Maximum Likelihood Estimation Using Probability Density Functions of Order Statistics
A variation of maximum likelihood estimation (MLE) of parameters that uses PDFs of order statistic is presented. Results of this method are compared with traditional maximum likelihood estimation for complete and right-censored samples in a life test. Further, while the concept can be applied to mos...
Saved in:
| Published in | Computational Probability Applications Vol. 247; pp. 75 - 85 |
|---|---|
| Main Author | |
| Format | Book Chapter |
| Language | English |
| Published |
Switzerland
Springer International Publishing AG
01.01.2017
Springer International Publishing |
| Series | International Series in Operations Research & Management Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 3319433156 9783319433158 |
| ISSN | 0884-8289 2214-7934 |
| DOI | 10.1007/978-3-319-43317-2_7 |
Cover
| Abstract | A variation of maximum likelihood estimation (MLE) of parameters that uses PDFs of order statistic is presented. Results of this method are compared with traditional maximum likelihood estimation for complete and right-censored samples in a life test. Further, while the concept can be applied to most types of censored data sets, results are presented in the case of order statistic interval censoring, in which even a few order statistics estimate well, compared to estimates from complete and right-censored samples. Population distributions investigated include the exponential, Rayleigh, and normal distributions. Computation methods using APPL are simpler than existing methods using various numerical method algorithms. |
|---|---|
| AbstractList | A variation of maximum likelihood estimation (MLE) of parameters that uses PDFs of order statistic is presented. Results of this method are compared with traditional maximum likelihood estimation for complete and right-censored samples in a life test. Further, while the concept can be applied to most types of censored data sets, results are presented in the case of order statistic interval censoring, in which even a few order statistics estimate well, compared to estimates from complete and right-censored samples. Population distributions investigated include the exponential, Rayleigh, and normal distributions. Computation methods using APPL are simpler than existing methods using various numerical method algorithms. |
| Author | Glen, Andrew G. |
| Author_xml | – sequence: 1 givenname: Andrew G. surname: Glen fullname: Glen, Andrew G. email: andrew.glen.1984@gmail.com organization: Department of Mathematics and Computer Science, The Colorado College, Colorado Springs, USA |
| BookMark | eNpFkN9OwjAUh6uicSBP4M1eoNp_a08vDYKaYDBRrptuKzAZK64j0be3AxOvzjk55zv55RuiQeMbh9AtJXeUEHWvFWCOOdVYcE4VZkadoWFs9XFm5yhhjAqsNBcX_4tMDlBCAAQGBvoKJVpmQnOp5TUah_BJCGFMgaaQoOWr_a52h106r7aurjbel-k0dNXOdpVv0mWomnX61vrc5lVddT_po2tCX2eHpuhPQupX6aItXZu-dxGKbBFu0OXK1sGN_-oILWfTj8kzni-eXiYPc7xmAB1W0mrONICyq7JwjOeFoGWZg9a2pFAABSoFczJnmjsiY-wyxhYyV6CoJHyE6Olv2LcxqGtN7v02GEpML9BEgYabqMUchZkoMDLsxOxb_3VwoTOuhwrXdK2ti43dd64NRqgsExyMyAww_gvep3Ck |
| ContentType | Book Chapter |
| Copyright | Springer International Publishing Switzerland 2017 |
| Copyright_xml | – notice: Springer International Publishing Switzerland 2017 |
| DBID | FFUUA |
| DEWEY | 519.20285 |
| DOI | 10.1007/978-3-319-43317-2_7 |
| DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics |
| EISBN | 3319433172 9783319433172 |
| EISSN | 2214-7934 |
| Editor | Glen, Andrew G Leemis, Lawrence M |
| Editor_xml | – sequence: 1 fullname: Leemis, Lawrence M – sequence: 2 fullname: Glen, Andrew G |
| EndPage | 85 |
| ExternalDocumentID | EBC4755438_45_82 |
| GroupedDBID | 0DA 38. AABBV AALVI ABING ABMNI ABQUB ACBPT ADCXD ADOQC AEJLV AEKFX AETDV AEZAY AGIGN AIODD ALBAV ALMA_UNASSIGNED_HOLDINGS AUTMW AZZ BBABE CQUQW CZZ DIQRB FFUUA I4C IEZ MYL SBO TPJZQ Z7R Z7W Z7X Z7Y Z81 Z83 Z87 |
| ID | FETCH-LOGICAL-g288t-76a9329887afdce23bc41ddb899ad18c8181642e6b293e06022d89146b7871603 |
| ISBN | 3319433156 9783319433158 |
| ISSN | 0884-8289 |
| IngestDate | Tue Jul 29 20:11:33 EDT 2025 Thu May 29 16:38:27 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCallNum | T57.6-.97 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-g288t-76a9329887afdce23bc41ddb899ad18c8181642e6b293e06022d89146b7871603 |
| Notes | Originally published in Computers and Industrial Engineering, Volume 58, Issue 4, in 2010, this paper relied extensively on the APPL environment to explore and analyze censored data techniques. At the heart of the research was the need to find likelihood functions for various censoring schemes. These functions needed the PDFs of order statistics, and the APPL OrderStat procedure produced them. The simulated results reported in the last table all came from APPL-based simulations. |
| OCLC | 965493696 |
| PQID | EBC4755438_45_82 |
| PageCount | 11 |
| ParticipantIDs | springer_books_10_1007_978_3_319_43317_2_7 proquest_ebookcentralchapters_4755438_45_82 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-01-01 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Cham |
| PublicationSeriesTitle | International Series in Operations Research & Management Science |
| PublicationSeriesTitleAlternate | Int.Ser.Operations Res. |
| PublicationTitle | Computational Probability Applications |
| PublicationYear | 2017 |
| Publisher | Springer International Publishing AG Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
| RelatedPersons | Zhu, Joe Hillier, Frederick S. Price, Camille C. |
| RelatedPersons_xml | – sequence: 1 givenname: Camille C. surname: Price fullname: Price, Camille C. organization: Dept of Comp Sci, Mckibben Bldg 304, Stephen F. Austin State University, Nacogdoches, USA – sequence: 2 givenname: Joe surname: Zhu fullname: Zhu, Joe organization: School of Business, Worcester Polytechnic Institute, Worcester, USA – sequence: 3 givenname: Frederick S. surname: Hillier fullname: Hillier, Frederick S. organization: Stanford University, Stanford, USA |
| SSID | ssj0002278918 ssib002801680 ssib025541206 |
| Score | 1.5277096 |
| Snippet | A variation of maximum likelihood estimation (MLE) of parameters that uses PDFs of order statistic is presented. Results of this method are compared with... |
| SourceID | springer proquest |
| SourceType | Publisher |
| StartPage | 75 |
| SubjectTerms | Computational probability Interval censoring Life tests Mathematical & statistical software Operational research Probability & statistics |
| Title | Maximum Likelihood Estimation Using Probability Density Functions of Order Statistics |
| URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=4755438&ppg=82 http://link.springer.com/10.1007/978-3-319-43317-2_7 |
| Volume | 247 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2ywW48BTlJR84sUqVOE7sHDggaKkqliLRRb1Zfm1VoFu0u5WAA7-dsZ3ETtRLuSQrK1onM1_GM5Nvxgi9KnKpuDR5ZqWUGcQbecarJcQ8SlawIhqmlKsdnn-qDxf06LQ6nUz-ptUlW7Wn_1xbV_I_WoUx0Kurkr2BZvs_hQH4DfqFI2gYjiPnd5hmDX0F_H4MXS7v8xpeTE90_R08yzQV57madhUJjLMPeylW5vLX-cXVBQTo3-2P89DoGF79UNU4C6yCdIL3jvUO5wNYFHsm3bFr4umd19D7Odgr10d582aYd_ziB12m5finXbdcvI4C6LEYSTmd8UmzEwUbZSe67OQovxlTbINwtgR74Cq4Kj6wgtTVuge7av0YIQXNwLDQxPKG_Ve6Nby6dnVICSGueMvNxTIi2A7agdmn6Nbb_aOPX5NwFBziaN8g-qIFab9Kf_OtgxhvfAq5v0tXPtQ9RR0aPMWn6rtehcbGo5sYxDijz_Le2zm5h-66ChjsSlNAnPfRxK4eoDvzvsHv5iFatJDBETI4QgZ7yOAEMriFDO4hgy-X2EMGR8g8QouD_ZN3h1m7Q0d2RjjfZqyW4P83sFDJpdGWlErTwhgFQbw0BdfgDUI4TmytwKu0eQ0SMyAxWivmAvW8fIymq8uVfYJw1ajGLjWhptSUKtlok6sSnFldS1kqtotmnXSE5xG05GUdZLERlIF6Si5oJTjZRa87AQp38UZ07blB8KIUIHjhBS9A8E9vcvEzdDvi_DmabtdX9gX4pVv1soXPP0RziCY |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computational+Probability+Applications&rft.au=Glen%2C+Andrew+G.&rft.atitle=Maximum+Likelihood+Estimation+Using+Probability+Density+Functions+of+Order+Statistics&rft.series=International+Series+in+Operations+Research+%26+Management+Science&rft.date=2017-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319433158&rft.issn=0884-8289&rft.eissn=2214-7934&rft.spage=75&rft.epage=85&rft_id=info:doi/10.1007%2F978-3-319-43317-2_7 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F4755438-l.jpg |