Reaction kinetics and mechanism of catalyzed hydrolysis of waste PET using solid acid catalyst in supercritical CO2

Hydrolysis of waste poly(ethylene terphthalate) (PET) using solid acid catalyst in SCCO2 is presented in this work for the first time. The mechanism of PET chains scission was proved to be a combination of chain end and random chain scission by Fourier transform ‐ infrared spectroscopy (FT‐IR) and t...

Full description

Saved in:
Bibliographic Details
Published inAIChE journal Vol. 61; no. 1; pp. 200 - 214
Main Authors Li, Xue-Kun, Lu, Hui, Guo, Wen-Ze, Cao, Gui-Ping, Liu, Hong-Lai, Shi, Yun-Hai
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.01.2015
Subjects
Online AccessGet full text
ISSN0001-1541
1547-5905
DOI10.1002/aic.14632

Cover

Abstract Hydrolysis of waste poly(ethylene terphthalate) (PET) using solid acid catalyst in SCCO2 is presented in this work for the first time. The mechanism of PET chains scission was proved to be a combination of chain end and random chain scission by Fourier transform ‐ infrared spectroscopy (FT‐IR) and titration analysis. A new reaction kinetics model of PET hydrolysis in SCCO2 was setup by introducing the Arrhenius equation into an ordinary reaction rate equation, the frequency factor and apparent activation energy were expressed in terms of temperature and CO2 pressure, respectively. With this reaction kinetics model, the effects of temperature, and pressure were investigated. An interesting mechanism was proposed to describe the reaction process that both water molecules and hydroniums were carried and penetrated into the amorphous regions of the swollen PET by SCCO2, subsequently hydrolysis reaction preferentially took place in the amorphous regions of both surface and bulk of PET matrix. © 2014 American Institute of Chemical Engineers AIChE J, 61: 200–214, 2015
AbstractList Hydrolysis of waste poly(ethylene terphthalate) (PET) using solid acid catalyst in SCCO2 is presented in this work for the first time. The mechanism of PET chains scission was proved to be a combination of chain end and random chain scission by Fourier transform ‐ infrared spectroscopy (FT‐IR) and titration analysis. A new reaction kinetics model of PET hydrolysis in SCCO2 was setup by introducing the Arrhenius equation into an ordinary reaction rate equation, the frequency factor and apparent activation energy were expressed in terms of temperature and CO2 pressure, respectively. With this reaction kinetics model, the effects of temperature, and pressure were investigated. An interesting mechanism was proposed to describe the reaction process that both water molecules and hydroniums were carried and penetrated into the amorphous regions of the swollen PET by SCCO2, subsequently hydrolysis reaction preferentially took place in the amorphous regions of both surface and bulk of PET matrix. © 2014 American Institute of Chemical Engineers AIChE J, 61: 200–214, 2015
Author Guo, Wen-Ze
Li, Xue-Kun
Lu, Hui
Cao, Gui-Ping
Shi, Yun-Hai
Liu, Hong-Lai
Author_xml – sequence: 1
  givenname: Xue-Kun
  surname: Li
  fullname: Li, Xue-Kun
  organization: UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, People's Republic of China
– sequence: 2
  givenname: Hui
  surname: Lu
  fullname: Lu, Hui
  organization: UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, People's Republic of China
– sequence: 3
  givenname: Wen-Ze
  surname: Guo
  fullname: Guo, Wen-Ze
  organization: UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, People's Republic of China
– sequence: 4
  givenname: Gui-Ping
  surname: Cao
  fullname: Cao, Gui-Ping
  email: gpcao@ecust.edu.cn
  organization: UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, People's Republic of China
– sequence: 5
  givenname: Hong-Lai
  surname: Liu
  fullname: Liu, Hong-Lai
  organization: UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, People's Republic of China
– sequence: 6
  givenname: Yun-Hai
  surname: Shi
  fullname: Shi, Yun-Hai
  organization: UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, People's Republic of China
BookMark eNo9kN1qwjAcxcNwMHW72BvkBapJ2iTNpRSngswxHBu7CWmaamZNpam47ukXdezm_3Hgd-CcAei52hkAHjEaYYTIWFk9wgmLyQ3oY5rwiApEe6CPEMJREPAdGHj_FT7CU9IH_tUo3drawZ11prXaQ-UKuDd6q5z1e1iXUKtWVd2PKeC2K5q66rz1Z_2kfGvgy3QNj966DfR1ZQuodBhXxLfQOuiPB9PoxgZzVcFsRe7Bbakqbx7-9hC8PU3X2TxarmaLbLKMNgliJKKcxQwhIVLMckIRwXGakyTnjBtGc06UoMIIhZMi4TwvlBElTggzBKWlJiwegvHV92Qr08lDY_eq6SRG8lyVDFXJS1VyssguRyCiK2FDsu9_QjU7yXjMqXx_nkkuPsUHonM5j38BiGRu0w
ContentType Journal Article
Copyright 2014 American Institute of Chemical Engineers
Copyright_xml – notice: 2014 American Institute of Chemical Engineers
DBID BSCLL
DOI 10.1002/aic.14632
DatabaseName Istex
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1547-5905
EndPage 214
ExternalDocumentID AIC14632
ark_67375_WNG_79Z9X05H_H
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  funderid: 20676031; 20876051
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHQN
AAIHA
AAIKC
AAMMB
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJIA
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYN
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PHGZM
PHGZT
PQGLB
PQQKQ
PRG
PROAC
PTHSS
PUEGO
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
3V.
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RBB
RWI
UAO
WRC
WSB
ID FETCH-LOGICAL-g4062-576360099816b2502138b24b767e65b72a959e9a14d477bdae9f1426e208fc263
IEDL.DBID DR2
ISSN 0001-1541
IngestDate Wed Jan 22 16:39:20 EST 2025
Sun Sep 21 06:21:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g4062-576360099816b2502138b24b767e65b72a959e9a14d477bdae9f1426e208fc263
Notes istex:8B127C8A4CD66EA8FDCC4882F7C2E190F53CC35E
ark:/67375/WNG-79Z9X05H-H
ArticleID:AIC14632
National Natural Science Foundation of China (NSFC) - No. 20676031; No. 20876051
PageCount 15
ParticipantIDs wiley_primary_10_1002_aic_14632_AIC14632
istex_primary_ark_67375_WNG_79Z9X05H_H
PublicationCentury 2000
PublicationDate January 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationTitle AIChE journal
PublicationTitleAlternate AIChE J
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Viana ME, Riul A, Carvalho GM, Rubira AF, Muniz EC. Chemical recycling of PET by catalyzed glycolysis: kinetics of the heterogeneous reaction. Chem Eng J. 2011;173:210-219.
Genta M, Yano F, Kondo Y, Matsubara W, Oomoto S. Development of chemical recycling process for post-consumer PET bottle by methanolysis in supercritical methanol. Tech Rev. 2003;40:1-4.
Li D-C, Liu T, Zhao L, Yuan W-K. Solubility and diffusivity of carbon dioxide in solid-state isotactic polypropylene by the pressure−decay method. Ind Eng Chem Res. 2009;48:7117-7124.
Téllez CA, Hollauer E, Mondragon MA, Castaño VM. Fourier transform infrared and Raman spectra, vibrational assignment and ab initio calculations of terephthalic acid and related compounds. Spectrochim Acta A. 2001;57:993-1007.
Yoshioka T, Okayama N, Okuwaki A. Kinetics of hydrolysis of PET powder in nitric acid by a modified shrinking-core model. Ind Eng Chem Res. 1998;37:336-340.
Arata K, Hino M. Solid catalyst treated with anion: XVIII. Benzoylation of toluene with benzoyl chloride and benzoic anhydride catalysed by solid superacid of sulfate-supported alumina. Appl Catal. 1990;59:197-204.
Ciric AR, Miao P. Steady state multiplicities in an ethylene glycol reactive distillation column. Ind Eng Chem Res. 1994;33:2738-2748.
Wissinger RG, Paulaitis ME. Swelling and sorption in polymer-CO2 mixtures at elevated pressures. J Polym Sci B. 1987;25:2497-2510.
Davey RJ, Maginn SJ. Morphology and polymorphism in molecular crystals: terephthalic acid. J Chem Soc Faraday Trans. 1994;90:1003-1009.
Uhlmann DR. A kinetic treatment of glass formation. J Non-Cryst Solids. 1972;7:337-348.
Pickett JE, Coyle DJ. Hydrolysis kinetics of condensation polymers under humidity aging conditions. Polym Degrad Stab. 2013;98:1311-1320.
Achilias DS, Karayannidis GP. The chemical recycling of PET in the framework of sustainable development. Water Air Soil Pollut Focus. 2004;4:385-396.
Corma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev. 1995;95:559-614.
Sorrentino L, Di Maio E, Iannace S. Poly(ethylene terephthalate) foams: correlation between the polymer properties and the foaming process. J Appl Polym Sci. 2010;116:27-35.
Goto M, Sasaki M, Hirose T. Reactions of polymers in supercritical fluids for chemical recycling of waste plastics. J Mater Sci. 2006;41:1509-1515.
Sivalingam G, Agarwal N, Madras G. Distributed midpoint chain scission in ultrasonic degradation of polymers. AIChE J. 2004;50:2258-2265.
Matsuhashi H, Miyazaki H, Kawamura Y, Nakamura H, Arata K. Preparation of a solid superacid of sulfated tin oxide with acidity higher than that of sulfated zirconia and its applications to aldol condensation and benzoylation1. Chem Mater. 2001;13:3038-3042.
Marimuthu A, Madras G. Continuous distribution kinetics for microwave-assisted oxidative degradation of poly(alkyl methacrylates). AIChE J. 2008;54:2164-2173.
Campanelli JR, Kamal MR, Cooper DG. A kinetic study of the hydrolytic degradation of polyethylene terephthalate at high temperatures. J Appl Polym Sci. 1993;48:443-451.
Bonavoglia B, Storti G, Morbidelli M, Rajendran A, Mazzotti M. Sorption and swelling of semicrystalline polymers in supercritical CO2. J Polym Sci B. 2006;44:1531-1546.
de Almeida RM, Noda LK, Gonçalves NS, Meneghetti SMP, Meneghetti MR. Transesterification reaction of vegetable oils, using superacid sulfated TiO2-base catalysts. Appl Catal A. 2008;347:100-105.
Takada M, Ohshima M. Effect of CO2 on crystallization kinetics of poly(ethylene terephthalate). Polym Eng Sci. 2003;43:479-489.
Karayannidis GP, Chatziavgoustis AP, Achilias DS. Poly(ethylene terephthalate) recycling and recovery of pure terephthalic acid by alkaline hydrolysis. Adv Polym Tech. 2002;21:250-259.
Kazarian SG, Vincent MF, Bright FV, Liotta CL, Eckert CA. Specific intermolecular interaction of carbon dioxide with polymers. J Am Chem Soc. 1996;118:1729-1736.
Imran M, Kim B-K, Han M, Cho BG, Kim DH. Sub- and supercritical glycolysis of polyethylene terephthalate (PET) into the monomer bis(2-hydroxyethyl) terephthalate (BHET). Polym Degrad Stab. 2010;95:1686-1693.
Mueller R-J. Biological degradation of synthetic polyesters-enzymes as potential catalysts for polyester recycling. Process Biochem. 2006;41:2124-2128.
Paszun D, Spychaj T. Chemical recycling of poly(ethylene terephthalate). Ind Eng Chem Res. 1997;36:1373-1383.
Chiou JS, Barlow JW, Paul DR. Plasticization of glassy polymers by CO2. J Appl Polym Sci. 1985;30:2633-2642.
Yoshioka T, Motoki T, Okuwaki A. Kinetics of hydrolysis of poly(ethylene terephthalate) powder in sulfuric acid by a modified shrinking-core model. Ind Eng Chem Res. 2001;40:75-79.
Chiou JS, Barlow JW, Paul DR. Polymer crystallization induced by sorption of CO2 gas. J Appl Polym Sci. 1985;30:3911-3924.
Launay A, Thominette F, Verdu J. Hydrolysis of poly(ethylene terephthalate): a kinetic study. Polym Degrad Stab. 1994;46:319-324.
Corma A, Fornés V, Juan-Rajadell MI, Nieto JML. Influence of preparation conditions on the structure and catalytic properties of SO42−/ZrO2 superacid catalysts. Appl Catal A. 1994;116:151-163.
Siddiqui MN, Achilias DS, Redhwi HH, Bikiaris DN, Katsogiannis KAG, Karayannidis GP. Hydrolytic depolymerization of PET in a microwave reactor. Macromol Mater Eng. 2010;295:575-584.
Scheirs J, Long TE. Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters. New York: Wiley, 2004.
Goto M. Chemical recycling of plastics using sub- and supercritical fluids. J Supercrit Fluids. 2009;47:500-507.
Sinha V, Patel M, Patel J. Pet waste management by chemical recycling: a review. J Polym Environ. 2010;18:8-25.
Holland BJ, Hay JN. The thermal degradation of PET and analogous polyesters measured by thermal analysis-Fourier transform infrared spectroscopy. Polymer. 2002;43:1835-1847.
Ballara A, Verdu J. Physical aspects of the hydrolysis of polyethylene terephthalate. Polym Degrad Stab. 1989;26:361-374.
Liu F, Cui X, Yu S, Li Z, Ge X. Hydrolysis reaction of poly(ethylene terephthalate) using ionic liquids as solvent and catalyst. J Appl Polym Sci. 2009;114:3561-3565.
Otton J, Ratton S, Vasnev VA, Markova GD, Nametov KM, Bakhmutov VI, Komarova LI, Vinogradova SV, Korshak VV. Investigation of the formation of poly(ethylene terephthalate) with model molecules: kinetics and mechanisms of the catalytic esterification and alcoholysis reactions. II. Catalysis by metallic derivatives (monofunctional reactants). J Polym Sci A. 1988;26:2199-2224.
Piñero-Hernanz R, García-Serna J, Cocero MJ. Nonstationary model of the semicontinuous depolymerization of polycarbonate. AIChE J. 2006;52:4186-4199.
Mishra S, Goje AS, Zope VS. Chemical recycling, kinetics, and thermodynamics of hydrolysis of poly(ethylene terephthalate) (PET) waste in sulfuric acid in presence of phosphoric acid. Polym Plast Technol Eng. 2003;42:581-603.
Shen X, Wang YX, Hu CW, Qian K, Ji Z, Jin M. One-pot conversion of inulin to furan derivatives catalyzed by sulfated TiO2/mordenite solid acid. ChemCatChem. 2012;4:2013-2019.
Dimitrov N, Kratofil KL, Ptiček SA, Hrnjak-Murgić Z. Analysis of recycled PET bottles products by pyrolysis-gas chromatography. Polym Degrad Stab. 2013;98:972-979.
Tomasko DL, Li H, Liu D, Han X, Wingert MJ, Lee LJ, Koelling KW. A review of CO2 applications in the processing of polymers. Ind Eng Chem Res. 2003;42:6431-6456.
Carta D, Cao G, D'Angeli C. Chemical recycling of poly(ethylene terephthalate) (pet) by hydrolysis and glycolysis. Environ Sci Pollut Res. 2003;10:390-394.
Mancini SD, Zanin M. Post consumer pet depolymerization by acid hydrolysis. Polym Plast Technol Eng. 2007;46:135-144.
Mishra S, Zope VS, Goje AS. Kinetics and thermodynamics of hydrolytic depolymerization of poly(ethylene terephthalate) at high pressure and temperature. J Appl Polym Sci. 2003;90:3305-3309.
Goel SK, Beckman EJ. Nucleation and growth in microcellular materials: supercritical CO2 as foaming agent. AIChE J. 1995;41:357-367.
McCoy BJ, Madras G. Degradation kinetics of polymers in solution: dynamics of molecular weight distributions. AIChE J. 1997;43:802-810.
Bratek W, Świątkowski A, Pakuła M, Biniak S, Bystrzejewski M, Szmigielski R. Characteristics of activated carbon prepared from waste PET by carbon dioxide activation. J Anal Appl Pyrolysis. 2013;100:192-198.
Lin C-C, Guo G-L, Tsai T-L. A bi-order kinetic model for poly(methyl methacrylate) decomposition in HNO3 using microwave irradiation. AIChE J. 2009;55:2150-2158.
Madras G, McCoy BJ. Molecular-weight distribution kinetics for ultrasonic reactions of polymers. AIChE J. 2001;47:2341-2348.
Steppan DD, Doherty MF, Malone MF. A simplified degradation model for nylon 6,6 polymerization. J Appl Polym Sci. 1991;42:1009-1021.
von Schnitzler J, Eggers R. Mass transfer in polymers in a supercritical CO2-atmosphere. J Supercrit Fluids. 1999;16:81-92.
Li D, Liu T, Zhao L, Yuan W. Controlling sandwich-structure of PET microcellular foams using coupling of CO2 diffusion and induced crystallization. AIChE J. 2012;58:2512-2523.
Karayannidis GP, Achilias DS. Chemical recycling of poly(ethylene terephthalate). Macromol Mater Eng. 2007;292:128-146.
Li D-C, Liu T, Zhao L, Lian X-S, Yuan W-K. Foaming of poly(lactic acid) based on its nonisothermal crystallization behavior under compressed carbon dioxide. Ind Eng Chem Res. 2011;50:1997-2007.
Li X-K, Cao G-P, Chen L-H, Zhang R-H, Liu H-L, Shi Y-H. Study of the anomalous sorption behavior of CO2 into poly(methyl methacrylate) films in the vicinity of the critical pressure and temperature using a quartz crystal microbalance (QCM). Langmuir. 2013;29:14089-14100.
Adschiri T, Sato O, Machida K, Saito N, Arai K. Recovery of terephthalic acid by decomposition of PET in supercritical water. Kag Kog Ronbunshu. 1997;23:505-511.
Sharma YC, Singh B, Korstad J. Advancements in solid acid catalysts for ecofriendly and economically viable synthesis of biodiesel. Biofuels Bioprod Biorefin. 2011;5:69-92.
Middleton AC, Duckett RA, Ward IM, Mahendrasingam A, Martin C. Real-time FTIR and WAXS studies of drawing behavi
2013; 29
2009; 47
1990; 59
1997; 43
2010; 18
2013; 127
2004; 4
2008; 347
1997; 2
2012; 58
2001; 47
2001; 40
2009; 114
2009; 48
2003; 10
2001; 42
2009; 55
2002; 48
2003; 90
2013; 98
2010; 116
2007; 292
2010; 117
1999; 16
1991; 42
2002; 43
1994; 33
2003; 49
1984; 19
2001; 13
2003; 40
2001; 57
2003; 42
2003; 43
1993; 48
1991; 4
1995; 95
1994; 116
2006; 52
1994; 90
1997; 23
2013; 100
1994; 46
1978; 16
2008; 54
2004
1989; 26
2011; 173
1998; 135
2011; 5
1972; 7
2005; 44
1998; 37
1995; 41
1987; 25
2006; 41
2004; 50
2013; 78
2006; 44
2004; 58
1997; 36
1988; 26
2002; 21
2011; 50
2010; 295
2013; 130
1985; 30
2014
2012; 4
2001; 79
2007; 46
2010; 95
1996; 118
1998; 36
References_xml – reference: Arai K. Conversion of polymers and biomass to chemical intermediates with supercritical water. Macromol Symposia. 1998;135:205-214.
– reference: SuriÑach S, Baro MD, Clavaguera-Mora MT, Clavaguera N. Glass formation and crystallization in the GeSe2-Sb2Te3 system. J Mater Sci. 1984;19:3005-3012.
– reference: Sivalingam G, Agarwal N, Madras G. Kinetics of microwave-assisted oxidative degradation of polystyrene in solution. AIChE J. 2003;49:1821-1826.
– reference: Lin C-C, Guo G-L, Tsai T-L. A bi-order kinetic model for poly(methyl methacrylate) decomposition in HNO3 using microwave irradiation. AIChE J. 2009;55:2150-2158.
– reference: Causin V, Marega C, Guzzini G, Marigo A. Forensic analysis of poly(ethylene terephthalate) fibers by infrared spectroscopy. Appl Spectrosc. 2004;58:1272-1276.
– reference: Yoshioka T, Okayama N, Okuwaki A. Kinetics of hydrolysis of PET powder in nitric acid by a modified shrinking-core model. Ind Eng Chem Res. 1998;37:336-340.
– reference: Pickett JE, Coyle DJ. Hydrolysis kinetics of condensation polymers under humidity aging conditions. Polym Degrad Stab. 2013;98:1311-1320.
– reference: Sorrentino L, Di Maio E, Iannace S. Poly(ethylene terephthalate) foams: correlation between the polymer properties and the foaming process. J Appl Polym Sci. 2010;116:27-35.
– reference: Ballara A, Verdu J. Physical aspects of the hydrolysis of polyethylene terephthalate. Polym Degrad Stab. 1989;26:361-374.
– reference: Piñero-Hernanz R, García-Serna J, Cocero MJ. Nonstationary model of the semicontinuous depolymerization of polycarbonate. AIChE J. 2006;52:4186-4199.
– reference: Mancini SD, Zanin M. Post consumer pet depolymerization by acid hydrolysis. Polym Plast Technol Eng. 2007;46:135-144.
– reference: Madras G, McCoy BJ. Molecular-weight distribution kinetics for ultrasonic reactions of polymers. AIChE J. 2001;47:2341-2348.
– reference: Middleton AC, Duckett RA, Ward IM, Mahendrasingam A, Martin C. Real-time FTIR and WAXS studies of drawing behavior of poly(ethylene terephthalate) films. J Appl Polym Sci. 2001;79:1825-1837.
– reference: Karayannidis GP, Chatziavgoustis AP, Achilias DS. Poly(ethylene terephthalate) recycling and recovery of pure terephthalic acid by alkaline hydrolysis. Adv Polym Tech. 2002;21:250-259.
– reference: Uhlmann DR. A kinetic treatment of glass formation. J Non-Cryst Solids. 1972;7:337-348.
– reference: Koros WJ, Paul DR. CO2 sorption in poly(ethylene terephthalate) above and below the glass transition. J Polym Sci Polym Phys Ed. 1978;16:1947-1963.
– reference: Steppan DD, Doherty MF, Malone MF. A simplified degradation model for nylon 6,6 polymerization. J Appl Polym Sci. 1991;42:1009-1021.
– reference: Ciric AR, Miao P. Steady state multiplicities in an ethylene glycol reactive distillation column. Ind Eng Chem Res. 1994;33:2738-2748.
– reference: Aydemir B, Aslı Sezgi N, Doğu T. Synthesis of TPA impregnated SBA-15 catalysts and their performance in polyethylene degradation reaction. AIChE J. 2012;58:2466-2472.
– reference: Campanelli JR, Kamal MR, Cooper DG. A kinetic study of the hydrolytic degradation of polyethylene terephthalate at high temperatures. J Appl Polym Sci. 1993;48:443-451.
– reference: Corma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev. 1995;95:559-614.
– reference: Karayannidis GP, Achilias DS. Chemical recycling of poly(ethylene terephthalate). Macromol Mater Eng. 2007;292:128-146.
– reference: Mancini SD, Nogueira AR, Rangel EC, da Cruz NC. Solid-state hydrolysis of postconsumer polyethylene terephthalate after plasma treatment. J Appl Polym Sci. 2013;127:1989-1996.
– reference: Goto M, Sasaki M, Hirose T. Reactions of polymers in supercritical fluids for chemical recycling of waste plastics. J Mater Sci. 2006;41:1509-1515.
– reference: von Schnitzler J, Eggers R. Mass transfer in polymers in a supercritical CO2-atmosphere. J Supercrit Fluids. 1999;16:81-92.
– reference: Marimuthu A, Madras G. Continuous distribution kinetics for microwave-assisted oxidative degradation of poly(alkyl methacrylates). AIChE J. 2008;54:2164-2173.
– reference: Sinha V, Patel M, Patel J. Pet waste management by chemical recycling: a review. J Polym Environ. 2010;18:8-25.
– reference: Takada M, Ohshima M. Effect of CO2 on crystallization kinetics of poly(ethylene terephthalate). Polym Eng Sci. 2003;43:479-489.
– reference: Chiou JS, Barlow JW, Paul DR. Polymer crystallization induced by sorption of CO2 gas. J Appl Polym Sci. 1985;30:3911-3924.
– reference: Bonavoglia B, Storti G, Morbidelli M, Rajendran A, Mazzotti M. Sorption and swelling of semicrystalline polymers in supercritical CO2. J Polym Sci B. 2006;44:1531-1546.
– reference: Adschiri T, Sato O, Machida K, Saito N, Arai K. Recovery of terephthalic acid by decomposition of PET in supercritical water. Kag Kog Ronbunshu. 1997;23:505-511.
– reference: Goel SK, Beckman EJ. Nucleation and growth in microcellular materials: supercritical CO2 as foaming agent. AIChE J. 1995;41:357-367.
– reference: Mueller R-J. Biological degradation of synthetic polyesters-enzymes as potential catalysts for polyester recycling. Process Biochem. 2006;41:2124-2128.
– reference: Matsuhashi H, Miyazaki H, Kawamura Y, Nakamura H, Arata K. Preparation of a solid superacid of sulfated tin oxide with acidity higher than that of sulfated zirconia and its applications to aldol condensation and benzoylation1. Chem Mater. 2001;13:3038-3042.
– reference: Kazarian SG, Vincent MF, Bright FV, Liotta CL, Eckert CA. Specific intermolecular interaction of carbon dioxide with polymers. J Am Chem Soc. 1996;118:1729-1736.
– reference: Imran M, Kim B-K, Han M, Cho BG, Kim DH. Sub- and supercritical glycolysis of polyethylene terephthalate (PET) into the monomer bis(2-hydroxyethyl) terephthalate (BHET). Polym Degrad Stab. 2010;95:1686-1693.
– reference: Sharma YC, Singh B, Korstad J. Advancements in solid acid catalysts for ecofriendly and economically viable synthesis of biodiesel. Biofuels Bioprod Biorefin. 2011;5:69-92.
– reference: Sivalingam G, Agarwal N, Madras G. Distributed midpoint chain scission in ultrasonic degradation of polymers. AIChE J. 2004;50:2258-2265.
– reference: Li D-C, Liu T, Zhao L, Lian X-S, Yuan W-K. Foaming of poly(lactic acid) based on its nonisothermal crystallization behavior under compressed carbon dioxide. Ind Eng Chem Res. 2011;50:1997-2007.
– reference: Dimitrov N, Kratofil KL, Ptiček SA, Hrnjak-Murgić Z. Analysis of recycled PET bottles products by pyrolysis-gas chromatography. Polym Degrad Stab. 2013;98:972-979.
– reference: Siddiqui MN, Achilias DS, Redhwi HH, Bikiaris DN, Katsogiannis KAG, Karayannidis GP. Hydrolytic depolymerization of PET in a microwave reactor. Macromol Mater Eng. 2010;295:575-584.
– reference: Paszun D, Spychaj T. Chemical recycling of poly(ethylene terephthalate). Ind Eng Chem Res. 1997;36:1373-1383.
– reference: Mishra S, Zope VS, Goje AS. Kinetics and thermodynamics of hydrolytic depolymerization of poly(ethylene terephthalate) at high pressure and temperature. J Appl Polym Sci. 2003;90:3305-3309.
– reference: Achilias DS, Karayannidis GP. The chemical recycling of PET in the framework of sustainable development. Water Air Soil Pollut Focus. 2004;4:385-396.
– reference: Goto M. Chemical recycling of plastics using sub- and supercritical fluids. J Supercrit Fluids. 2009;47:500-507.
– reference: Arata K, Hino M. Solid catalyst treated with anion: XVIII. Benzoylation of toluene with benzoyl chloride and benzoic anhydride catalysed by solid superacid of sulfate-supported alumina. Appl Catal. 1990;59:197-204.
– reference: Genta M, Iwaya T, Sasaki M, Goto M, Hirose T. Depolymerization mechanism of poly(ethylene terephthalate) in supercritical methanol. Ind Eng Chem Res. 2005;44:3894-3900.
– reference: Wissinger RG, Paulaitis ME. Swelling and sorption in polymer-CO2 mixtures at elevated pressures. J Polym Sci B. 1987;25:2497-2510.
– reference: Zhang R-H, Li X-K, Cao G-P, Shi Y-H, Liu H-L, Yuan W-K, Roberts GW. Improved kinetic model of crystallization for isotactic polypropylene induced by supercritical CO2: introducing pressure and temperature dependence into the Avrami equation. Ind Eng Chem Res. 2011;50:10509-10515.
– reference: Chiou JS, Barlow JW, Paul DR. Plasticization of glassy polymers by CO2. J Appl Polym Sci. 1985;30:2633-2642.
– reference: Viana ME, Riul A, Carvalho GM, Rubira AF, Muniz EC. Chemical recycling of PET by catalyzed glycolysis: kinetics of the heterogeneous reaction. Chem Eng J. 2011;173:210-219.
– reference: Lu XF, Hay JN. Crystallization orientation and relaxation in uniaxially drawn poly(ethylene terephthalate). Polymer. 2001;42:8055-8067.
– reference: Li D-C, Liu T, Zhao L, Yuan W-K. Solubility and diffusivity of carbon dioxide in solid-state isotactic polypropylene by the pressure−decay method. Ind Eng Chem Res. 2009;48:7117-7124.
– reference: Corma A. Solid acid catalysts. Curr Opin Solid State Mater Sci. 1997;2:63-75.
– reference: Liu F, Cui X, Yu S, Li Z, Ge X. Hydrolysis reaction of poly(ethylene terephthalate) using ionic liquids as solvent and catalyst. J Appl Polym Sci. 2009;114:3561-3565.
– reference: Yoshioka T, Motoki T, Okuwaki A. Kinetics of hydrolysis of poly(ethylene terephthalate) powder in sulfuric acid by a modified shrinking-core model. Ind Eng Chem Res. 2001;40:75-79.
– reference: Scheirs J, Long TE. Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters. New York: Wiley, 2004.
– reference: Davey RJ, Maginn SJ. Morphology and polymorphism in molecular crystals: terephthalic acid. J Chem Soc Faraday Trans. 1994;90:1003-1009.
– reference: Shen X, Wang YX, Hu CW, Qian K, Ji Z, Jin M. One-pot conversion of inulin to furan derivatives catalyzed by sulfated TiO2/mordenite solid acid. ChemCatChem. 2012;4:2013-2019.
– reference: de Almeida RM, Noda LK, Gonçalves NS, Meneghetti SMP, Meneghetti MR. Transesterification reaction of vegetable oils, using superacid sulfated TiO2-base catalysts. Appl Catal A. 2008;347:100-105.
– reference: Zhang L, Gao J, Zou J, Yi F. Hydrolysis of poly(ethylene terephthalate) waste bottles in the presence of dual functional phase transfer catalysts. J Appl Polym Sci. 2013;130:2790-2795.
– reference: Bratek W, Świątkowski A, Pakuła M, Biniak S, Bystrzejewski M, Szmigielski R. Characteristics of activated carbon prepared from waste PET by carbon dioxide activation. J Anal Appl Pyrolysis. 2013;100:192-198.
– reference: Mishra S, Goje AS, Zope VS. Chemical recycling, kinetics, and thermodynamics of hydrolysis of poly(ethylene terephthalate) (PET) waste in sulfuric acid in presence of phosphoric acid. Polym Plast Technol Eng. 2003;42:581-603.
– reference: Carta D, Cao G, D'Angeli C. Chemical recycling of poly(ethylene terephthalate) (pet) by hydrolysis and glycolysis. Environ Sci Pollut Res. 2003;10:390-394.
– reference: Holland BJ, Hay JN. The thermal degradation of PET and analogous polyesters measured by thermal analysis-Fourier transform infrared spectroscopy. Polymer. 2002;43:1835-1847.
– reference: Téllez CA, Hollauer E, Mondragon MA, Castaño VM. Fourier transform infrared and Raman spectra, vibrational assignment and ab initio calculations of terephthalic acid and related compounds. Spectrochim Acta A. 2001;57:993-1007.
– reference: McCoy BJ, Madras G. Degradation kinetics of polymers in solution: dynamics of molecular weight distributions. AIChE J. 1997;43:802-810.
– reference: Lambert SM, Paulaitis ME. Crystallization of poly(ethylene terephthalate) induced by carbon dioxide sorption at elevated pressures. J Supercrit Fluids. 1991;4:15-23.
– reference: Otton J, Ratton S, Vasnev VA, Markova GD, Nametov KM, Bakhmutov VI, Komarova LI, Vinogradova SV, Korshak VV. Investigation of the formation of poly(ethylene terephthalate) with model molecules: kinetics and mechanisms of the catalytic esterification and alcoholysis reactions. II. Catalysis by metallic derivatives (monofunctional reactants). J Polym Sci A. 1988;26:2199-2224.
– reference: Li X-K, Cao G-P, Chen L-H, Zhang R-H, Liu H-L, Shi Y-H. Study of the anomalous sorption behavior of CO2 into poly(methyl methacrylate) films in the vicinity of the critical pressure and temperature using a quartz crystal microbalance (QCM). Langmuir. 2013;29:14089-14100.
– reference: Goto M, Koyamoto H, Kodama A, Hirose T, Nagaoka S, McCoy BJ. Degradation kinetics of polyethylene terephthalate in supercritical methanol. AIChE J. 2002;48:136-144.
– reference: Wang PC, Zhu J, Liu X, Lu TT, Lu M. Regioselective nitration of aromatics with nanomagnetic solid superacid SO42−/ZrO2-MxOy-Fe3O4 and its theoretical studies. ChemPlusChem. 2013;78:310-317.
– reference: Zhang Z, Handa YP. An in situ study of plasticization of polymers by high-pressure gases. J Polym Sci B. 1998;36:977-982.
– reference: Corma A, Fornés V, Juan-Rajadell MI, Nieto JML. Influence of preparation conditions on the structure and catalytic properties of SO42−/ZrO2 superacid catalysts. Appl Catal A. 1994;116:151-163.
– reference: Song X, Zhang S, Zhang D. Catalysis investigation of PET depolymerization under metal oxides by microwave irradiation. J Appl Polym Sci. 2010;117:3155-3159.
– reference: Tomasko DL, Li H, Liu D, Han X, Wingert MJ, Lee LJ, Koelling KW. A review of CO2 applications in the processing of polymers. Ind Eng Chem Res. 2003;42:6431-6456.
– reference: Genta M, Yano F, Kondo Y, Matsubara W, Oomoto S. Development of chemical recycling process for post-consumer PET bottle by methanolysis in supercritical methanol. Tech Rev. 2003;40:1-4.
– reference: Launay A, Thominette F, Verdu J. Hydrolysis of poly(ethylene terephthalate): a kinetic study. Polym Degrad Stab. 1994;46:319-324.
– reference: Li D, Liu T, Zhao L, Yuan W. Controlling sandwich-structure of PET microcellular foams using coupling of CO2 diffusion and induced crystallization. AIChE J. 2012;58:2512-2523.
– volume: 295
  start-page: 575
  year: 2010
  end-page: 584
  article-title: Hydrolytic depolymerization of PET in a microwave reactor
  publication-title: Macromol Mater Eng.
– volume: 36
  start-page: 1373
  year: 1997
  end-page: 1383
  article-title: Chemical recycling of poly(ethylene terephthalate)
  publication-title: Ind Eng Chem Res.
– volume: 42
  start-page: 8055
  year: 2001
  end-page: 8067
  article-title: Crystallization orientation and relaxation in uniaxially drawn poly(ethylene terephthalate)
  publication-title: Polymer.
– volume: 43
  start-page: 802
  year: 1997
  end-page: 810
  article-title: Degradation kinetics of polymers in solution: dynamics of molecular weight distributions
  publication-title: AIChE J.
– volume: 41
  start-page: 357
  year: 1995
  end-page: 367
  article-title: Nucleation and growth in microcellular materials: supercritical CO as foaming agent
  publication-title: AIChE J.
– volume: 95
  start-page: 1686
  year: 2010
  end-page: 1693
  article-title: Sub‐ and supercritical glycolysis of polyethylene terephthalate (PET) into the monomer bis(2‐hydroxyethyl) terephthalate (BHET)
  publication-title: Polym Degrad Stab.
– volume: 127
  start-page: 1989
  year: 2013
  end-page: 1996
  article-title: Solid‐state hydrolysis of postconsumer polyethylene terephthalate after plasma treatment
  publication-title: J Appl Polym Sci.
– volume: 135
  start-page: 205
  year: 1998
  end-page: 214
  article-title: Conversion of polymers and biomass to chemical intermediates with supercritical water
  publication-title: Macromol Symposia.
– volume: 48
  start-page: 7117
  year: 2009
  end-page: 7124
  article-title: Solubility and diffusivity of carbon dioxide in solid‐state isotactic polypropylene by the pressure−decay method
  publication-title: Ind Eng Chem Res.
– volume: 48
  start-page: 443
  year: 1993
  end-page: 451
  article-title: A kinetic study of the hydrolytic degradation of polyethylene terephthalate at high temperatures
  publication-title: J Appl Polym Sci.
– volume: 130
  start-page: 2790
  year: 2013
  end-page: 2795
  article-title: Hydrolysis of poly(ethylene terephthalate) waste bottles in the presence of dual functional phase transfer catalysts
  publication-title: J Appl Polym Sci.
– volume: 50
  start-page: 1997
  year: 2011
  end-page: 2007
  article-title: Foaming of poly(lactic acid) based on its nonisothermal crystallization behavior under compressed carbon dioxide
  publication-title: Ind Eng Chem Res.
– volume: 26
  start-page: 361
  year: 1989
  end-page: 374
  article-title: Physical aspects of the hydrolysis of polyethylene terephthalate
  publication-title: Polym Degrad Stab.
– year: 2014
– volume: 5
  start-page: 69
  year: 2011
  end-page: 92
  article-title: Advancements in solid acid catalysts for ecofriendly and economically viable synthesis of biodiesel
  publication-title: Biofuels Bioprod Biorefin.
– volume: 10
  start-page: 390
  year: 2003
  end-page: 394
  article-title: Chemical recycling of poly(ethylene terephthalate) (pet) by hydrolysis and glycolysis
  publication-title: Environ Sci Pollut Res.
– volume: 173
  start-page: 210
  year: 2011
  end-page: 219
  article-title: Chemical recycling of PET by catalyzed glycolysis: kinetics of the heterogeneous reaction
  publication-title: Chem Eng J.
– volume: 117
  start-page: 3155
  year: 2010
  end-page: 3159
  article-title: Catalysis investigation of PET depolymerization under metal oxides by microwave irradiation
  publication-title: J Appl Polym Sci.
– volume: 347
  start-page: 100
  year: 2008
  end-page: 105
  article-title: Transesterification reaction of vegetable oils, using superacid sulfated TiO –base catalysts
  publication-title: Appl Catal A.
– volume: 23
  start-page: 505
  year: 1997
  end-page: 511
  article-title: Recovery of terephthalic acid by decomposition of PET in supercritical water
  publication-title: Kag Kog Ronbunshu.
– volume: 58
  start-page: 2466
  year: 2012
  end-page: 2472
  article-title: Synthesis of TPA impregnated SBA‐15 catalysts and their performance in polyethylene degradation reaction
  publication-title: AIChE J.
– volume: 44
  start-page: 3894
  year: 2005
  end-page: 3900
  article-title: Depolymerization mechanism of poly(ethylene terephthalate) in supercritical methanol
  publication-title: Ind Eng Chem Res.
– volume: 78
  start-page: 310
  year: 2013
  end-page: 317
  article-title: Regioselective nitration of aromatics with nanomagnetic solid superacid /ZrO ‐M O ‐Fe O and its theoretical studies
  publication-title: ChemPlusChem.
– volume: 43
  start-page: 1835
  year: 2002
  end-page: 1847
  article-title: The thermal degradation of PET and analogous polyesters measured by thermal analysis–Fourier transform infrared spectroscopy
  publication-title: Polymer.
– volume: 48
  start-page: 136
  year: 2002
  end-page: 144
  article-title: Degradation kinetics of polyethylene terephthalate in supercritical methanol
  publication-title: AIChE J.
– volume: 43
  start-page: 479
  year: 2003
  end-page: 489
  article-title: Effect of CO on crystallization kinetics of poly(ethylene terephthalate)
  publication-title: Polym Eng Sci.
– year: 2004
– volume: 54
  start-page: 2164
  year: 2008
  end-page: 2173
  article-title: Continuous distribution kinetics for microwave‐assisted oxidative degradation of poly(alkyl methacrylates)
  publication-title: AIChE J.
– volume: 2
  start-page: 63
  year: 1997
  end-page: 75
  article-title: Solid acid catalysts
  publication-title: Curr Opin Solid State Mater Sci.
– volume: 50
  start-page: 10509
  year: 2011
  end-page: 10515
  article-title: Improved kinetic model of crystallization for isotactic polypropylene induced by supercritical CO : introducing pressure and temperature dependence into the Avrami equation
  publication-title: Ind Eng Chem Res.
– volume: 13
  start-page: 3038
  year: 2001
  end-page: 3042
  article-title: Preparation of a solid superacid of sulfated tin oxide with acidity higher than that of sulfated zirconia and its applications to aldol condensation and benzoylation1
  publication-title: Chem Mater.
– volume: 16
  start-page: 81
  year: 1999
  end-page: 92
  article-title: Mass transfer in polymers in a supercritical CO ‐atmosphere
  publication-title: J Supercrit Fluids.
– volume: 42
  start-page: 6431
  year: 2003
  end-page: 6456
  article-title: A review of CO applications in the processing of polymers
  publication-title: Ind Eng Chem Res.
– volume: 58
  start-page: 2512
  year: 2012
  end-page: 2523
  article-title: Controlling sandwich‐structure of PET microcellular foams using coupling of CO diffusion and induced crystallization
  publication-title: AIChE J.
– volume: 44
  start-page: 1531
  year: 2006
  end-page: 1546
  article-title: Sorption and swelling of semicrystalline polymers in supercritical CO
  publication-title: J Polym Sci B.
– volume: 52
  start-page: 4186
  year: 2006
  end-page: 4199
  article-title: Nonstationary model of the semicontinuous depolymerization of polycarbonate
  publication-title: AIChE J.
– volume: 49
  start-page: 1821
  year: 2003
  end-page: 1826
  article-title: Kinetics of microwave‐assisted oxidative degradation of polystyrene in solution
  publication-title: AIChE J.
– volume: 41
  start-page: 1509
  year: 2006
  end-page: 1515
  article-title: Reactions of polymers in supercritical fluids for chemical recycling of waste plastics
  publication-title: J Mater Sci.
– volume: 16
  start-page: 1947
  year: 1978
  end-page: 1963
  article-title: CO sorption in poly(ethylene terephthalate) above and below the glass transition
  publication-title: J Polym Sci Polym Phys Ed.
– volume: 90
  start-page: 3305
  year: 2003
  end-page: 3309
  article-title: Kinetics and thermodynamics of hydrolytic depolymerization of poly(ethylene terephthalate) at high pressure and temperature
  publication-title: J Appl Polym Sci.
– volume: 59
  start-page: 197
  year: 1990
  end-page: 204
  article-title: Solid catalyst treated with anion: XVIII. Benzoylation of toluene with benzoyl chloride and benzoic anhydride catalysed by solid superacid of sulfate‐supported alumina
  publication-title: Appl Catal.
– volume: 50
  start-page: 2258
  year: 2004
  end-page: 2265
  article-title: Distributed midpoint chain scission in ultrasonic degradation of polymers
  publication-title: AIChE J.
– volume: 40
  start-page: 1
  year: 2003
  end-page: 4
  article-title: Development of chemical recycling process for post‐consumer PET bottle by methanolysis in supercritical methanol
  publication-title: Tech Rev.
– volume: 116
  start-page: 151
  year: 1994
  end-page: 163
  article-title: Influence of preparation conditions on the structure and catalytic properties of /ZrO superacid catalysts
  publication-title: Appl Catal A.
– volume: 292
  start-page: 128
  year: 2007
  end-page: 146
  article-title: Chemical recycling of poly(ethylene terephthalate)
  publication-title: Macromol Mater Eng.
– volume: 37
  start-page: 336
  year: 1998
  end-page: 340
  article-title: Kinetics of hydrolysis of PET powder in nitric acid by a modified shrinking‐core model
  publication-title: Ind Eng Chem Res.
– volume: 29
  start-page: 14089
  year: 2013
  end-page: 14100
  article-title: Study of the anomalous sorption behavior of CO into poly(methyl methacrylate) films in the vicinity of the critical pressure and temperature using a quartz crystal microbalance (QCM)
  publication-title: Langmuir.
– volume: 42
  start-page: 581
  year: 2003
  end-page: 603
  article-title: Chemical recycling, kinetics, and thermodynamics of hydrolysis of poly(ethylene terephthalate) (PET) waste in sulfuric acid in presence of phosphoric acid
  publication-title: Polym Plast Technol Eng.
– volume: 18
  start-page: 8
  year: 2010
  end-page: 25
  article-title: Pet waste management by chemical recycling: a review
  publication-title: J Polym Environ.
– volume: 4
  start-page: 385
  year: 2004
  end-page: 396
  article-title: The chemical recycling of PET in the framework of sustainable development
  publication-title: Water Air Soil Pollut Focus.
– volume: 90
  start-page: 1003
  year: 1994
  end-page: 1009
  article-title: Morphology and polymorphism in molecular crystals: terephthalic acid
  publication-title: J Chem Soc Faraday Trans.
– volume: 42
  start-page: 1009
  year: 1991
  end-page: 1021
  article-title: A simplified degradation model for nylon 6,6 polymerization
  publication-title: J Appl Polym Sci.
– volume: 19
  start-page: 3005
  year: 1984
  end-page: 3012
  article-title: Glass formation and crystallization in the GeSe2‐Sb2Te3 system
  publication-title: J Mater Sci.
– volume: 26
  start-page: 2199
  year: 1988
  end-page: 2224
  article-title: Investigation of the formation of poly(ethylene terephthalate) with model molecules: kinetics and mechanisms of the catalytic esterification and alcoholysis reactions. II. Catalysis by metallic derivatives (monofunctional reactants)
  publication-title: J Polym Sci A.
– volume: 47
  start-page: 500
  year: 2009
  end-page: 507
  article-title: Chemical recycling of plastics using sub‐ and supercritical fluids
  publication-title: J Supercrit Fluids.
– volume: 98
  start-page: 1311
  year: 2013
  end-page: 1320
  article-title: Hydrolysis kinetics of condensation polymers under humidity aging conditions
  publication-title: Polym Degrad Stab.
– volume: 21
  start-page: 250
  year: 2002
  end-page: 259
  article-title: Poly(ethylene terephthalate) recycling and recovery of pure terephthalic acid by alkaline hydrolysis
  publication-title: Adv Polym Tech.
– volume: 41
  start-page: 2124
  year: 2006
  end-page: 2128
  article-title: Biological degradation of synthetic polyesters—enzymes as potential catalysts for polyester recycling
  publication-title: Process Biochem.
– volume: 30
  start-page: 2633
  year: 1985
  end-page: 2642
  article-title: Plasticization of glassy polymers by CO
  publication-title: J Appl Polym Sci.
– volume: 57
  start-page: 993
  year: 2001
  end-page: 1007
  article-title: Fourier transform infrared and Raman spectra, vibrational assignment and ab initio calculations of terephthalic acid and related compounds
  publication-title: Spectrochim Acta A.
– volume: 36
  start-page: 977
  year: 1998
  end-page: 982
  article-title: An in situ study of plasticization of polymers by high‐pressure gases
  publication-title: J Polym Sci B.
– volume: 25
  start-page: 2497
  year: 1987
  end-page: 2510
  article-title: Swelling and sorption in polymer–CO mixtures at elevated pressures
  publication-title: J Polym Sci B.
– volume: 30
  start-page: 3911
  year: 1985
  end-page: 3924
  article-title: Polymer crystallization induced by sorption of CO gas
  publication-title: J Appl Polym Sci.
– volume: 4
  start-page: 15
  year: 1991
  end-page: 23
  article-title: Crystallization of poly(ethylene terephthalate) induced by carbon dioxide sorption at elevated pressures
  publication-title: J Supercrit Fluids.
– volume: 40
  start-page: 75
  year: 2001
  end-page: 79
  article-title: Kinetics of hydrolysis of poly(ethylene terephthalate) powder in sulfuric acid by a modified shrinking‐core model
  publication-title: Ind Eng Chem Res.
– volume: 4
  start-page: 2013
  year: 2012
  end-page: 2019
  article-title: One‐pot conversion of inulin to furan derivatives catalyzed by sulfated TiO /mordenite solid acid
  publication-title: ChemCatChem.
– volume: 58
  start-page: 1272
  year: 2004
  end-page: 1276
  article-title: Forensic analysis of poly(ethylene terephthalate) fibers by infrared spectroscopy
  publication-title: Appl Spectrosc.
– volume: 47
  start-page: 2341
  year: 2001
  end-page: 2348
  article-title: Molecular‐weight distribution kinetics for ultrasonic reactions of polymers
  publication-title: AIChE J.
– volume: 98
  start-page: 972
  year: 2013
  end-page: 979
  article-title: Analysis of recycled PET bottles products by pyrolysis‐gas chromatography
  publication-title: Polym Degrad Stab.
– volume: 7
  start-page: 337
  year: 1972
  end-page: 348
  article-title: A kinetic treatment of glass formation
  publication-title: J Non‐Cryst Solids.
– volume: 55
  start-page: 2150
  year: 2009
  end-page: 2158
  article-title: A bi‐order kinetic model for poly(methyl methacrylate) decomposition in HNO using microwave irradiation
  publication-title: AIChE J.
– volume: 33
  start-page: 2738
  year: 1994
  end-page: 2748
  article-title: Steady state multiplicities in an ethylene glycol reactive distillation column
  publication-title: Ind Eng Chem Res.
– volume: 46
  start-page: 319
  year: 1994
  end-page: 324
  article-title: Hydrolysis of poly(ethylene terephthalate): a kinetic study
  publication-title: Polym Degrad Stab.
– volume: 114
  start-page: 3561
  year: 2009
  end-page: 3565
  article-title: Hydrolysis reaction of poly(ethylene terephthalate) using ionic liquids as solvent and catalyst
  publication-title: J Appl Polym Sci.
– volume: 46
  start-page: 135
  year: 2007
  end-page: 144
  article-title: Post consumer pet depolymerization by acid hydrolysis
  publication-title: Polym Plast Technol Eng.
– volume: 100
  start-page: 192
  year: 2013
  end-page: 198
  article-title: Characteristics of activated carbon prepared from waste PET by carbon dioxide activation
  publication-title: J Anal Appl Pyrolysis.
– volume: 79
  start-page: 1825
  year: 2001
  end-page: 1837
  article-title: Real‐time FTIR and WAXS studies of drawing behavior of poly(ethylene terephthalate) films
  publication-title: J Appl Polym Sci.
– volume: 95
  start-page: 559
  year: 1995
  end-page: 614
  article-title: Inorganic solid acids and their use in acid‐catalyzed hydrocarbon reactions
  publication-title: Chem Rev.
– volume: 116
  start-page: 27
  year: 2010
  end-page: 35
  article-title: Poly(ethylene terephthalate) foams: correlation between the polymer properties and the foaming process
  publication-title: J Appl Polym Sci.
– volume: 118
  start-page: 1729
  year: 1996
  end-page: 1736
  article-title: Specific intermolecular interaction of carbon dioxide with polymers
  publication-title: J Am Chem Soc.
SSID ssj0012782
Score 2.3783395
Snippet Hydrolysis of waste poly(ethylene terphthalate) (PET) using solid acid catalyst in SCCO2 is presented in this work for the first time. The mechanism of PET...
SourceID wiley
istex
SourceType Publisher
StartPage 200
SubjectTerms amorphous and crystalline regions
CO2-induced crystallization
PET hydrolysis
solid acid catalyst
supercritical carbon dioxide
Title Reaction kinetics and mechanism of catalyzed hydrolysis of waste PET using solid acid catalyst in supercritical CO2
URI https://api.istex.fr/ark:/67375/WNG-79Z9X05H-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.14632
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMeD-KQP3sU7eRDxpdqkSdPi05iXKXhBFIcIJWnSOYadrBs6P70nyTYvT-JLCSGB9OQk-Sfk_ILQblSkBnYNJpDgPgHjKgwsAjqIQSuwhIhESxuNfHkVN-7ZRZM3p9DROBbG8yEmB252ZLj52g5wqarDL2iobOd2mEd2_iVRbLn5x7cTdBShIvGkcNgug0wgY6pQSA8nNUGQWlu-_xSmbmU5nUdP4zb5CyWdg0FfHeQfv3CN_2z0ApobKU5c8y6yiKZMuYRmv3EIl1F1a3x8A-5ApgU3Y1lq_GJsWHC7esHdArtznuGH0fh5qHtdRzKx-W8S_g3fnNxhe4W-hcGX2xrLHD6-StXH7RJXg1fTy0fvKuD6NV1B96cnd_VGMHqNIWjBog87VmHRYiAoExIrEE6URImiTIlYmJgrQWXKU5NKwjQTQmno8YLA-m9omBQ5jaNVNF12S7OGsDQ6ZqnRhhrJuAglSa0vcalYogsdraM91y_ZqyduZLLXsRfQBM8ers4ykT6mzZA3ssY62nfWnhT0EGaagZ0zZ-esdl53iY2_F91EMyCLuD9o2ULT_d7AbIP06Ksd52Of7lPUbg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELYQHIADLC_x2l0fEOISSBw7TiQuqIINr4JQERUSsuzYKVVFivoQj1-_Y7vtLpwQlyiybMkZz9jfTGY-I7QTl5kBr8EEEtQnoEyFgaWADhLACjSNeKqlrUa-rCf5LT1rsuYUOhzXwnh-iEnAzVqG26-tgduA9ME_1lDZLqydx7ABz7j_cxYS3UzIoyLCU88VDg4zAIVozCsUkoPJUICkVpqvH6GpO1tOFtHDeFY-paSzPxyo_eL9E2Hjd6f9Ay2MQCc-8lqyhKZMtYzm_6MiXEH9G-NLHHAHGi13M5aVxk_GVga3-0-4W2IX6nl7Nxo_vule15GZ2PYXCR-Hr48b2GbRtzCoc1tjWcDDD-kPcLvC_eGz6RWjqxVw7YqsotuT40YtD0YXMgQtOPfBaeWWXQwwZRolCrATieJUEap4wk3CFCcyY5nJZEQ15VxpWPQyAghgSJiWBUniNTRddSuzjrA0OqGZ0YYYSRkPZZRZdWJS0VSXOt5Au25hxLMn3RCy17E5aJyJu_ofwbP7rBmyXOQbaM-Je9LR8zATAXIWTs7i6LTmXja_3vU3ms0blxfi4rR-voXmACUxH3fZRtOD3tD8BCQyUL-cwv0FR4PYjA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3ba9swFIdFSaFsD71to9160cMYe3Fiy5Jls6eSNk23LishYWEMhGTJrQl1Qi6s7V_fIylJ1z6NvRghJJCPjqSfhM4nhD7GRWZg12ACCe4TUKbCwCKggwS0Ak0jnmppo5G_d5J2n34dsMEa-rKMhfF8iNWBmx0Zbr62A3ysi8YTNFSWuR3mMcy_6zSBZdIqou6KHRURnnpUOOyXQSdES6xQSBqrqqBIrTHvnitTt7S0ttDvZaP8jZJhfT5T9fzhBa_xP1u9jTYXkhOfeB_ZQWum2kWv_wIRvkHTrvEBDngImZbcjGWl8a2xccHl9BaPCuwOeu4fjMY393oycigTm_9Hwr_hq7MetnforzE4c6mxzOHjq0xnuKzwdD42k3zxsAJu_iBvUb911mu2g8VzDME1rPqwZeWWLQaKMo0SBcqJRHGqCFU84SZhihOZscxkMqKacq40dHkRgQAwJEyLnCTxO1SrRpXZQ1gandDMaEOMpIyHMsqsMzGpaKoLHe-jT65fxNgjN4ScDO0NNM7Ez8654NmvbBCytmjvo8_O2quCnsJMBNhZODuLk4umS7z_96LHaOPqtCUuLzrfPqBXIJGYP3Q5QLXZZG4OQYbM1JFzt0fjFNc7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reaction+kinetics+and+mechanism+of+catalyzed+hydrolysis+of+waste+PET+using+solid+acid+catalyst+in+supercritical+CO2&rft.jtitle=AIChE+journal&rft.au=Li%2C+Xue%E2%80%90Kun&rft.au=Lu%2C+Hui&rft.au=Guo%2C+Wen%E2%80%90Ze&rft.au=Cao%2C+Gui%E2%80%90Ping&rft.date=2015-01-01&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=61&rft.issue=1&rft.spage=200&rft.epage=214&rft_id=info:doi/10.1002%2Faic.14632&rft.externalDBID=10.1002%252Faic.14632&rft.externalDocID=AIC14632
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon