradiation. J Appl Polym Sci. 2010;117:3155-3159. – reference: Tomasko DL, Li H, Liu D, Han X, Wingert MJ, Lee LJ, Koelling KW. A review of CO2 applications in the processing of polymers. Ind Eng Chem Res. 2003;42:6431-6456. – reference: Genta M, Yano F, Kondo Y, Matsubara W, Oomoto S. Development of chemical recycling process for post-consumer PET bottle by methanolysis in supercritical methanol. Tech Rev. 2003;40:1-4. – reference: Launay A, Thominette F, Verdu J. Hydrolysis of poly(ethylene terephthalate): a kinetic study. Polym Degrad Stab. 1994;46:319-324. – reference: Li D, Liu T, Zhao L, Yuan W. Controlling sandwich-structure of PET microcellular foams using coupling of CO2 diffusion and induced crystallization. AIChE J. 2012;58:2512-2523. – volume: 295 start-page: 575 year: 2010 end-page: 584 article-title: Hydrolytic depolymerization of PET in a microwave reactor publication-title: Macromol Mater Eng. – volume: 36 start-page: 1373 year: 1997 end-page: 1383 article-title: Chemical recycling of poly(ethylene terephthalate) publication-title: Ind Eng Chem Res. – volume: 42 start-page: 8055 year: 2001 end-page: 8067 article-title: Crystallization orientation and relaxation in uniaxially drawn poly(ethylene terephthalate) publication-title: Polymer. – volume: 43 start-page: 802 year: 1997 end-page: 810 article-title: Degradation kinetics of polymers in solution: dynamics of molecular weight distributions publication-title: AIChE J. – volume: 41 start-page: 357 year: 1995 end-page: 367 article-title: Nucleation and growth in microcellular materials: supercritical CO as foaming agent publication-title: AIChE J. – volume: 95 start-page: 1686 year: 2010 end-page: 1693 article-title: Sub‐ and supercritical glycolysis of polyethylene terephthalate (PET) into the monomer bis(2‐hydroxyethyl) terephthalate (BHET) publication-title: Polym Degrad Stab. – volume: 127 start-page: 1989 year: 2013 end-page: 1996 article-title: Solid‐state hydrolysis of postconsumer polyethylene terephthalate after plasma treatment publication-title: J Appl Polym Sci. – volume: 135 start-page: 205 year: 1998 end-page: 214 article-title: Conversion of polymers and biomass to chemical intermediates with supercritical water publication-title: Macromol Symposia. – volume: 48 start-page: 7117 year: 2009 end-page: 7124 article-title: Solubility and diffusivity of carbon dioxide in solid‐state isotactic polypropylene by the pressure−decay method publication-title: Ind Eng Chem Res. – volume: 48 start-page: 443 year: 1993 end-page: 451 article-title: A kinetic study of the hydrolytic degradation of polyethylene terephthalate at high temperatures publication-title: J Appl Polym Sci. – volume: 130 start-page: 2790 year: 2013 end-page: 2795 article-title: Hydrolysis of poly(ethylene terephthalate) waste bottles in the presence of dual functional phase transfer catalysts publication-title: J Appl Polym Sci. – volume: 50 start-page: 1997 year: 2011 end-page: 2007 article-title: Foaming of poly(lactic acid) based on its nonisothermal crystallization behavior under compressed carbon dioxide publication-title: Ind Eng Chem Res. – volume: 26 start-page: 361 year: 1989 end-page: 374 article-title: Physical aspects of the hydrolysis of polyethylene terephthalate publication-title: Polym Degrad Stab. – year: 2014 – volume: 5 start-page: 69 year: 2011 end-page: 92 article-title: Advancements in solid acid catalysts for ecofriendly and economically viable synthesis of biodiesel publication-title: Biofuels Bioprod Biorefin. – volume: 10 start-page: 390 year: 2003 end-page: 394 article-title: Chemical recycling of poly(ethylene terephthalate) (pet) by hydrolysis and glycolysis publication-title: Environ Sci Pollut Res. – volume: 173 start-page: 210 year: 2011 end-page: 219 article-title: Chemical recycling of PET by catalyzed glycolysis: kinetics of the heterogeneous reaction publication-title: Chem Eng J. – volume: 117 start-page: 3155 year: 2010 end-page: 3159 article-title: Catalysis investigation of PET depolymerization under metal oxides by microwave irradiation publication-title: J Appl Polym Sci. – volume: 347 start-page: 100 year: 2008 end-page: 105 article-title: Transesterification reaction of vegetable oils, using superacid sulfated TiO –base catalysts publication-title: Appl Catal A. – volume: 23 start-page: 505 year: 1997 end-page: 511 article-title: Recovery of terephthalic acid by decomposition of PET in supercritical water publication-title: Kag Kog Ronbunshu. – volume: 58 start-page: 2466 year: 2012 end-page: 2472 article-title: Synthesis of TPA impregnated SBA‐15 catalysts and their performance in polyethylene degradation reaction publication-title: AIChE J. – volume: 44 start-page: 3894 year: 2005 end-page: 3900 article-title: Depolymerization mechanism of poly(ethylene terephthalate) in supercritical methanol publication-title: Ind Eng Chem Res. – volume: 78 start-page: 310 year: 2013 end-page: 317 article-title: Regioselective nitration of aromatics with nanomagnetic solid superacid /ZrO ‐M O ‐Fe O and its theoretical studies publication-title: ChemPlusChem. – volume: 43 start-page: 1835 year: 2002 end-page: 1847 article-title: The thermal degradation of PET and analogous polyesters measured by thermal analysis–Fourier transform infrared spectroscopy publication-title: Polymer. – volume: 48 start-page: 136 year: 2002 end-page: 144 article-title: Degradation kinetics of polyethylene terephthalate in supercritical methanol publication-title: AIChE J. – volume: 43 start-page: 479 year: 2003 end-page: 489 article-title: Effect of CO on crystallization kinetics of poly(ethylene terephthalate) publication-title: Polym Eng Sci. – year: 2004 – volume: 54 start-page: 2164 year: 2008 end-page: 2173 article-title: Continuous distribution kinetics for microwave‐assisted oxidative degradation of poly(alkyl methacrylates) publication-title: AIChE J. – volume: 2 start-page: 63 year: 1997 end-page: 75 article-title: Solid acid catalysts publication-title: Curr Opin Solid State Mater Sci. – volume: 50 start-page: 10509 year: 2011 end-page: 10515 article-title: Improved kinetic model of crystallization for isotactic polypropylene induced by supercritical CO : introducing pressure and temperature dependence into the Avrami equation publication-title: Ind Eng Chem Res. – volume: 13 start-page: 3038 year: 2001 end-page: 3042 article-title: Preparation of a solid superacid of sulfated tin oxide with acidity higher than that of sulfated zirconia and its applications to aldol condensation and benzoylation1 publication-title: Chem Mater. – volume: 16 start-page: 81 year: 1999 end-page: 92 article-title: Mass transfer in polymers in a supercritical CO ‐atmosphere publication-title: J Supercrit Fluids. – volume: 42 start-page: 6431 year: 2003 end-page: 6456 article-title: A review of CO applications in the processing of polymers publication-title: Ind Eng Chem Res. – volume: 58 start-page: 2512 year: 2012 end-page: 2523 article-title: Controlling sandwich‐structure of PET microcellular foams using coupling of CO diffusion and induced crystallization publication-title: AIChE J. – volume: 44 start-page: 1531 year: 2006 end-page: 1546 article-title: Sorption and swelling of semicrystalline polymers in supercritical CO publication-title: J Polym Sci B. – volume: 52 start-page: 4186 year: 2006 end-page: 4199 article-title: Nonstationary model of the semicontinuous depolymerization of polycarbonate publication-title: AIChE J. – volume: 49 start-page: 1821 year: 2003 end-page: 1826 article-title: Kinetics of microwave‐assisted oxidative degradation of polystyrene in solution publication-title: AIChE J. – volume: 41 start-page: 1509 year: 2006 end-page: 1515 article-title: Reactions of polymers in supercritical fluids for chemical recycling of waste plastics publication-title: J Mater Sci. – volume: 16 start-page: 1947 year: 1978 end-page: 1963 article-title: CO sorption in poly(ethylene terephthalate) above and below the glass transition publication-title: J Polym Sci Polym Phys Ed. – volume: 90 start-page: 3305 year: 2003 end-page: 3309 article-title: Kinetics and thermodynamics of hydrolytic depolymerization of poly(ethylene terephthalate) at high pressure and temperature publication-title: J Appl Polym Sci. – volume: 59 start-page: 197 year: 1990 end-page: 204 article-title: Solid catalyst treated with anion: XVIII. Benzoylation of toluene with benzoyl chloride and benzoic anhydride catalysed by solid superacid of sulfate‐supported alumina publication-title: Appl Catal. – volume: 50 start-page: 2258 year: 2004 end-page: 2265 article-title: Distributed midpoint chain scission in ultrasonic degradation of polymers publication-title: AIChE J. – volume: 40 start-page: 1 year: 2003 end-page: 4 article-title: Development of chemical recycling process for post‐consumer PET bottle by methanolysis in supercritical methanol publication-title: Tech Rev. – volume: 116 start-page: 151 year: 1994 end-page: 163 article-title: Influence of preparation conditions on the structure and catalytic properties of /ZrO superacid catalysts publication-title: Appl Catal A. – volume: 292 start-page: 128 year: 2007 end-page: 146 article-title: Chemical recycling of poly(ethylene terephthalate) publication-title: Macromol Mater Eng. – volume: 37 start-page: 336 year: 1998 end-page: 340 article-title: Kinetics of hydrolysis of PET powder in nitric acid by a modified shrinking‐core model publication-title: Ind Eng Chem Res. – volume: 29 start-page: 14089 year: 2013 end-page: 14100 article-title: Study of the anomalous sorption behavior of CO into poly(methyl methacrylate) films in the vicinity of the critical pressure and temperature using a quartz crystal microbalance (QCM) publication-title: Langmuir. – volume: 42 start-page: 581 year: 2003 end-page: 603 article-title: Chemical recycling, kinetics, and thermodynamics of hydrolysis of poly(ethylene terephthalate) (PET) waste in sulfuric acid in presence of phosphoric acid publication-title: Polym Plast Technol Eng. – volume: 18 start-page: 8 year: 2010 end-page: 25 article-title: Pet waste management by chemical recycling: a review publication-title: J Polym Environ. – volume: 4 start-page: 385 year: 2004 end-page: 396 article-title: The chemical recycling of PET in the framework of sustainable development publication-title: Water Air Soil Pollut Focus. – volume: 90 start-page: 1003 year: 1994 end-page: 1009 article-title: Morphology and polymorphism in molecular crystals: terephthalic acid publication-title: J Chem Soc Faraday Trans. – volume: 42 start-page: 1009 year: 1991 end-page: 1021 article-title: A simplified degradation model for nylon 6,6 polymerization publication-title: J Appl Polym Sci. – volume: 19 start-page: 3005 year: 1984 end-page: 3012 article-title: Glass formation and crystallization in the GeSe2‐Sb2Te3 system publication-title: J Mater Sci. – volume: 26 start-page: 2199 year: 1988 end-page: 2224 article-title: Investigation of the formation of poly(ethylene terephthalate) with model molecules: kinetics and mechanisms of the catalytic esterification and alcoholysis reactions. II. Catalysis by metallic derivatives (monofunctional reactants) publication-title: J Polym Sci A. – volume: 47 start-page: 500 year: 2009 end-page: 507 article-title: Chemical recycling of plastics using sub‐ and supercritical fluids publication-title: J Supercrit Fluids. – volume: 98 start-page: 1311 year: 2013 end-page: 1320 article-title: Hydrolysis kinetics of condensation polymers under humidity aging conditions publication-title: Polym Degrad Stab. – volume: 21 start-page: 250 year: 2002 end-page: 259 article-title: Poly(ethylene terephthalate) recycling and recovery of pure terephthalic acid by alkaline hydrolysis publication-title: Adv Polym Tech. – volume: 41 start-page: 2124 year: 2006 end-page: 2128 article-title: Biological degradation of synthetic polyesters—enzymes as potential catalysts for polyester recycling publication-title: Process Biochem. – volume: 30 start-page: 2633 year: 1985 end-page: 2642 article-title: Plasticization of glassy polymers by CO publication-title: J Appl Polym Sci. – volume: 57 start-page: 993 year: 2001 end-page: 1007 article-title: Fourier transform infrared and Raman spectra, vibrational assignment and ab initio calculations of terephthalic acid and related compounds publication-title: Spectrochim Acta A. – volume: 36 start-page: 977 year: 1998 end-page: 982 article-title: An in situ study of plasticization of polymers by high‐pressure gases publication-title: J Polym Sci B. – volume: 25 start-page: 2497 year: 1987 end-page: 2510 article-title: Swelling and sorption in polymer–CO mixtures at elevated pressures publication-title: J Polym Sci B. – volume: 30 start-page: 3911 year: 1985 end-page: 3924 article-title: Polymer crystallization induced by sorption of CO gas publication-title: J Appl Polym Sci. – volume: 4 start-page: 15 year: 1991 end-page: 23 article-title: Crystallization of poly(ethylene terephthalate) induced by carbon dioxide sorption at elevated pressures publication-title: J Supercrit Fluids. – volume: 40 start-page: 75 year: 2001 end-page: 79 article-title: Kinetics of hydrolysis of poly(ethylene terephthalate) powder in sulfuric acid by a modified shrinking‐core model publication-title: Ind Eng Chem Res. – volume: 4 start-page: 2013 year: 2012 end-page: 2019 article-title: One‐pot conversion of inulin to furan derivatives catalyzed by sulfated TiO /mordenite solid acid publication-title: ChemCatChem. – volume: 58 start-page: 1272 year: 2004 end-page: 1276 article-title: Forensic analysis of poly(ethylene terephthalate) fibers by infrared spectroscopy publication-title: Appl Spectrosc. – volume: 47 start-page: 2341 year: 2001 end-page: 2348 article-title: Molecular‐weight distribution kinetics for ultrasonic reactions of polymers publication-title: AIChE J. – volume: 98 start-page: 972 year: 2013 end-page: 979 article-title: Analysis of recycled PET bottles products by pyrolysis‐gas chromatography publication-title: Polym Degrad Stab. – volume: 7 start-page: 337 year: 1972 end-page: 348 article-title: A kinetic treatment of glass formation publication-title: J Non‐Cryst Solids. – volume: 55 start-page: 2150 year: 2009 end-page: 2158 article-title: A bi‐order kinetic model for poly(methyl methacrylate) decomposition in HNO using microwave irradiation publication-title: AIChE J. – volume: 33 start-page: 2738 year: 1994 end-page: 2748 article-title: Steady state multiplicities in an ethylene glycol reactive distillation column publication-title: Ind Eng Chem Res. – volume: 46 start-page: 319 year: 1994 end-page: 324 article-title: Hydrolysis of poly(ethylene terephthalate): a kinetic study publication-title: Polym Degrad Stab. – volume: 114 start-page: 3561 year: 2009 end-page: 3565 article-title: Hydrolysis reaction of poly(ethylene terephthalate) using ionic liquids as solvent and catalyst publication-title: J Appl Polym Sci. – volume: 46 start-page: 135 year: 2007 end-page: 144 article-title: Post consumer pet depolymerization by acid hydrolysis publication-title: Polym Plast Technol Eng. – volume: 100 start-page: 192 year: 2013 end-page: 198 article-title: Characteristics of activated carbon prepared from waste PET by carbon dioxide activation publication-title: J Anal Appl Pyrolysis. – volume: 79 start-page: 1825 year: 2001 end-page: 1837 article-title: Real‐time FTIR and WAXS studies of drawing behavior of poly(ethylene terephthalate) films publication-title: J Appl Polym Sci. – volume: 95 start-page: 559 year: 1995 end-page: 614 article-title: Inorganic solid acids and their use in acid‐catalyzed hydrocarbon reactions publication-title: Chem Rev. – volume: 116 start-page: 27 year: 2010 end-page: 35 article-title: Poly(ethylene terephthalate) foams: correlation between the polymer properties and the foaming process publication-title: J Appl Polym Sci. – volume: 118 start-page: 1729 year: 1996 end-page: 1736 article-title: Specific intermolecular interaction of carbon dioxide with polymers publication-title: J Am Chem Soc. |
SSID | ssj0012782 |
Score | 2.3783395 |
Snippet | Hydrolysis of waste poly(ethylene terphthalate) (PET) using solid acid catalyst in SCCO2 is presented in this work for the first time. The mechanism of PET... |
SourceID | wiley istex |
SourceType | Publisher |
StartPage | 200 |
SubjectTerms | amorphous and crystalline regions CO2-induced crystallization PET hydrolysis solid acid catalyst supercritical carbon dioxide |
Title | Reaction kinetics and mechanism of catalyzed hydrolysis of waste PET using solid acid catalyst in supercritical CO2 |
URI | https://api.istex.fr/ark:/67375/WNG-79Z9X05H-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.14632 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMeD-KQP3sU7eRDxpdqkSdPi05iXKXhBFIcIJWnSOYadrBs6P70nyTYvT-JLCSGB9OQk-Sfk_ILQblSkBnYNJpDgPgHjKgwsAjqIQSuwhIhESxuNfHkVN-7ZRZM3p9DROBbG8yEmB252ZLj52g5wqarDL2iobOd2mEd2_iVRbLn5x7cTdBShIvGkcNgug0wgY6pQSA8nNUGQWlu-_xSmbmU5nUdP4zb5CyWdg0FfHeQfv3CN_2z0ApobKU5c8y6yiKZMuYRmv3EIl1F1a3x8A-5ApgU3Y1lq_GJsWHC7esHdArtznuGH0fh5qHtdRzKx-W8S_g3fnNxhe4W-hcGX2xrLHD6-StXH7RJXg1fTy0fvKuD6NV1B96cnd_VGMHqNIWjBog87VmHRYiAoExIrEE6URImiTIlYmJgrQWXKU5NKwjQTQmno8YLA-m9omBQ5jaNVNF12S7OGsDQ6ZqnRhhrJuAglSa0vcalYogsdraM91y_ZqyduZLLXsRfQBM8ers4ykT6mzZA3ssY62nfWnhT0EGaagZ0zZ-esdl53iY2_F91EMyCLuD9o2ULT_d7AbIP06Ksd52Of7lPUbg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELYQHIADLC_x2l0fEOISSBw7TiQuqIINr4JQERUSsuzYKVVFivoQj1-_Y7vtLpwQlyiybMkZz9jfTGY-I7QTl5kBr8EEEtQnoEyFgaWADhLACjSNeKqlrUa-rCf5LT1rsuYUOhzXwnh-iEnAzVqG26-tgduA9ME_1lDZLqydx7ABz7j_cxYS3UzIoyLCU88VDg4zAIVozCsUkoPJUICkVpqvH6GpO1tOFtHDeFY-paSzPxyo_eL9E2Hjd6f9Ay2MQCc-8lqyhKZMtYzm_6MiXEH9G-NLHHAHGi13M5aVxk_GVga3-0-4W2IX6nl7Nxo_vule15GZ2PYXCR-Hr48b2GbRtzCoc1tjWcDDD-kPcLvC_eGz6RWjqxVw7YqsotuT40YtD0YXMgQtOPfBaeWWXQwwZRolCrATieJUEap4wk3CFCcyY5nJZEQ15VxpWPQyAghgSJiWBUniNTRddSuzjrA0OqGZ0YYYSRkPZZRZdWJS0VSXOt5Au25hxLMn3RCy17E5aJyJu_ofwbP7rBmyXOQbaM-Je9LR8zATAXIWTs7i6LTmXja_3vU3ms0blxfi4rR-voXmACUxH3fZRtOD3tD8BCQyUL-cwv0FR4PYjA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3ba9swFIdFSaFsD71to9160cMYe3Fiy5Jls6eSNk23LishYWEMhGTJrQl1Qi6s7V_fIylJ1z6NvRghJJCPjqSfhM4nhD7GRWZg12ACCe4TUKbCwCKggwS0Ak0jnmppo5G_d5J2n34dsMEa-rKMhfF8iNWBmx0Zbr62A3ysi8YTNFSWuR3mMcy_6zSBZdIqou6KHRURnnpUOOyXQSdES6xQSBqrqqBIrTHvnitTt7S0ttDvZaP8jZJhfT5T9fzhBa_xP1u9jTYXkhOfeB_ZQWum2kWv_wIRvkHTrvEBDngImZbcjGWl8a2xccHl9BaPCuwOeu4fjMY393oycigTm_9Hwr_hq7MetnforzE4c6mxzOHjq0xnuKzwdD42k3zxsAJu_iBvUb911mu2g8VzDME1rPqwZeWWLQaKMo0SBcqJRHGqCFU84SZhihOZscxkMqKacq40dHkRgQAwJEyLnCTxO1SrRpXZQ1gandDMaEOMpIyHMsqsMzGpaKoLHe-jT65fxNgjN4ScDO0NNM7Ez8654NmvbBCytmjvo8_O2quCnsJMBNhZODuLk4umS7z_96LHaOPqtCUuLzrfPqBXIJGYP3Q5QLXZZG4OQYbM1JFzt0fjFNc7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reaction+kinetics+and+mechanism+of+catalyzed+hydrolysis+of+waste+PET+using+solid+acid+catalyst+in+supercritical+CO2&rft.jtitle=AIChE+journal&rft.au=Li%2C+Xue%E2%80%90Kun&rft.au=Lu%2C+Hui&rft.au=Guo%2C+Wen%E2%80%90Ze&rft.au=Cao%2C+Gui%E2%80%90Ping&rft.date=2015-01-01&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=61&rft.issue=1&rft.spage=200&rft.epage=214&rft_id=info:doi/10.1002%2Faic.14632&rft.externalDBID=10.1002%252Faic.14632&rft.externalDocID=AIC14632 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon |