Community-Based Acceptance Probability Maximization for Target Users on Social Networks

Social influence problems, such as Influence Maximization (IM), have been widely studied. But a key challenge remains: How does a company select a small size seed set such that the acceptance probability of target users is maximized? In this paper, we first propose the Acceptance Probability Maximiz...

Full description

Saved in:
Bibliographic Details
Published inAlgorithmic Aspects in Information and Management Vol. 11343; pp. 293 - 305
Main Authors Yan, Ruidong, Zhu, Yuqing, Li, Deying, Wang, Yongcai
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2018
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3030046176
9783030046170
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-04618-7_24

Cover

Abstract Social influence problems, such as Influence Maximization (IM), have been widely studied. But a key challenge remains: How does a company select a small size seed set such that the acceptance probability of target users is maximized? In this paper, we first propose the Acceptance Probability Maximization (APM) problem, i.e., selecting a small size seed set S such that the acceptance probability of target users T is maximized. Then we use classical Independent Cascade (IC) model as basic information diffusion model. Based on this model, we prove that APM is NP-hard and the objective function is monotone non-decreasing as well as submodular. Considering community structure of social networks, we transform APM to Maximum Weight Hitting Set (MWHS) problem. Next, we develop a pipage rounding algorithm whose approximation ratio is ( $$1-1/e$$ ). Finally, we evaluate our algorithms by simulations on real-life social networks. Experimental results validate the performance of the proposed algorithm.
AbstractList Social influence problems, such as Influence Maximization (IM), have been widely studied. But a key challenge remains: How does a company select a small size seed set such that the acceptance probability of target users is maximized? In this paper, we first propose the Acceptance Probability Maximization (APM) problem, i.e., selecting a small size seed set S such that the acceptance probability of target users T is maximized. Then we use classical Independent Cascade (IC) model as basic information diffusion model. Based on this model, we prove that APM is NP-hard and the objective function is monotone non-decreasing as well as submodular. Considering community structure of social networks, we transform APM to Maximum Weight Hitting Set (MWHS) problem. Next, we develop a pipage rounding algorithm whose approximation ratio is ( $$1-1/e$$ ). Finally, we evaluate our algorithms by simulations on real-life social networks. Experimental results validate the performance of the proposed algorithm.
Author Li, Deying
Zhu, Yuqing
Wang, Yongcai
Yan, Ruidong
Author_xml – sequence: 1
  givenname: Ruidong
  surname: Yan
  fullname: Yan, Ruidong
– sequence: 2
  givenname: Yuqing
  surname: Zhu
  fullname: Zhu, Yuqing
– sequence: 3
  givenname: Deying
  surname: Li
  fullname: Li, Deying
  email: deyingli@ruc.edu.cn
– sequence: 4
  givenname: Yongcai
  surname: Wang
  fullname: Wang, Yongcai
BookMark eNo1kFtPAjEUhKuiEZB_4MP-gWpPW3p5ROItwUsixMemu3RxZdliu8TLr7eAPs3JTGaS8_VQp_GNQ-gcyAUQIi-1VJhhwggmXIDC0lB-gAbJZsncefIQdUEAYMa4PkK9_0CKDuqmm2ItOTtBPSBSaKEohVM0iPGdEEJTojjvotexX602TdV-4ysb3TwbFYVbt7YpXPYcfG7zqk5h9mC_qlX1Y9vKN1npQza1YeHabBZdiFnyXnxR2Tp7dO2nD8t4ho5LW0c3-NM-mt1cT8d3ePJ0ez8eTfCCEsGxo1yLHBSTmlNNKFOWDDUH0CBLoZWSipbAhoznJZBcaTtPwrgCNySuVKyP6H43rkPVLFwwuffLaICYLUeTgBlmEg2zY2a2HFOJ70vr4D82LrbGbVuFa9pg6-LNrtv0lRFUAUtDlHOTcLJfZXZxIg
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2018
Copyright_xml – notice: Springer Nature Switzerland AG 2018
DBID FFUUA
DEWEY 5.0999999999999996
DOI 10.1007/978-3-030-04618-7_24
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9783030046187
3030046184
EISSN 1611-3349
Editor Butenko, Sergiy
Du, Ding-Zhu
Woodruff, David
Tang, Shaojie
Editor_xml – sequence: 1
  fullname: Butenko, Sergiy
– sequence: 2
  fullname: Tang, Shaojie
– sequence: 3
  fullname: Du, Ding-Zhu
– sequence: 4
  fullname: Woodruff, David
EndPage 305
ExternalDocumentID EBC6281310_244_302
GroupedDBID 0D6
0DA
38.
AABBV
ACOUV
AEDXK
AEJLV
AEKFX
AEZAY
ALMA_UNASSIGNED_HOLDINGS
ANXHU
BBABE
BICGV
BJAWL
BUBNW
CVGDX
CZZ
EDOXC
FFUUA
FOYMO
I4C
IEZ
NQNQZ
OEBZI
SBO
TPJZQ
TSXQS
Z83
Z88
-DT
-~X
29L
2HA
2HV
ACGFS
ADCXD
EJD
F5P
LAS
LDH
P2P
RSU
~02
ID FETCH-LOGICAL-g2064-e2496b183794290238a059411917f6988782f13534bf10b89ad10b3481e50ef83
ISBN 3030046176
9783030046170
ISSN 0302-9743
IngestDate Tue Jul 29 20:14:52 EDT 2025
Thu May 29 01:52:30 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA76.9.M35
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g2064-e2496b183794290238a059411917f6988782f13534bf10b89ad10b3481e50ef83
Notes Original Abstract: Social influence problems, such as Influence Maximization (IM), have been widely studied. But a key challenge remains: How does a company select a small size seed set such that the acceptance probability of target users is maximized? In this paper, we first propose the Acceptance Probability Maximization (APM) problem, i.e., selecting a small size seed set S such that the acceptance probability of target users T is maximized. Then we use classical Independent Cascade (IC) model as basic information diffusion model. Based on this model, we prove that APM is NP-hard and the objective function is monotone non-decreasing as well as submodular. Considering community structure of social networks, we transform APM to Maximum Weight Hitting Set (MWHS) problem. Next, we develop a pipage rounding algorithm whose approximation ratio is (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-1/e$$\end{document}). Finally, we evaluate our algorithms by simulations on real-life social networks. Experimental results validate the performance of the proposed algorithm.
OCLC 1076968221
PQID EBC6281310_244_302
PageCount 13
ParticipantIDs springer_books_10_1007_978_3_030_04618_7_24
proquest_ebookcentralchapters_6281310_244_302
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Theoretical Computer Science and General Issues
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 12th International Conference, AAIM 2018, Dallas, TX, USA, December 3-4, 2018, Proceedings
PublicationTitle Algorithmic Aspects in Information and Management
PublicationYear 2018
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
SSID ssj0002743844
ssj0002792
Score 2.1011894
Snippet Social influence problems, such as Influence Maximization (IM), have been widely studied. But a key challenge remains: How does a company select a small size...
SourceID springer
proquest
SourceType Publisher
StartPage 293
SubjectTerms Approximate algorithm
Community structure
Seed selection
Social influence
Submodularity
Title Community-Based Acceptance Probability Maximization for Target Users on Social Networks
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6281310&ppg=302
http://link.springer.com/10.1007/978-3-030-04618-7_24
Volume 11343
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6l5VJxYBdl0xy4RUbelwOHgoqqKkQcEtqeRh57XCJBAo0jEX4Sv5LvzVI7bi_l4iRPjjOZ9_S2-b4Zxt7WWejX0ldekMnCi2WVeMiqE6_M6zJOZFJKSQTnz9P0ZB6fnifno9HfHmpp08p31Z9beSX_o1XIoFdiyd5Bs9cPhQDvoV9coWFcB8nvbpvVwIu_X65Q2X8jcPuRJkxqaKvlF7UOZnwT33Jhl342i3pl45buHG-0O978WnTCiaGhq21PdmY7zBf4clUu-jZn2Sbt1vuA4FjTURTqZ6tJCV-u4Dg0EHeLIf1e_LD8Tw1znGk4-nhOzE9avbCc4amBqJusnyZUrd9P7JrHdNVqKNnYHUvhvFS_jRHkgzaGa2MOGqFdL26n7kXcpcI-MGeOOP4XfDuqI-MulXHnKW3SGJlNUZ2LLqJetI806ftmIOljR_BkQsBizJkI4z22l2XwpfeOjk8nX6_7eajuI30Q-4H7XNgVLDMq4hW5Uadm56fuX_Q4nbf95E71M1iw13nQ7CG7T9wYTqQVzN8jNlLLx-yBrWS41cAaIqcVJ3vCzgbGwTvj4D3j4H3j4DAOboyDa-PgkBnj4M44nrL5p-PZxxPPnurhXYbIfz2Fgj-ViCSIBGFBKWNJewbRRoNZkxYIennY0GkssWwCX-ZFWeOF-OIq8VWTR8_Y_nK1VM8Zl6ksaJld1UUeN_BFaZX6SjVNmMsUtcsh89y8CY09sIDnyszSWqRhHqC-wRTHAoo6ZGM3uYJuXwu3qTe0IiIBrQitFUFaeXGnu1-yg87sX7H99mqjXiOfbeUba0r_AEoOmTQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Algorithmic+Aspects+in+Information+and+Management&rft.au=Yan%2C+Ruidong&rft.au=Zhu%2C+Yuqing&rft.au=Li%2C+Deying&rft.au=Wang%2C+Yongcai&rft.atitle=Community-Based+Acceptance+Probability+Maximization+for+Target+Users+on+Social+Networks&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2018-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030046170&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=293&rft.epage=305&rft_id=info:doi/10.1007%2F978-3-030-04618-7_24
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6281310-l.jpg