Adaptive DAG Tasks Scheduling with Deep Reinforcement Learning
Efficient task scheduling is critical for improving system performance in the distributed heterogeneous computing environment. The DAG (Directed Acyclic Graph) tasks scheduling problem is NP-complete and it is hard to find an optimal schedule. Due to its key importance, the DAG tasks scheduling prob...
Saved in:
| Published in | Algorithms and Architectures for Parallel Processing Vol. 11335; pp. 477 - 490 |
|---|---|
| Main Authors | , , , |
| Format | Book Chapter |
| Language | English |
| Published |
Switzerland
Springer International Publishing AG
2018
Springer International Publishing |
| Series | Lecture Notes in Computer Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9783030050535 303005053X |
| ISSN | 0302-9743 1611-3349 |
| DOI | 10.1007/978-3-030-05054-2_37 |
Cover
| Abstract | Efficient task scheduling is critical for improving system performance in the distributed heterogeneous computing environment. The DAG (Directed Acyclic Graph) tasks scheduling problem is NP-complete and it is hard to find an optimal schedule. Due to its key importance, the DAG tasks scheduling problem has been extensively studied in the literature. Many previously proposed heuristic algorithms are usually based on greedy methods, which still exists large optimization space to be explored. In this paper, we proposed an adaptive DAG tasks scheduling (ADTS) algorithm using deep reinforcement learning. The scheduling problem is properly defined with the reinforcement learning process. Efficient scheduling state space, action space and reward function are designed to train the policy gradient-based REINFORCE agent. Leveraging the algorithm’s capability of exploring long term reward, the ADTS algorithm could achieve good scheduling policies. Experimental results showed the effectiveness of the proposed ADTS algorithm compared with the classic HEFT/CPOP algorithms. |
|---|---|
| AbstractList | Efficient task scheduling is critical for improving system performance in the distributed heterogeneous computing environment. The DAG (Directed Acyclic Graph) tasks scheduling problem is NP-complete and it is hard to find an optimal schedule. Due to its key importance, the DAG tasks scheduling problem has been extensively studied in the literature. Many previously proposed heuristic algorithms are usually based on greedy methods, which still exists large optimization space to be explored. In this paper, we proposed an adaptive DAG tasks scheduling (ADTS) algorithm using deep reinforcement learning. The scheduling problem is properly defined with the reinforcement learning process. Efficient scheduling state space, action space and reward function are designed to train the policy gradient-based REINFORCE agent. Leveraging the algorithm’s capability of exploring long term reward, the ADTS algorithm could achieve good scheduling policies. Experimental results showed the effectiveness of the proposed ADTS algorithm compared with the classic HEFT/CPOP algorithms. |
| Author | Wu, Zhiwei Cheng, Yuxia Wu, Qing Zhuang, Yuehui |
| Author_xml | – sequence: 1 givenname: Qing surname: Wu fullname: Wu, Qing organization: Hangzhou Dianzi University, Hangzhou, China – sequence: 2 givenname: Zhiwei surname: Wu fullname: Wu, Zhiwei organization: Hangzhou Dianzi University, Hangzhou, China – sequence: 3 givenname: Yuehui surname: Zhuang fullname: Zhuang, Yuehui organization: Zhejiang Fangzheng Media Technology Research Institute, Hangzhou, China – sequence: 4 givenname: Yuxia surname: Cheng fullname: Cheng, Yuxia email: yxcheng@hdu.edu.cn organization: Hangzhou Dianzi University, Hangzhou, China |
| BookMark | eNpVkE1OwzAQhQ0URFt6Axa5gMH_jjdIFYWCVAkJytpy7EkbWpIQp3B93JYNqxm9mTej743QoG5qQOiakhtKiL41OsccE04wkUQKzCzXJ2iSZJ7Eg8ZO0ZAqSjHnwpz9m3E5QMPUM2y04BdoRIk2ROZS5pdoEuMHIYQxkzNDh-huGlzbV9-QzabzbOniJmZvfg1ht63qVfZT9etsBtBmr1DVZdN5-IS6zxbgujotXKHz0m0jTP7qGL0_Pizvn_DiZf58P13gFTOqxx5ooUsNLhSUFJpzF4yjrFBKc-8dk7wUMpRlbjworXUeaDB5ERwIVRgNfIzY8W5su_QWOls0zSZaSuw-MZvwLbcJ2h7SsfvEkkkcTW3XfO0g9hb2Lp8AOrf16wQOXbSKGSmVsFJwKwzlv9Ifav0 |
| ContentType | Book Chapter |
| Copyright | Springer Nature Switzerland AG 2018 |
| Copyright_xml | – notice: Springer Nature Switzerland AG 2018 |
| DBID | FFUUA |
| DEWEY | 004.35 |
| DOI | 10.1007/978-3-030-05054-2_37 |
| DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9783030050542 3030050548 |
| EISSN | 1611-3349 |
| Editor | Vaidya, Jaideep Li, Jin |
| Editor_xml | – sequence: 1 fullname: Vaidya, Jaideep – sequence: 2 fullname: Li, Jin |
| EndPage | 490 |
| ExternalDocumentID | EBC6295564_543_491 |
| GroupedDBID | 0D6 0DA 38. AABBV ACOUV AEDXK AEJLV AEKFX AEZAY ALMA_UNASSIGNED_HOLDINGS ANXHU BBABE BICGV BJAWL BUBNW CVGDX CZZ EDOXC FFUUA FOYMO I4C IEZ NQNQZ OEBZI SBO TPJZQ TSXQS Z81 Z83 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RNI RSU SVGTG VI1 ~02 |
| ID | FETCH-LOGICAL-g296t-ce1b7f7eadb10b733ad9a12b6673cca253f45dff89ce67778d1d98bdae46b97e3 |
| ISBN | 9783030050535 303005053X |
| ISSN | 0302-9743 |
| IngestDate | Wed Sep 17 02:56:27 EDT 2025 Wed Sep 03 00:56:46 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| LCCallNum | QA76.9.A43 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-g296t-ce1b7f7eadb10b733ad9a12b6673cca253f45dff89ce67778d1d98bdae46b97e3 |
| OCLC | 1079058558 |
| PQID | EBC6295564_543_491 |
| PageCount | 14 |
| ParticipantIDs | springer_books_10_1007_978_3_030_05054_2_37 proquest_ebookcentralchapters_6295564_543_491 |
| PublicationCentury | 2000 |
| PublicationDate | 2018 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – year: 2018 text: 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Cham |
| PublicationSeriesSubtitle | Theoretical Computer Science and General Issues |
| PublicationSeriesTitle | Lecture Notes in Computer Science |
| PublicationSeriesTitleAlternate | Lect.Notes Computer |
| PublicationSubtitle | 18th International Conference, ICA3PP 2018, Guangzhou, China, November 15-17, 2018, Proceedings, Part II |
| PublicationTitle | Algorithms and Architectures for Parallel Processing |
| PublicationYear | 2018 |
| Publisher | Springer International Publishing AG Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
| RelatedPersons | Kleinberg, Jon M. Hartmanis, Juris Mattern, Friedemann Goos, Gerhard Steffen, Bernhard Kittler, Josef Naor, Moni Mitchell, John C. Terzopoulos, Demetri Pandu Rangan, C. Kanade, Takeo Hutchison, David Tygar, Doug |
| RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David organization: Lancaster University, Lancaster, UK – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo organization: Carnegie Mellon University, Pittsburgh, USA – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef organization: University of Surrey, Guildford, UK – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. organization: Cornell University, Ithaca, USA – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann organization: ETH Zurich, Zurich, Switzerland – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. organization: Stanford University, Stanford, USA – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni organization: Weizmann Institute of Science, Rehovot, Israel – sequence: 8 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. organization: Indian Institute of Technology Madras, Chennai, India – sequence: 9 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard organization: TU Dortmund University, Dortmund, Germany – sequence: 10 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri organization: University of California, Los Angeles, USA – sequence: 11 givenname: Doug surname: Tygar fullname: Tygar, Doug organization: University of California, Berkeley, USA – sequence: 12 givenname: Gerhard surname: Goos fullname: Goos, Gerhard organization: Karlsruhe, Germany – sequence: 13 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris organization: Ithaca, USA |
| SSID | ssj0002298291 ssj0002792 |
| Score | 2.2033997 |
| Snippet | Efficient task scheduling is critical for improving system performance in the distributed heterogeneous computing environment. The DAG (Directed Acyclic Graph)... |
| SourceID | springer proquest |
| SourceType | Publisher |
| StartPage | 477 |
| SubjectTerms | DAG scheduling Deep reinforcement learning Heterogeneous |
| Title | Adaptive DAG Tasks Scheduling with Deep Reinforcement Learning |
| URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6295564&ppg=491&c=UERG http://link.springer.com/10.1007/978-3-030-05054-2_37 |
| Volume | 11335 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe6ckEcxqcYA-QDtyqI2I4dHzapGoNpGpOQOjS4WHFir9VKOy2JNvFn8BfzHMdN2u0yLlFrRYnzftbzez-_D4Q-aEMyVnAZ8ZzyiFmbRJrC34IWwmqiDTUuwfnbKT86Y8fnyflg8LcXtVRX-mP-5968kv9BFcYAV5cl-wBkVw-FAfgN-MIVEIbrhvG7TrP68OL5xRI8--lvX2V53DsRaGosgHF47RqlzEMyQNiknAqunWi_3xn5NZ3dmFlHJtctm_yzNtN6NX4wNWH4dpb1F924yK58LNL462iSlZelK_MJu9l8xfl-NuYKQG0KtuYNNxlqvPq5OMGZcu-kPds4XVZNyNgotJ8I2qhPV8TpBl0R6MoNwrPj3Nb8W9hfm1Z7vqJJyPMCHQ5ekFeLxqtt7ooxUl_8tFXFrG0P43d15puS3tkw-jEi8OTIvY1FRFGxhbZgAkP0aHx4fPJjxdsRIlMiuzAiV4DRn1T5Wbn8oTDrtsJT9xW93M37Xrnm5WwczDf2zuQpeuJyYLBLTgH5PUMDs3iOtgMEuIXgBdoPgGMAHDeA4w5w7ADHDnC8BjgOgL9EZ18OJwdHUduRI7ogkldRbmItrADto-NPWlCaFTKLiXa9Y0EVkIRalhTWpjI3XAiRFnEhU11khnEthaGv0HCxXJjXCKeGW_DeMwMWM2OcaAFmU0y5tYTmNmE7KAqyUE3cQBusnPsvLxUnMkk4Uwmjisl4B42CwJS7vVShIDdIWlEFklaNpJWT9JsH3b2LHndL-S0aVte1eQe2aKXft8vjH9ntgiY |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Algorithms+and+Architectures+for+Parallel+Processing&rft.au=Wu%2C+Qing&rft.au=Wu%2C+Zhiwei&rft.au=Zhuang%2C+Yuehui&rft.au=Cheng%2C+Yuxia&rft.atitle=Adaptive+DAG+Tasks+Scheduling+with+Deep+Reinforcement+Learning&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2018-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030050535&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=477&rft.epage=490&rft_id=info:doi/10.1007%2F978-3-030-05054-2_37 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6295564-l.jpg |