A note on numerically consistent initial values for high index differential-algebraic equations

When differential-algebraic equations of index 3 or higher are solved with backward differentiation formulas, the solution can have gross errors in the first few steps, even if the initial values are equal to the exact solution and even if the stepsize is kept constant. This raises the question of w...

Full description

Saved in:
Bibliographic Details
Published inElectronic transactions on numerical analysis Vol. 34; p. 14
Main Author Arevalo, Carmen
Format Journal Article
LanguageEnglish
Published Institute of Computational Mathematics 01.12.2008
Subjects
Online AccessGet full text
ISSN1068-9613
1097-4067
1097-4067

Cover

Abstract When differential-algebraic equations of index 3 or higher are solved with backward differentiation formulas, the solution can have gross errors in the first few steps, even if the initial values are equal to the exact solution and even if the stepsize is kept constant. This raises the question of what are consistent initial values for the difference equations. Here we study how to change the exact initial values into what we call numerically consistent initial values for the implicit Euler method. Key words. high index differential-algebraic equations, consistent initial values AMS subject classifications. 65L05
AbstractList When differential-algebraic equations of index 3 or higher are solved with backward differentiation formulas, the solution in the first few steps can have gross errors, the solution can have gross errors in the first few steps, even if the initial values are equal to the exact solution and even if the step size is kept constant. This raises the question of what are consistent initial values for the difference equations. Here we study how to change the exact initial values into what we call numerically consistent initial values for the implicit Euler method.
When differential-algebraic equations of index 3 or higher are solved with backward differentiation formulas, the solution can have gross errors in the first few steps, even if the initial values are equal to the exact solution and even if the stepsize is kept constant. This raises the question of what are consistent initial values for the difference equations. Here we study how to change the exact initial values into what we call numerically consistent initial values for the implicit Euler method. Key words. high index differential-algebraic equations, consistent initial values AMS subject classifications. 65L05
When differential-algebraic equations of index 3 or higher are solved with backward differentiation formulas, the solution can have gross errors in the first few steps, even if the initial values are equal to the exact solution and even if the stepsize is kept constant. This raises the question of what are consistent initial values for the difference equations. Here we study how to change the exact initial values into what we call numerically consistent initial values for the implicit Euler method.
Audience Academic
Author Arevalo, Carmen
Author_xml – sequence: 1
  fullname: Arevalo, Carmen
BookMark eNptkE1PwzAMhis0JLbBf4jEuaj5WNIcJ8SXNIkLnCM3dbagLB1Jy8e_JzAOHJAPtqzH72t7Uc3iEPGkmtNGq1o0Us2-a9nWWlJ-Vi1yfmkaqgVbzSuzJnEYkQyRxGmPyVsI4ZPYIWafR4wj8dGPHgJ5gzBhJm5IZOe3u9Lv8YP03jlMhStIDWGLXQJvCb5OMPoicl6dOggZL37zsnq-vXm6vq83j3cP1-tNvWWCjTUViKCw5Yqi6G0LvG8UtQ3Ynq16BxQ163TLANxKci5ZuURxyyl3SvRdx5cVHHXzOx6mzhyS30P6NAN4cxjSCMEkzAjJ7kyYTEZTqFCu_dnSaMmlWLnWdAqVERob0wrZGS2EkC1nHadQPC6PHlsIaHx0w5jA7n22Zs2Y1pox2hbq6h-qRI97X_6Kzpf-n4EvD8mGGQ
ContentType Journal Article
Copyright COPYRIGHT 2008 Institute of Computational Mathematics
Copyright_xml – notice: COPYRIGHT 2008 Institute of Computational Mathematics
CorporateAuthor Matematik LTH
Centre for Mathematical Sciences
Research groups at the Centre for Mathematical Sciences
Forskargrupper vid Matematikcentrum
Mathematics (Faculty of Engineering)
Lunds universitet
Naturvetenskapliga fakulteten
Matematikcentrum
Numerisk analys och beräkningsmatematik
Faculty of Science
Lund University
Numerical Analysis and Scientific Computing
CorporateAuthor_xml – name: Naturvetenskapliga fakulteten
– name: Mathematics (Faculty of Engineering)
– name: Lund University
– name: Numerical Analysis and Scientific Computing
– name: Matematik LTH
– name: Centre for Mathematical Sciences
– name: Research groups at the Centre for Mathematical Sciences
– name: Numerisk analys och beräkningsmatematik
– name: Forskargrupper vid Matematikcentrum
– name: Faculty of Science
– name: Lunds universitet
– name: Matematikcentrum
DBID ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
DatabaseName SwePub
SWEPUB Lunds universitet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Lunds universitet
SwePub Articles full text
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1097-4067
ExternalDocumentID oai_portal_research_lu_se_publications_963645f8_b7e7_49e0_846b_94446832b31a
A229992218
GeographicLocations Sweden
GeographicLocations_xml – name: Sweden
GroupedDBID -~9
29G
2WC
5GY
ACGFO
AENEX
ALMA_UNASSIGNED_HOLDINGS
C1A
E3Z
EBS
EJD
IAO
ICD
IEA
ITC
LO0
OK1
OVT
P2P
REM
RNS
TR2
XSB
ADTPV
AGCHP
AOWAS
D8T
D95
PV9
RZL
ZZAVC
ID FETCH-LOGICAL-g242t-14eea7e8371e4dc8a3d071c0acd25dfa1e92b982aaf56336261373c313f74dbb3
ISSN 1068-9613
1097-4067
IngestDate Wed Oct 15 12:45:26 EDT 2025
Mon Oct 20 23:29:22 EDT 2025
Mon Oct 20 17:26:07 EDT 2025
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g242t-14eea7e8371e4dc8a3d071c0acd25dfa1e92b982aaf56336261373c313f74dbb3
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_963645f8_b7e7_49e0_846b_94446832b31a
gale_infotracmisc_A229992218
gale_infotracacademiconefile_A229992218
PublicationCentury 2000
PublicationDate 20081201
PublicationDateYYYYMMDD 2008-12-01
PublicationDate_xml – month: 12
  year: 2008
  text: 20081201
  day: 01
PublicationDecade 2000
PublicationTitle Electronic transactions on numerical analysis
PublicationYear 2008
Publisher Institute of Computational Mathematics
Publisher_xml – name: Institute of Computational Mathematics
SSID ssj0019425
Score 1.7530092
Snippet When differential-algebraic equations of index 3 or higher are solved with backward differentiation formulas, the solution can have gross errors in the first...
When differential-algebraic equations of index 3 or higher are solved with backward differentiation formulas, the solution in the first few steps can have...
SourceID swepub
gale
SourceType Open Access Repository
Aggregation Database
StartPage 14
SubjectTerms Differential equations
Matematik
Mathematical Sciences
Natural Sciences
Naturvetenskap
Numerical analysis
Title A note on numerically consistent initial values for high index differential-algebraic equations
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIHZ
  databaseName: EuDML: The European Digital Mathematics Library
  customDbUrl:
  eissn: 1097-4067
  dateEnd: 20111231
  omitProxy: true
  ssIdentifier: ssj0019425
  issn: 1097-4067
  databaseCode: LO0
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://eudml.org/journals
  providerName: EuDML: The European Digital Mathematics Library
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWgJy5QCojSUvmAxCFKFcdOHB9XVasKFbi0UsXF8te2lZZsYbMH-us7E7vJrrSHFsHFWnnzpTxn_GbseUPIp5J5zwrH8soxlQsrVa5gGs29qiTM98bZBhOcv36rTy_El8vqcix02WeXdPbQ3W3MK_kbVKEPcMUs2ScgO1wUOuA34AstIAztozCeZO0cl_nbrF3GlZfZ7A9uJF8geC2q_990GBJHSe_QKy9kqE-c9RqJQ3EUPCTHeh_gOd-4LPxaroTxHqL2Y7mcbiwxvli7d2aSwsk4iuI6PNx-nnaX_EypZw-BhmZl00a0jYWS4G7G6hmHYUNfMqgpOhktYkwR3aBpHd0LnTSNrvVsqRdB364EKzUYh1pU00ZbGaQWKhQa6JLVSoATC6bIcgbU-DlnWLri7HsxLB8p0VfbBXcXrHnNYpZFetJh7l2Thu3pxPk2eZn8ADqJoL4mz0K7Q14ln4Ami7t4Q_SEIsZ03tIVjOmIMU0Y04gxBYwpYkx7jOlmjOmA8VtycXJ8fnSap6IY-RWwqS5nIgQjQ8MlC8K7xnAPLNEVxvmy8lPDgiqtakpjplXNUWyIcckdZ3wqhbeWvyNb7bwN7wmtmuAlx6YCHlebRoZaqMLxEs7lwuySz_imNH4QMLScSRkbcDaKhulJCVxGlUASd8n-2pFgotza3z_iu9a3UUJF_8MB8OF_XnyPvBg_hX2y1f1eho_AQjt70I-4e4rTks8
linkProvider EuDML: The European Digital Mathematics Library
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+note+on+numerically+consistent+initial+values+for+high+index+differential-algebraic+equations&rft.jtitle=Electronic+transactions+on+numerical+analysis&rft.au=Ar%C3%A9valo%2C+Carmen&rft.date=2008-12-01&rft.issn=1097-4067&rft.eissn=1097-4067&rft.volume=34&rft.spage=14&rft.externalDocID=oai_portal_research_lu_se_publications_963645f8_b7e7_49e0_846b_94446832b31a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1068-9613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1068-9613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1068-9613&client=summon