Context-Aware Movie Recommendations: An Empirical Comparison of Pre-filtering, Post-filtering and Contextual Modeling Approaches

Context-aware recommender systems have been proven to improve the performance of recommendations in a wide array of domains and applications. Despite individual improvements, little work has been done on comparing different approaches, in order to determine which of them outperform the others, and u...

Full description

Saved in:
Bibliographic Details
Published inE-Commerce and Web Technologies pp. 137 - 149
Main Authors Campos, Pedro G., Fernández-Tobías, Ignacio, Cantador, Iván, Díez, Fernando
Format Book Chapter
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2013
SeriesLecture Notes in Business Information Processing
Subjects
Online AccessGet full text
ISBN9783642398773
3642398774
ISSN1865-1348
1865-1356
DOI10.1007/978-3-642-39878-0_13

Cover

Abstract Context-aware recommender systems have been proven to improve the performance of recommendations in a wide array of domains and applications. Despite individual improvements, little work has been done on comparing different approaches, in order to determine which of them outperform the others, and under what circumstances. In this paper we address this issue by conducting an empirical comparison of several pre-filtering, post-filtering and contextual modeling approaches on the movie recommendation domain. To acquire confident contextual information, we performed a user study where participants were asked to rate movies, stating the time and social companion with which they preferred to watch the rated movies. The results of our evaluation show that there is neither a clear superior contextualization approach nor an always best contextual signal, and that achieved improvements depend on the recommendation algorithm used together with each contextualization approach. Nonetheless, we conclude with a number of cues and advices about which particular combinations of contextualization approaches and recommendation algorithms could be better suited for the movie recommendation domain.
AbstractList Context-aware recommender systems have been proven to improve the performance of recommendations in a wide array of domains and applications. Despite individual improvements, little work has been done on comparing different approaches, in order to determine which of them outperform the others, and under what circumstances. In this paper we address this issue by conducting an empirical comparison of several pre-filtering, post-filtering and contextual modeling approaches on the movie recommendation domain. To acquire confident contextual information, we performed a user study where participants were asked to rate movies, stating the time and social companion with which they preferred to watch the rated movies. The results of our evaluation show that there is neither a clear superior contextualization approach nor an always best contextual signal, and that achieved improvements depend on the recommendation algorithm used together with each contextualization approach. Nonetheless, we conclude with a number of cues and advices about which particular combinations of contextualization approaches and recommendation algorithms could be better suited for the movie recommendation domain.
Author Fernández-Tobías, Ignacio
Cantador, Iván
Díez, Fernando
Campos, Pedro G.
Author_xml – sequence: 1
  givenname: Pedro G.
  surname: Campos
  fullname: Campos, Pedro G.
  email: pedro.campos@uam.es
  organization: Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
– sequence: 2
  givenname: Ignacio
  surname: Fernández-Tobías
  fullname: Fernández-Tobías, Ignacio
  email: i.fernandez@uam.es
  organization: Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
– sequence: 3
  givenname: Iván
  surname: Cantador
  fullname: Cantador, Iván
  email: ivan.cantador@uam.es
  organization: Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
– sequence: 4
  givenname: Fernando
  surname: Díez
  fullname: Díez, Fernando
  email: fernando.diez@uam.es
  organization: Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
BookMark eNpVkMlOwzAQhg0UiVL6Bhz8ABi8ZLG5RVFZpCIqBGfLSSYlkNhRHJYjj45bKhBzmZl_Vn3HaGKdBYROGT1nlKYXKpVEkCTiRCgZYqqZ2EPzIIsgbjW6j6ZMJjFhIk4O_tVSMfmtRfIIzb1_ocGUTCRnU_SVOzvC50iyDzMAvnPvDeAHKF3Xga3M2DjrL3Fm8aLrm6EpTYtz1_VmaLyz2NV4NQCpm3aEobHrM7xyfvzLsbEV3l14C6N3roJ2o2d9PzhTPoM_QYe1aT3Md36Gnq4Wj_kNWd5f3-bZkqxZFAkiFStpydMYCi5KI6NaUCkMVUoYXiSFVHWpZKSASQqKpbSO47TiEVMQSPBKzBD_2ev7zWcw6MK5V69Z4Bkw68BMCx169Rap3mAW32ybbhE
ContentType Book Chapter
Copyright Springer-Verlag Berlin Heidelberg 2013
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2013
DOI 10.1007/978-3-642-39878-0_13
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISBN 9783642398780
3642398782
EISSN 1865-1356
Editor Lops, Pasquale
Huemer, Christian
Editor_xml – sequence: 1
  givenname: Christian
  surname: Huemer
  fullname: Huemer, Christian
  email: huemer@big.tuwien.ac.at
– sequence: 2
  givenname: Pasquale
  surname: Lops
  fullname: Lops, Pasquale
  email: pasquale.lops@uniba.it
EndPage 149
GroupedDBID -JY
-K2
0D6
0DA
38.
9-Y
AABBV
AAFLE
AARVG
AAUBL
AAWHR
ABBVZ
ABFTD
ABMLC
ABMNI
AEJLV
AEKFX
AETDV
AEZAY
AFJMS
ALMA_UNASSIGNED_HOLDINGS
ARZOH
AZZ
BBABE
CZZ
I4C
IEZ
JJU
MA.
SBO
TPJZQ
Z7S
Z7U
Z7X
Z7Y
Z83
Z85
Z87
Z88
ID FETCH-LOGICAL-g1443-891c0c275eb23ca84f3083a0993a2b6b89fc9849e180e9170f557d2419e6422d3
ISBN 9783642398773
3642398774
ISSN 1865-1348
IngestDate Tue Jul 29 19:53:12 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g1443-891c0c275eb23ca84f3083a0993a2b6b89fc9849e180e9170f557d2419e6422d3
PageCount 13
ParticipantIDs springer_books_10_1007_978_3_642_39878_0_13
PublicationCentury 2000
PublicationDate 2013
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013
PublicationDecade 2010
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
PublicationSeriesTitle Lecture Notes in Business Information Processing
PublicationSubtitle 14th International Conference, EC-Web 2013, Prague, Czech Republic, August 27-28, 2013. Proceedings
PublicationTitle E-Commerce and Web Technologies
PublicationYear 2013
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
RelatedPersons Mylopoulos, John
Szyperski, Clemens
van der Aalst, Wil
Shaw, Michael J.
Rosemann, Michael
RelatedPersons_xml – sequence: 1
  givenname: Wil
  surname: van der Aalst
  fullname: van der Aalst, Wil
  organization: Eindhoven Technical University, The Netherlands
– sequence: 2
  givenname: John
  surname: Mylopoulos
  fullname: Mylopoulos, John
  organization: University of Trento, Italy
– sequence: 3
  givenname: Michael
  surname: Rosemann
  fullname: Rosemann, Michael
  organization: Faculty of Science and Technology, Queensland University of Technology, Brisbane, Australia
– sequence: 4
  givenname: Michael J.
  surname: Shaw
  fullname: Shaw, Michael J.
  organization: University of Illinois, Urbana-Champaign, USA
– sequence: 5
  givenname: Clemens
  surname: Szyperski
  fullname: Szyperski, Clemens
  organization: Microsoft Research, Redmond, USA
SSID ssj0000986821
ssj0000608497
Score 1.5455906
Snippet Context-aware recommender systems have been proven to improve the performance of recommendations in a wide array of domains and applications. Despite...
SourceID springer
SourceType Publisher
StartPage 137
SubjectTerms Context-aware recommender systems
contextual modeling
post-filtering
pre-filtering
social context
time context
Title Context-Aware Movie Recommendations: An Empirical Comparison of Pre-filtering, Post-filtering and Contextual Modeling Approaches
URI http://link.springer.com/10.1007/978-3-642-39878-0_13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2i4QQF54CCsgHbotXcZ4OEodVWWirtuKwhd6iOLGrHpqgblokTvxsjszYzsZpK6RyiTZREmdnvsTjmflmCHmHqRY12OGsDrVgsdKcSS5qVmVK264oGv0dh0fp7nG8f5KcTCZ_vKyly07Oq1-38kr-R6twDPSKLNk7aHZzUzgAv0G_sAUNw_aa8Tt2s1o_OkNyB-almADAdyUHP7mXGYjBBZtK91XVF-3sy9x3IZs4OUc_Mlu10ux9shSvvdOmrGySlr1N05W1XdvvXbnLNlawvdA6o51nuvXBaGpgwRJ78RMTzQ5bmIzRYMXnd02d1s5DuTz_cWarluz4HRIxVYTpMwztuyYs2GV4OGJE4EZBQgy2eDNE-4Wrme4EgmpR648HLnJy1HYmIW3I_3f0LPNWOBJFP7k73wj2qRj5Rnrf6OwfpcMMjcVUQcxsTxU3EYg0YTyyVUDnyj-W-B98bkvWONuB2_KrN6YlPxMFBmM4mmAYS9wiW5mIp-TeYrl_8G3jHQzSQMQuvmv2c5EKSyLsHwyJSv2D2wqX3h_xSKK3jXoj7G-sqdUj8hAZNhSpL6C9x2Simifkfq-Cp-T3CC7UwIVeg8sHumjoBix0AAttNR2B5T0dQ4UCVOgAFdpDhQ5QeUaOPy9XO7vMdQphpzyOIyZyXgVVmCVKhlFVilhHsLQoYfUTlaFMpch1lYNAFReBynkW6CTJajBecwWCCevoOZk2baNeEBprDp-tIJK6AuO61DKXcGoZRgrWVvC9e0lmvegKfPfXRV_4GwRdRAXcrzCCLlDQr-509jZ5MKD4NZl2F5fqDdi8nXzrAPIXhRukVw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=E-Commerce+and+Web+Technologies&rft.au=Campos%2C+Pedro+G.&rft.au=Fern%C3%A1ndez-Tob%C3%ADas%2C+Ignacio&rft.au=Cantador%2C+Iv%C3%A1n&rft.au=D%C3%ADez%2C+Fernando&rft.atitle=Context-Aware+Movie+Recommendations%3A+An+Empirical+Comparison+of+Pre-filtering%2C+Post-filtering+and+Contextual+Modeling+Approaches&rft.series=Lecture+Notes+in+Business+Information+Processing&rft.date=2013-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783642398773&rft.issn=1865-1348&rft.eissn=1865-1356&rft.spage=137&rft.epage=149&rft_id=info:doi/10.1007%2F978-3-642-39878-0_13
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-1348&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-1348&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-1348&client=summon