Adaptive DAG Tasks Scheduling with Deep Reinforcement Learning

Efficient task scheduling is critical for improving system performance in the distributed heterogeneous computing environment. The DAG (Directed Acyclic Graph) tasks scheduling problem is NP-complete and it is hard to find an optimal schedule. Due to its key importance, the DAG tasks scheduling prob...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms and Architectures for Parallel Processing Vol. 11335; pp. 477 - 490
Main Authors Wu, Qing, Wu, Zhiwei, Zhuang, Yuehui, Cheng, Yuxia
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2018
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783030050535
303005053X
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-05054-2_37

Cover

Abstract Efficient task scheduling is critical for improving system performance in the distributed heterogeneous computing environment. The DAG (Directed Acyclic Graph) tasks scheduling problem is NP-complete and it is hard to find an optimal schedule. Due to its key importance, the DAG tasks scheduling problem has been extensively studied in the literature. Many previously proposed heuristic algorithms are usually based on greedy methods, which still exists large optimization space to be explored. In this paper, we proposed an adaptive DAG tasks scheduling (ADTS) algorithm using deep reinforcement learning. The scheduling problem is properly defined with the reinforcement learning process. Efficient scheduling state space, action space and reward function are designed to train the policy gradient-based REINFORCE agent. Leveraging the algorithm’s capability of exploring long term reward, the ADTS algorithm could achieve good scheduling policies. Experimental results showed the effectiveness of the proposed ADTS algorithm compared with the classic HEFT/CPOP algorithms.
AbstractList Efficient task scheduling is critical for improving system performance in the distributed heterogeneous computing environment. The DAG (Directed Acyclic Graph) tasks scheduling problem is NP-complete and it is hard to find an optimal schedule. Due to its key importance, the DAG tasks scheduling problem has been extensively studied in the literature. Many previously proposed heuristic algorithms are usually based on greedy methods, which still exists large optimization space to be explored. In this paper, we proposed an adaptive DAG tasks scheduling (ADTS) algorithm using deep reinforcement learning. The scheduling problem is properly defined with the reinforcement learning process. Efficient scheduling state space, action space and reward function are designed to train the policy gradient-based REINFORCE agent. Leveraging the algorithm’s capability of exploring long term reward, the ADTS algorithm could achieve good scheduling policies. Experimental results showed the effectiveness of the proposed ADTS algorithm compared with the classic HEFT/CPOP algorithms.
Author Wu, Zhiwei
Cheng, Yuxia
Wu, Qing
Zhuang, Yuehui
Author_xml – sequence: 1
  givenname: Qing
  surname: Wu
  fullname: Wu, Qing
  organization: Hangzhou Dianzi University, Hangzhou, China
– sequence: 2
  givenname: Zhiwei
  surname: Wu
  fullname: Wu, Zhiwei
  organization: Hangzhou Dianzi University, Hangzhou, China
– sequence: 3
  givenname: Yuehui
  surname: Zhuang
  fullname: Zhuang, Yuehui
  organization: Zhejiang Fangzheng Media Technology Research Institute, Hangzhou, China
– sequence: 4
  givenname: Yuxia
  surname: Cheng
  fullname: Cheng, Yuxia
  email: yxcheng@hdu.edu.cn
  organization: Hangzhou Dianzi University, Hangzhou, China
BookMark eNpVkE1OwzAQhQ0URFt6Axa5gMH_jjdIFYWCVAkJytpy7EkbWpIQp3B93JYNqxm9mTej743QoG5qQOiakhtKiL41OsccE04wkUQKzCzXJ2iSZJ7Eg8ZO0ZAqSjHnwpz9m3E5QMPUM2y04BdoRIk2ROZS5pdoEuMHIYQxkzNDh-huGlzbV9-QzabzbOniJmZvfg1ht63qVfZT9etsBtBmr1DVZdN5-IS6zxbgujotXKHz0m0jTP7qGL0_Pizvn_DiZf58P13gFTOqxx5ooUsNLhSUFJpzF4yjrFBKc-8dk7wUMpRlbjworXUeaDB5ERwIVRgNfIzY8W5su_QWOls0zSZaSuw-MZvwLbcJ2h7SsfvEkkkcTW3XfO0g9hb2Lp8AOrf16wQOXbSKGSmVsFJwKwzlv9Ifav0
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2018
Copyright_xml – notice: Springer Nature Switzerland AG 2018
DBID FFUUA
DEWEY 004.35
DOI 10.1007/978-3-030-05054-2_37
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783030050542
3030050548
EISSN 1611-3349
Editor Vaidya, Jaideep
Li, Jin
Editor_xml – sequence: 1
  fullname: Vaidya, Jaideep
– sequence: 2
  fullname: Li, Jin
EndPage 490
ExternalDocumentID EBC6295564_543_491
GroupedDBID 0D6
0DA
38.
AABBV
ACOUV
AEDXK
AEJLV
AEKFX
AEZAY
ALMA_UNASSIGNED_HOLDINGS
ANXHU
BBABE
BICGV
BJAWL
BUBNW
CVGDX
CZZ
EDOXC
FFUUA
FOYMO
I4C
IEZ
NQNQZ
OEBZI
SBO
TPJZQ
TSXQS
Z81
Z83
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-g296t-ce1b7f7eadb10b733ad9a12b6673cca253f45dff89ce67778d1d98bdae46b97e3
ISBN 9783030050535
303005053X
ISSN 0302-9743
IngestDate Wed Sep 17 02:56:27 EDT 2025
Wed Sep 03 00:56:46 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA76.9.A43
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g296t-ce1b7f7eadb10b733ad9a12b6673cca253f45dff89ce67778d1d98bdae46b97e3
OCLC 1079058558
PQID EBC6295564_543_491
PageCount 14
ParticipantIDs springer_books_10_1007_978_3_030_05054_2_37
proquest_ebookcentralchapters_6295564_543_491
PublicationCentury 2000
PublicationDate 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Theoretical Computer Science and General Issues
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 18th International Conference, ICA3PP 2018, Guangzhou, China, November 15-17, 2018, Proceedings, Part II
PublicationTitle Algorithms and Architectures for Parallel Processing
PublicationYear 2018
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Hartmanis, Juris
Mattern, Friedemann
Goos, Gerhard
Steffen, Bernhard
Kittler, Josef
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Pandu Rangan, C.
Kanade, Takeo
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, UK
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, UK
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Zurich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology Madras, Chennai, India
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: TU Dortmund University, Dortmund, Germany
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 12
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
  organization: Karlsruhe, Germany
– sequence: 13
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
  organization: Ithaca, USA
SSID ssj0002298291
ssj0002792
Score 2.2033997
Snippet Efficient task scheduling is critical for improving system performance in the distributed heterogeneous computing environment. The DAG (Directed Acyclic Graph)...
SourceID springer
proquest
SourceType Publisher
StartPage 477
SubjectTerms DAG scheduling
Deep reinforcement learning
Heterogeneous
Title Adaptive DAG Tasks Scheduling with Deep Reinforcement Learning
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6295564&ppg=491&c=UERG
http://link.springer.com/10.1007/978-3-030-05054-2_37
Volume 11335
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe6ckEcxqcYA-QDtyqI2I4dHzapGoNpGpOQOjS4WHFir9VKOy2JNvFn8BfzHMdN2u0yLlFrRYnzftbzez-_D4Q-aEMyVnAZ8ZzyiFmbRJrC34IWwmqiDTUuwfnbKT86Y8fnyflg8LcXtVRX-mP-5968kv9BFcYAV5cl-wBkVw-FAfgN-MIVEIbrhvG7TrP68OL5xRI8--lvX2V53DsRaGosgHF47RqlzEMyQNiknAqunWi_3xn5NZ3dmFlHJtctm_yzNtN6NX4wNWH4dpb1F924yK58LNL462iSlZelK_MJu9l8xfl-NuYKQG0KtuYNNxlqvPq5OMGZcu-kPds4XVZNyNgotJ8I2qhPV8TpBl0R6MoNwrPj3Nb8W9hfm1Z7vqJJyPMCHQ5ekFeLxqtt7ooxUl_8tFXFrG0P43d15puS3tkw-jEi8OTIvY1FRFGxhbZgAkP0aHx4fPJjxdsRIlMiuzAiV4DRn1T5Wbn8oTDrtsJT9xW93M37Xrnm5WwczDf2zuQpeuJyYLBLTgH5PUMDs3iOtgMEuIXgBdoPgGMAHDeA4w5w7ADHDnC8BjgOgL9EZ18OJwdHUduRI7ogkldRbmItrADto-NPWlCaFTKLiXa9Y0EVkIRalhTWpjI3XAiRFnEhU11khnEthaGv0HCxXJjXCKeGW_DeMwMWM2OcaAFmU0y5tYTmNmE7KAqyUE3cQBusnPsvLxUnMkk4Uwmjisl4B42CwJS7vVShIDdIWlEFklaNpJWT9JsH3b2LHndL-S0aVte1eQe2aKXft8vjH9ntgiY
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Algorithms+and+Architectures+for+Parallel+Processing&rft.au=Wu%2C+Qing&rft.au=Wu%2C+Zhiwei&rft.au=Zhuang%2C+Yuehui&rft.au=Cheng%2C+Yuxia&rft.atitle=Adaptive+DAG+Tasks+Scheduling+with+Deep+Reinforcement+Learning&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2018-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030050535&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=477&rft.epage=490&rft_id=info:doi/10.1007%2F978-3-030-05054-2_37
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6295564-l.jpg