Implementation of a Neural Network HEMT Model Into ADS

Neural network algorithms have been applied to various areas of engineering and computer science. A high electron-mobility transistor (HEMT) large-signal model has been implemented in the Advanced Design System (ADS) software package using a multilayered neural network. The neural network model was...

Full description

Saved in:
Bibliographic Details
Published inMicrowave Journal Vol. 44; no. 11; pp. 66 - 76+78
Main Authors Thompson, Willie L. II, Miller, Eric V, White, Carl
Format Journal Article Trade Publication Article
LanguageEnglish
Published Dedham Horizon House Publications, Inc 01.11.2001
EditionInternational ed.
Subjects
Online AccessGet full text
ISSN0192-6225

Cover

Abstract Neural network algorithms have been applied to various areas of engineering and computer science. A high electron-mobility transistor (HEMT) large-signal model has been implemented in the Advanced Design System (ADS) software package using a multilayered neural network. The neural network model was trained to the drain current, gate-source capacitance and gate-drain capacitance characteristics of an Angelov model previously developed. Training was done using the back-propagation algorithm, which achieved excellent results for the model. Linear and harmonic balance simulations were performed to compare the linear and power performance of the neural network model to the Angelov model, without any additional optimization after the initial training.
AbstractList This article presents an approach for implementing a NN algorithm to develop a large-signal HEMT model to be used in ADS by circuit designers. A typical large-signal model is shown in Figure 2. The NN model proposed in this article implements NN algorithms for Isub dsc, Csub gc and Csub gd with Isub ds being the most nonlinear element in the circuit, and Csub gc and Csub gd being secondary nonlinear elements that affect the accuracy of the model as suggested by [H.
This article presents an approach for implementing a NN algorithm to develop a large-signal HEMT model to be used in ADS by circuit designers. A typical large-signal model is shown in Figure 2. The NN model proposed in this article implements NN algorithms for I^sub dsc^, C^sub gc^ and C^sub gd^ with I^sub ds^ being the most nonlinear element in the circuit, and C^sub gc^ and C^sub gd^ being secondary nonlinear elements that affect the accuracy of the model as suggested by [H.
Neural network algorithms have been applied to various areas of engineering and computer science. A high electron-mobility transistor (HEMT) large-signal model has been implemented in the Advanced Design System (ADS) software package using a multilayered neural network. The neural network model was trained to the drain current, gate-source capacitance and gate-drain capacitance characteristics of an Angelov model previously developed. Training was done using the back-propagation algorithm, which achieved excellent results for the model. Linear and harmonic balance simulations were performed to compare the linear and power performance of the neural network model to the Angelov model, without any additional optimization after the initial training.
Audience Trade
Author Miller, Eric V
White, Carl
Thompson, Willie L. II
Author_xml – sequence: 1
  fullname: Thompson, Willie L. II
– sequence: 2
  fullname: Miller, Eric V
– sequence: 3
  fullname: White, Carl
BookMark eNp90L1OwzAUBWAPRaItvINZYCGS_-2MVSm0UgsDZY5c56YKJHaJXfH6GJUJELrDka4-neFM0MgHDyM0JrRkhWJMnqNJjK-EEEUYHSO16g8d9OCTTW3wODTY4kc4DrbLkT7C8IaXi80Wb0INHV75FPDs7vkCnTW2i3D5nVP0cr_YzpfF-ulhNZ-tiz2nOhWS1koLqkAx6upGcKtlYyUvQVPqiOPSCOt22uy4IMIwINZYWTJJQNR0R_gUXZ16D0N4P0JM1QCHMKRYMSJKJZQx2dz8MH0bHXSd9RCOsdKCs1xPZJbX_0qmDNVcf8HbE9zbDqrWNyEN1u3BQ94lD9q0-T0zlGrKlM68-IPnq6Fv3W__CV_ueV4
CODEN MJIEEF
ContentType Journal Article
Trade Publication Article
Copyright COPYRIGHT 2001 Horizon House Publications, Inc.
Copyright Horizon House Publications, Inc. Nov 2001
Copyright_xml – notice: COPYRIGHT 2001 Horizon House Publications, Inc.
– notice: Copyright Horizon House Publications, Inc. Nov 2001
DBID 7U5
8FD
L7M
7SP
7TA
JG9
3V.
7WY
7XB
883
88I
88K
8AL
8AO
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
M0F
M0N
M2P
M2T
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
S0X
DatabaseName Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Materials Business File
Materials Research Database
ProQuest Central (Corporate)
ProQuest ABI/INFORM Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Trade & Industry (Alumni Edition)
Science Database (Alumni Edition)
Telecommunications (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database - Proquest
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Trade & Industry
Computing Database
Science Database
Telecommunications Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
SIRS Editorial
DatabaseTitle Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
Materials Research Database
Materials Business File
Electronics & Communications Abstracts
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SIRS Editorial
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Telecommunications
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Trade & Industry (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Telecommunications (Alumni Edition)
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ABI/INFORM Trade & Industry
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList Materials Research Database
ProQuest Business Collection (Alumni Edition)
Technology Research Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Edition International ed.
EndPage 76+78
ExternalDocumentID 90802940
A81171267
Genre Feature
GeographicLocations United States
United States--US
GeographicLocations_xml – name: United States
– name: United States--US
GroupedDBID .DC
123
29M
6TJ
7WY
883
88I
8AO
8FE
8FG
8FL
8R4
8R5
ABDPE
ABUWG
ACGOD
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BAAKF
BENPR
BEZIV
BGLVJ
BKOMP
BPHCQ
CCPQU
DWQXO
FAC
FAS
FJW
FRNLG
GNUQQ
HCIFZ
IAO
IEA
IGS
IOF
ITC
K60
K6V
K6~
K7-
M0F
M2P
N95
P2P
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
Q2X
QM1
QN7
QO4
RWL
RXW
S0X
TAE
TN5
UNMZH
7U5
8FD
L7M
PUEGO
7SP
7TA
JG9
3V.
7XB
88K
8AL
8FK
JQ2
L.-
M0N
M2T
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-g317t-51d67416e621cdf43a75fa539e711c0c3584acb78b340482e0a8a59250e4d1b03
IEDL.DBID BENPR
ISSN 0192-6225
IngestDate Wed Aug 27 10:19:59 EDT 2025
Fri Sep 05 09:45:06 EDT 2025
Fri Sep 05 13:01:06 EDT 2025
Fri Jun 13 00:39:06 EDT 2025
Mon Oct 20 17:17:59 EDT 2025
IsPeerReviewed false
IsScholarly false
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g317t-51d67416e621cdf43a75fa539e711c0c3584acb78b340482e0a8a59250e4d1b03
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 204964688
PQPubID 23500
PageCount 23
ParticipantIDs proquest_reports_204964688
proquest_miscellaneous_743234005
proquest_miscellaneous_26817375
gale_infotracgeneralonefile_A81171267
gale_infotracacademiconefile_A81171267
PublicationCentury 2000
PublicationDate 20011101
PublicationDateYYYYMMDD 2001-11-01
PublicationDate_xml – month: 11
  year: 2001
  text: 20011101
  day: 01
PublicationDecade 2000
PublicationPlace Dedham
PublicationPlace_xml – name: Dedham
PublicationTitle Microwave Journal
PublicationYear 2001
Publisher Horizon House Publications, Inc
Publisher_xml – name: Horizon House Publications, Inc
SSID ssj0006021
Score 1.3271301
Snippet Neural network algorithms have been applied to various areas of engineering and computer science. A high electron-mobility transistor (HEMT) large-signal model...
This article presents an approach for implementing a NN algorithm to develop a large-signal HEMT model to be used in ADS by circuit designers. A typical...
SourceID proquest
gale
SourceType Aggregation Database
StartPage 66
SubjectTerms Accuracy
Algorithms
Back propagation
Colleges & universities
Computer engineering
Computer software industry
Design
Design and construction
High performance systems
Instrument industry
Mathematical functions
Microwave communications
Neural networks
Optimization
Physics
Product information
Propagation
Simulation
Software
Systems design
Transistors
Title Implementation of a Neural Network HEMT Model Into ADS
URI https://www.proquest.com/docview/26817375
https://www.proquest.com/docview/743234005
https://www.proquest.com/docview/204964688
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  issn: 0192-6225
  databaseCode: BENPR
  dateStart: 19960601
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.proquest.com/central
  omitProxy: true
  ssIdentifier: ssj0006021
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  issn: 0192-6225
  databaseCode: 8FG
  dateStart: 19960601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.proquest.com/technologycollection1
  omitProxy: true
  ssIdentifier: ssj0006021
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS9xAFD7oilCfWqt0vXUeWt8Ck8lckgeRrd3tUlgprYJv4WQuIrSJl_j_PTNmFwu2T3nICSGTc_lmzuUD-BSCkVZUKgsOVSalU2RzWGWlbxqHlWm0id3Ii3M9v5Tfr9TVGiyWvTCxrHLpE5Ojdp2NZ-S0SZeVlrosT2_vskgaFZOrSwYNHJgV3EmaMLYOG4L2XnwEG1-m5z9-rlyz5mIgKBSZFpEe-3U_nILL7C2MKWA4z16coLHJ8w99B2u-3YatF1MDt2EzVW3ah_eg02zfP0P7UMu6wJDFCZX4my6pvpvNp4sLlvhu2E3bd2zy9dcOXM6mF2fzbCBCyK4pvPeZyp2OyMlrkVsXZIFGBVRF5U2eW24LQhFoG1M2hSSLFJ5jiaoidOOlyxte7MKo7Vr_AZhGrrxDwonBy4Bkvj4vNEfeCBusVmM4jitSR_Xu79HiUKVPT8dBUfUkNqbmQpsxfP5L8Pp5SvYrch-Xa1uT5sZ0BLa-e3yohS5zUxh6JfuHBKEbQV_ESWRvJTLkUuqVQuz97-Y-vElVY6l78ABG_f2jPyQY0TdHsF7Ovh0NKvIEtdDKpQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gxKhPiBoORfZBfGvSbvejfSDmgCOHcBejR8Jbne4HMdEWuBLjH-f_5uzSu2CCvvHUh07bdHZ2ZnZ3fvMDeOe9FoaXMvEWZSKElTTnsEwKV9cWS10rHdDIk6kan4mP5_J8BX4vsDChrHLhE6Ojtq0Je-S0SBelEqooPlxeJYE0KhyuLhg0sGdWsHuxw1iP6zhxv37SCm6-d3xIw73L-dFodjBOepKB5IJCZ5fIzKqQlTjFM2O9yFFLjzIvnc4yk5qcIjSaWhd1LsjauUuxQFlS5uCEzeo0p_c-gjWRi5LWfmv7o-mnz8tQoFLeEyLyRPFAx32_34_B7GgdBhSgrGN3duzY8NaAnsOKazbg2Z0uhRvwOFaJmvkLULGX8I8ertSw1jNkoSMmfqdLrCdn49FkxiK_DvvWdC0bHn55CWcPopNXsNq0jdsEpjCVziLlpd4Jj-QuXJarFNOaG2-UHMD7oJEqTKfuGg32qAB6OjSmqoYBCJtxpQew-5fgxW1X7nvkdha6rWimhOMPbFx7M6-4KjKda_ok-4cEZVOc_iglka2lSH92Uy0NcOt_N3fgyXg2Oa1Oj6cnr-FprFiLyMU3sNpd37htSmG6-m1vKAy-PrRt_gHIGwVH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+a+neural+network+HEMT+model+into+ADS&rft.jtitle=Microwave+Journal&rft.au=Thompson%2C+Willie+L&rft.au=Miller%2C+Eric+V&rft.au=White%2C+Carl&rft.date=2001-11-01&rft.pub=Horizon+House+Publications%2C+Inc&rft.issn=0192-6225&rft.volume=44&rft.issue=11&rft.spage=66&rft.externalDocID=90802940
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-6225&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-6225&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-6225&client=summon