Context-Aware Movie Recommendations: An Empirical Comparison of Pre-filtering, Post-filtering and Contextual Modeling Approaches
Context-aware recommender systems have been proven to improve the performance of recommendations in a wide array of domains and applications. Despite individual improvements, little work has been done on comparing different approaches, in order to determine which of them outperform the others, and u...
Saved in:
Published in | E-Commerce and Web Technologies pp. 137 - 149 |
---|---|
Main Authors | , , , |
Format | Book Chapter |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2013
|
Series | Lecture Notes in Business Information Processing |
Subjects | |
Online Access | Get full text |
ISBN | 9783642398773 3642398774 |
ISSN | 1865-1348 1865-1356 |
DOI | 10.1007/978-3-642-39878-0_13 |
Cover
Abstract | Context-aware recommender systems have been proven to improve the performance of recommendations in a wide array of domains and applications. Despite individual improvements, little work has been done on comparing different approaches, in order to determine which of them outperform the others, and under what circumstances. In this paper we address this issue by conducting an empirical comparison of several pre-filtering, post-filtering and contextual modeling approaches on the movie recommendation domain. To acquire confident contextual information, we performed a user study where participants were asked to rate movies, stating the time and social companion with which they preferred to watch the rated movies. The results of our evaluation show that there is neither a clear superior contextualization approach nor an always best contextual signal, and that achieved improvements depend on the recommendation algorithm used together with each contextualization approach. Nonetheless, we conclude with a number of cues and advices about which particular combinations of contextualization approaches and recommendation algorithms could be better suited for the movie recommendation domain. |
---|---|
AbstractList | Context-aware recommender systems have been proven to improve the performance of recommendations in a wide array of domains and applications. Despite individual improvements, little work has been done on comparing different approaches, in order to determine which of them outperform the others, and under what circumstances. In this paper we address this issue by conducting an empirical comparison of several pre-filtering, post-filtering and contextual modeling approaches on the movie recommendation domain. To acquire confident contextual information, we performed a user study where participants were asked to rate movies, stating the time and social companion with which they preferred to watch the rated movies. The results of our evaluation show that there is neither a clear superior contextualization approach nor an always best contextual signal, and that achieved improvements depend on the recommendation algorithm used together with each contextualization approach. Nonetheless, we conclude with a number of cues and advices about which particular combinations of contextualization approaches and recommendation algorithms could be better suited for the movie recommendation domain. |
Author | Fernández-Tobías, Ignacio Cantador, Iván Díez, Fernando Campos, Pedro G. |
Author_xml | – sequence: 1 givenname: Pedro G. surname: Campos fullname: Campos, Pedro G. email: pedro.campos@uam.es organization: Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain – sequence: 2 givenname: Ignacio surname: Fernández-Tobías fullname: Fernández-Tobías, Ignacio email: i.fernandez@uam.es organization: Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain – sequence: 3 givenname: Iván surname: Cantador fullname: Cantador, Iván email: ivan.cantador@uam.es organization: Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain – sequence: 4 givenname: Fernando surname: Díez fullname: Díez, Fernando email: fernando.diez@uam.es organization: Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain |
BookMark | eNpVkMlOwzAQhg0UiVL6Bhz8ABi8ZLG5RVFZpCIqBGfLSSYlkNhRHJYjj45bKhBzmZl_Vn3HaGKdBYROGT1nlKYXKpVEkCTiRCgZYqqZ2EPzIIsgbjW6j6ZMJjFhIk4O_tVSMfmtRfIIzb1_ocGUTCRnU_SVOzvC50iyDzMAvnPvDeAHKF3Xga3M2DjrL3Fm8aLrm6EpTYtz1_VmaLyz2NV4NQCpm3aEobHrM7xyfvzLsbEV3l14C6N3roJ2o2d9PzhTPoM_QYe1aT3Md36Gnq4Wj_kNWd5f3-bZkqxZFAkiFStpydMYCi5KI6NaUCkMVUoYXiSFVHWpZKSASQqKpbSO47TiEVMQSPBKzBD_2ev7zWcw6MK5V69Z4Bkw68BMCx169Rap3mAW32ybbhE |
ContentType | Book Chapter |
Copyright | Springer-Verlag Berlin Heidelberg 2013 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2013 |
DOI | 10.1007/978-3-642-39878-0_13 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Business |
EISBN | 9783642398780 3642398782 |
EISSN | 1865-1356 |
Editor | Lops, Pasquale Huemer, Christian |
Editor_xml | – sequence: 1 givenname: Christian surname: Huemer fullname: Huemer, Christian email: huemer@big.tuwien.ac.at – sequence: 2 givenname: Pasquale surname: Lops fullname: Lops, Pasquale email: pasquale.lops@uniba.it |
EndPage | 149 |
GroupedDBID | -JY -K2 0D6 0DA 38. 9-Y AABBV AAFLE AARVG AAUBL AAWHR ABBVZ ABFTD ABMLC ABMNI AEJLV AEKFX AETDV AEZAY AFJMS ALMA_UNASSIGNED_HOLDINGS ARZOH AZZ BBABE CZZ I4C IEZ JJU MA. SBO TPJZQ Z7S Z7U Z7X Z7Y Z83 Z85 Z87 Z88 |
ID | FETCH-LOGICAL-g1443-891c0c275eb23ca84f3083a0993a2b6b89fc9849e180e9170f557d2419e6422d3 |
ISBN | 9783642398773 3642398774 |
ISSN | 1865-1348 |
IngestDate | Tue Jul 29 19:53:12 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-g1443-891c0c275eb23ca84f3083a0993a2b6b89fc9849e180e9170f557d2419e6422d3 |
PageCount | 13 |
ParticipantIDs | springer_books_10_1007_978_3_642_39878_0_13 |
PublicationCentury | 2000 |
PublicationDate | 2013 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – year: 2013 text: 2013 |
PublicationDecade | 2010 |
PublicationPlace | Berlin, Heidelberg |
PublicationPlace_xml | – name: Berlin, Heidelberg |
PublicationSeriesTitle | Lecture Notes in Business Information Processing |
PublicationSubtitle | 14th International Conference, EC-Web 2013, Prague, Czech Republic, August 27-28, 2013. Proceedings |
PublicationTitle | E-Commerce and Web Technologies |
PublicationYear | 2013 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
RelatedPersons | Mylopoulos, John Szyperski, Clemens van der Aalst, Wil Shaw, Michael J. Rosemann, Michael |
RelatedPersons_xml | – sequence: 1 givenname: Wil surname: van der Aalst fullname: van der Aalst, Wil organization: Eindhoven Technical University, The Netherlands – sequence: 2 givenname: John surname: Mylopoulos fullname: Mylopoulos, John organization: University of Trento, Italy – sequence: 3 givenname: Michael surname: Rosemann fullname: Rosemann, Michael organization: Faculty of Science and Technology, Queensland University of Technology, Brisbane, Australia – sequence: 4 givenname: Michael J. surname: Shaw fullname: Shaw, Michael J. organization: University of Illinois, Urbana-Champaign, USA – sequence: 5 givenname: Clemens surname: Szyperski fullname: Szyperski, Clemens organization: Microsoft Research, Redmond, USA |
SSID | ssj0000986821 ssj0000608497 |
Score | 1.5455906 |
Snippet | Context-aware recommender systems have been proven to improve the performance of recommendations in a wide array of domains and applications. Despite... |
SourceID | springer |
SourceType | Publisher |
StartPage | 137 |
SubjectTerms | Context-aware recommender systems contextual modeling post-filtering pre-filtering social context time context |
Title | Context-Aware Movie Recommendations: An Empirical Comparison of Pre-filtering, Post-filtering and Contextual Modeling Approaches |
URI | http://link.springer.com/10.1007/978-3-642-39878-0_13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2i4QQF54CCsgHbotXcZ4OEodVWWirtuKwhd6iOLGrHpqgblokTvxsjszYzsZpK6RyiTZREmdnvsTjmflmCHmHqRY12OGsDrVgsdKcSS5qVmVK264oGv0dh0fp7nG8f5KcTCZ_vKyly07Oq1-38kr-R6twDPSKLNk7aHZzUzgAv0G_sAUNw_aa8Tt2s1o_OkNyB-almADAdyUHP7mXGYjBBZtK91XVF-3sy9x3IZs4OUc_Mlu10ux9shSvvdOmrGySlr1N05W1XdvvXbnLNlawvdA6o51nuvXBaGpgwRJ78RMTzQ5bmIzRYMXnd02d1s5DuTz_cWarluz4HRIxVYTpMwztuyYs2GV4OGJE4EZBQgy2eDNE-4Wrme4EgmpR648HLnJy1HYmIW3I_3f0LPNWOBJFP7k73wj2qRj5Rnrf6OwfpcMMjcVUQcxsTxU3EYg0YTyyVUDnyj-W-B98bkvWONuB2_KrN6YlPxMFBmM4mmAYS9wiW5mIp-TeYrl_8G3jHQzSQMQuvmv2c5EKSyLsHwyJSv2D2wqX3h_xSKK3jXoj7G-sqdUj8hAZNhSpL6C9x2Simifkfq-Cp-T3CC7UwIVeg8sHumjoBix0AAttNR2B5T0dQ4UCVOgAFdpDhQ5QeUaOPy9XO7vMdQphpzyOIyZyXgVVmCVKhlFVilhHsLQoYfUTlaFMpch1lYNAFReBynkW6CTJajBecwWCCevoOZk2baNeEBprDp-tIJK6AuO61DKXcGoZRgrWVvC9e0lmvegKfPfXRV_4GwRdRAXcrzCCLlDQr-509jZ5MKD4NZl2F5fqDdi8nXzrAPIXhRukVw |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=E-Commerce+and+Web+Technologies&rft.au=Campos%2C+Pedro+G.&rft.au=Fern%C3%A1ndez-Tob%C3%ADas%2C+Ignacio&rft.au=Cantador%2C+Iv%C3%A1n&rft.au=D%C3%ADez%2C+Fernando&rft.atitle=Context-Aware+Movie+Recommendations%3A+An+Empirical+Comparison+of+Pre-filtering%2C+Post-filtering+and+Contextual+Modeling+Approaches&rft.series=Lecture+Notes+in+Business+Information+Processing&rft.date=2013-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783642398773&rft.issn=1865-1348&rft.eissn=1865-1356&rft.spage=137&rft.epage=149&rft_id=info:doi/10.1007%2F978-3-642-39878-0_13 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-1348&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-1348&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-1348&client=summon |