Musical notes recognition using artificial neural networks

A system to convert the image of such a score to a sound file is useful in many areas such as: control, robotics, computer vision. The purpose of this paper is to develop a method to obtaining a direct conversion from a musical score to a sound file. The paper presents the design methodology of an a...

Full description

Saved in:
Bibliographic Details
Published inAnnals of DAAAM & proceedings Vol. 20; no. 1; p. 1159
Main Authors Moise, Adrian, Constantin, Adrian, Bucur, Gabriela
Format Journal Article
LanguageEnglish
Published DAAAM International Vienna 01.01.2009
Subjects
Online AccessGet full text
ISSN1726-9679
1726-9679

Cover

Abstract A system to convert the image of such a score to a sound file is useful in many areas such as: control, robotics, computer vision. The purpose of this paper is to develop a method to obtaining a direct conversion from a musical score to a sound file. The paper presents the design methodology of an artificial neural network (ANN) used to recognize musical notes. First, the image of the musical score is captured. One of the main contributions of the authors is identifying and extracting the features of the musical score and exporting them to the ANN. Then, the input/output codes are described, the network is trained and the results of different training methods with different neurons are compared. Key words: musical note, artificial neural network, object features, training algorithm
AbstractList A system to convert the image of such a score to a sound file is useful in many areas such as: control, robotics, computer vision. The purpose of this paper is to develop a method to obtaining a direct conversion from a musical score to a sound file. The paper presents the design methodology of an artificial neural network (ANN) used to recognize musical notes. First, the image of the musical score is captured. One of the main contributions of the authors is identifying and extracting the features of the musical score and exporting them to the ANN. Then, the input/output codes are described, the network is trained and the results of different training methods with different neurons are compared. Key words: musical note, artificial neural network, object features, training algorithm
A system to convert the image of such a score to a sound file is useful in many areas such as: control, robotics, computer vision. The purpose of this paper is to develop a method to obtaining a direct conversion from a musical score to a sound file. The paper presents the design methodology of an artificial neural network (ANN) used to recognize musical notes. First, the image of the musical score is captured. One of the main contributions of the authors is identifying and extracting the features of the musical score and exporting them to the ANN. Then, the input/output codes are described, the network is trained and the results of different training methods with different neurons are compared.
Audience Academic
Author Constantin, Adrian
Bucur, Gabriela
Moise, Adrian
Author_xml – sequence: 1
  fullname: Moise, Adrian
– sequence: 2
  fullname: Constantin, Adrian
– sequence: 3
  fullname: Bucur, Gabriela
BookMark eNpNkDtPAzEQhC0UJELIf7iO6pDfe6aLIl5SEA3UkfHtnQwXG2yf-PsYQsFOMaPdT1PsOVmEGPCELBlw3RoNZvEvn5F1zm-0jjTKAFuS68c5e2enJsSCuUno4hh88TE09RDGxqbiB-_8D4Jz-rXyFdN7viCng50yrv98RV5ub5639-3u6e5hu9m1I-e6tLLXjDIuh86iQNkpLSkoIXpUrw6cpEyrmoVBS5E6TZHrjvXQSWqsAi1W5PLY-5Hi54y57A8-O5wmGzDOeQ9SaGMoQCWvjuRoJ9z7MMSSrKvq8eBd_cvg637DuQTGAZj4BhnrV_Q
ContentType Journal Article
Copyright COPYRIGHT 2009 DAAAM International Vienna
Copyright_xml – notice: COPYRIGHT 2009 DAAAM International Vienna
DBID 7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DatabaseName Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
EISSN 1726-9679
EndPage 1159
ExternalDocumentID A224712771
GeographicLocations Austria
GeographicLocations_xml – name: Austria
GroupedDBID 23M
5GY
ABDBF
ACUHS
ALMA_UNASSIGNED_HOLDINGS
ESX
IAO
ITC
MK~
PV9
RZL
TUS
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-g226t-4d610124f8ae3e4856407533de5bc7c40165de539ea0e0c60e2681d78409a5763
ISSN 1726-9679
IngestDate Fri Jul 11 10:36:37 EDT 2025
Sat Mar 08 20:15:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g226t-4d610124f8ae3e4856407533de5bc7c40165de539ea0e0c60e2681d78409a5763
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 743699077
PQPubID 23500
PageCount 1
ParticipantIDs proquest_miscellaneous_743699077
gale_infotracacademiconefile_A224712771
PublicationCentury 2000
PublicationDate 20090101
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – month: 01
  year: 2009
  text: 20090101
  day: 01
PublicationDecade 2000
PublicationTitle Annals of DAAAM & proceedings
PublicationYear 2009
Publisher DAAAM International Vienna
Publisher_xml – name: DAAAM International Vienna
SSID ssj0000495971
Score 1.7122037
Snippet A system to convert the image of such a score to a sound file is useful in many areas such as: control, robotics, computer vision. The purpose of this paper is...
SourceID proquest
gale
SourceType Aggregation Database
StartPage 1159
SubjectTerms Analysis
Musical notation
Neural networks
Title Musical notes recognition using artificial neural networks
URI https://www.proquest.com/docview/743699077
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1726-9679
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000495971
  issn: 1726-9679
  databaseCode: ABDBF
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN5ovXgxGjW-swcbDw2G5y71RluoVdsmLcTeyBYW46XVll789c4utNBY4-PCYwME-IaZ79tlZxC65omtR8DbwfuphmJaMXxSakIVakOs5owBY5B_-fbIfWA-jKxRUe1Nzi5Jx7fRx8Z5Jf9BFdoAVzFL9g_Iri4KDbAN-MISEIblrzDuBkOZzqDX991hbeA2--1eR5bREdU02jUgqx2v0-yIQ9xgIFf-c3_wOCxz0iKHcstxnK40hiKurTh3d_o6X-_9bGbccpmGYKXsF9FC2kF7rUuhXupSyLwg1YlSJ1mVl1u-oS13nbr6xUQyPwg8s16KqcVuOd91rx96wdNT6Lsjv2p4b--KKAYmBs2rRitDaxttG5peQTtOo9XwVp1nIGtACEkxvbyt70Kq5An-PtrLCT52MrQO0BafHKK7HCkskcIlpLBEChdI4QwpvETqCAWe6zfvlbxqhfICVDZVzJiInGlmYjNucNO2xFApkOqYW-OIiu-CWLBt1DlTuRoRlesERAMVSpuB-jOOUWUynfAThBM7ZlZCDBqBSqYaYwTUpabFIiMQBEx-im7EM4fCYtMZi1g-pQLOFlm9QkcXp-mUaqcIL19LCP5DDAqxCZ8u5iEwSAKMhNKznw85R7uFuVygSjpb8EvgZOn4KkfoE36XLww
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MUSICAL+NOTES+RECOGNITION+USING+ARTIFICIAL+NEURAL+NETWORKS&rft.jtitle=Annals+of+DAAAM+%26+proceedings&rft.au=Moise%2C+A&rft.au=Constantin%2C+A&rft.au=Bucur%2C+G&rft.date=2009-01-01&rft.issn=1726-9679&rft.eissn=1726-9679&rft.volume=20&rft.issue=1&rft.spage=1159&rft.epage=1159&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1726-9679&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1726-9679&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1726-9679&client=summon