Maximum Likelihood Estimation Using Probability Density Functions of Order Statistics

A variation of maximum likelihood estimation (MLE) of parameters that uses PDFs of order statistic is presented. Results of this method are compared with traditional maximum likelihood estimation for complete and right-censored samples in a life test. Further, while the concept can be applied to mos...

Full description

Saved in:
Bibliographic Details
Published inComputational Probability Applications Vol. 247; pp. 75 - 85
Main Author Glen, Andrew G.
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 01.01.2017
Springer International Publishing
SeriesInternational Series in Operations Research & Management Science
Subjects
Online AccessGet full text
ISBN3319433156
9783319433158
ISSN0884-8289
2214-7934
DOI10.1007/978-3-319-43317-2_7

Cover

Abstract A variation of maximum likelihood estimation (MLE) of parameters that uses PDFs of order statistic is presented. Results of this method are compared with traditional maximum likelihood estimation for complete and right-censored samples in a life test. Further, while the concept can be applied to most types of censored data sets, results are presented in the case of order statistic interval censoring, in which even a few order statistics estimate well, compared to estimates from complete and right-censored samples. Population distributions investigated include the exponential, Rayleigh, and normal distributions. Computation methods using APPL are simpler than existing methods using various numerical method algorithms.
AbstractList A variation of maximum likelihood estimation (MLE) of parameters that uses PDFs of order statistic is presented. Results of this method are compared with traditional maximum likelihood estimation for complete and right-censored samples in a life test. Further, while the concept can be applied to most types of censored data sets, results are presented in the case of order statistic interval censoring, in which even a few order statistics estimate well, compared to estimates from complete and right-censored samples. Population distributions investigated include the exponential, Rayleigh, and normal distributions. Computation methods using APPL are simpler than existing methods using various numerical method algorithms.
Author Glen, Andrew G.
Author_xml – sequence: 1
  givenname: Andrew G.
  surname: Glen
  fullname: Glen, Andrew G.
  email: andrew.glen.1984@gmail.com
  organization: Department of Mathematics and Computer Science, The Colorado College, Colorado Springs, USA
BookMark eNpFkN9OwjAUh6uicSBP4M1eoNp_a08vDYKaYDBRrptuKzAZK64j0be3AxOvzjk55zv55RuiQeMbh9AtJXeUEHWvFWCOOdVYcE4VZkadoWFs9XFm5yhhjAqsNBcX_4tMDlBCAAQGBvoKJVpmQnOp5TUah_BJCGFMgaaQoOWr_a52h106r7aurjbel-k0dNXOdpVv0mWomnX61vrc5lVddT_po2tCX2eHpuhPQupX6aItXZu-dxGKbBFu0OXK1sGN_-oILWfTj8kzni-eXiYPc7xmAB1W0mrONICyq7JwjOeFoGWZg9a2pFAABSoFczJnmjsiY-wyxhYyV6CoJHyE6Olv2LcxqGtN7v02GEpML9BEgYabqMUchZkoMDLsxOxb_3VwoTOuhwrXdK2ti43dd64NRqgsExyMyAww_gvep3Ck
ContentType Book Chapter
Copyright Springer International Publishing Switzerland 2017
Copyright_xml – notice: Springer International Publishing Switzerland 2017
DBID FFUUA
DEWEY 519.20285
DOI 10.1007/978-3-319-43317-2_7
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISBN 3319433172
9783319433172
EISSN 2214-7934
Editor Glen, Andrew G
Leemis, Lawrence M
Editor_xml – sequence: 1
  fullname: Leemis, Lawrence M
– sequence: 2
  fullname: Glen, Andrew G
EndPage 85
ExternalDocumentID EBC4755438_45_82
GroupedDBID 0DA
38.
AABBV
AALVI
ABING
ABMNI
ABQUB
ACBPT
ADCXD
ADOQC
AEJLV
AEKFX
AETDV
AEZAY
AGIGN
AIODD
ALBAV
ALMA_UNASSIGNED_HOLDINGS
AUTMW
AZZ
BBABE
CQUQW
CZZ
DIQRB
FFUUA
I4C
IEZ
MYL
SBO
TPJZQ
Z7R
Z7W
Z7X
Z7Y
Z81
Z83
Z87
ID FETCH-LOGICAL-g288t-76a9329887afdce23bc41ddb899ad18c8181642e6b293e06022d89146b7871603
ISBN 3319433156
9783319433158
ISSN 0884-8289
IngestDate Tue Jul 29 20:11:33 EDT 2025
Thu May 29 16:38:27 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum T57.6-.97
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g288t-76a9329887afdce23bc41ddb899ad18c8181642e6b293e06022d89146b7871603
Notes Originally published in Computers and Industrial Engineering, Volume 58, Issue 4, in 2010, this paper relied extensively on the APPL environment to explore and analyze censored data techniques. At the heart of the research was the need to find likelihood functions for various censoring schemes. These functions needed the PDFs of order statistics, and the APPL OrderStat procedure produced them. The simulated results reported in the last table all came from APPL-based simulations.
OCLC 965493696
PQID EBC4755438_45_82
PageCount 11
ParticipantIDs springer_books_10_1007_978_3_319_43317_2_7
proquest_ebookcentralchapters_4755438_45_82
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesTitle International Series in Operations Research & Management Science
PublicationSeriesTitleAlternate Int.Ser.Operations Res.
PublicationTitle Computational Probability Applications
PublicationYear 2017
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Zhu, Joe
Hillier, Frederick S.
Price, Camille C.
RelatedPersons_xml – sequence: 1
  givenname: Camille C.
  surname: Price
  fullname: Price, Camille C.
  organization: Dept of Comp Sci, Mckibben Bldg 304, Stephen F. Austin State University, Nacogdoches, USA
– sequence: 2
  givenname: Joe
  surname: Zhu
  fullname: Zhu, Joe
  organization: School of Business, Worcester Polytechnic Institute, Worcester, USA
– sequence: 3
  givenname: Frederick S.
  surname: Hillier
  fullname: Hillier, Frederick S.
  organization: Stanford University, Stanford, USA
SSID ssj0002278918
ssib002801680
ssib025541206
Score 1.5277096
Snippet A variation of maximum likelihood estimation (MLE) of parameters that uses PDFs of order statistic is presented. Results of this method are compared with...
SourceID springer
proquest
SourceType Publisher
StartPage 75
SubjectTerms Computational probability
Interval censoring
Life tests
Mathematical & statistical software
Operational research
Probability & statistics
Title Maximum Likelihood Estimation Using Probability Density Functions of Order Statistics
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=4755438&ppg=82
http://link.springer.com/10.1007/978-3-319-43317-2_7
Volume 247
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2ywW48BTlJR84sUqVOE7sHDggaKkqliLRRb1Zfm1VoFu0u5WAA7-dsZ3ETtRLuSQrK1onM1_GM5Nvxgi9KnKpuDR5ZqWUGcQbecarJcQ8SlawIhqmlKsdnn-qDxf06LQ6nUz-ptUlW7Wn_1xbV_I_WoUx0Kurkr2BZvs_hQH4DfqFI2gYjiPnd5hmDX0F_H4MXS7v8xpeTE90_R08yzQV57madhUJjLMPeylW5vLX-cXVBQTo3-2P89DoGF79UNU4C6yCdIL3jvUO5wNYFHsm3bFr4umd19D7Odgr10d582aYd_ziB12m5finXbdcvI4C6LEYSTmd8UmzEwUbZSe67OQovxlTbINwtgR74Cq4Kj6wgtTVuge7av0YIQXNwLDQxPKG_Ve6Nby6dnVICSGueMvNxTIi2A7agdmn6Nbb_aOPX5NwFBziaN8g-qIFab9Kf_OtgxhvfAq5v0tXPtQ9RR0aPMWn6rtehcbGo5sYxDijz_Le2zm5h-66ChjsSlNAnPfRxK4eoDvzvsHv5iFatJDBETI4QgZ7yOAEMriFDO4hgy-X2EMGR8g8QouD_ZN3h1m7Q0d2RjjfZqyW4P83sFDJpdGWlErTwhgFQbw0BdfgDUI4TmytwKu0eQ0SMyAxWivmAvW8fIymq8uVfYJw1ajGLjWhptSUKtlok6sSnFldS1kqtotmnXSE5xG05GUdZLERlIF6Si5oJTjZRa87AQp38UZ07blB8KIUIHjhBS9A8E9vcvEzdDvi_DmabtdX9gX4pVv1soXPP0RziCY
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computational+Probability+Applications&rft.au=Glen%2C+Andrew+G.&rft.atitle=Maximum+Likelihood+Estimation+Using+Probability+Density+Functions+of+Order+Statistics&rft.series=International+Series+in+Operations+Research+%26+Management+Science&rft.date=2017-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319433158&rft.issn=0884-8289&rft.eissn=2214-7934&rft.spage=75&rft.epage=85&rft_id=info:doi/10.1007%2F978-3-319-43317-2_7
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F4755438-l.jpg