CELLULAR ESTIMATION BAYESIAN ALGORITHM FOR DISCRETE OPTIMIZATION PROBLEMS

In this paper, a new Cellular Estimation Bayesian Algorithm for discrete optimization problems is presented. This class of stochastic optimization algorithm with learning from the structure and parameters of local populations are based on independence test and decentralized populations scheme, which...

Full description

Saved in:
Bibliographic Details
Published inInvestigación operacional Vol. 41; no. 7; p. 1010
Main Authors Martínez-López, Yoan, Madera, Julio, Mahdi, Gaafar Sadeq S, Rodríguez-González, Ansel Y
Format Journal Article
LanguageEnglish
Published Editorial Universitaria de la Republica de Cuba 15.12.2020
Subjects
Online AccessGet full text
ISSN0257-4306

Cover

Abstract In this paper, a new Cellular Estimation Bayesian Algorithm for discrete optimization problems is presented. This class of stochastic optimization algorithm with learning from the structure and parameters of local populations are based on independence test and decentralized populations scheme, which can reduce the number of function evaluations solving for discrete optimization problems. The experimental results showed that this proposal reduces the number of evaluations in the search of the optimal for a benchmark discrete function with respect to other approaches of the literature. Also, it achieved better performance than them. KEYWORDS: Cellular EDAs, Bayesian networks, learning, evolutionary algorithm. MSC: 60-08 En este documento, se presenta un nuevo algoritmo bayesiano de estimación celular para problemas de optimización discretos. Esta clase de algoritmo de optimización estocástica con aprendizaje de la estructura y los parámetros de las poblaciones locales se basa en la prueba de independencia y el esquema de poblaciones descentralizadas, lo que puede reducir el número de evaluaciones de funciones que resuelven problemas de optimización discretos. Los resultados experimentales mostraron que esta propuesta reduce el número de evaluaciones en la búsqueda del óptimo para funciones discretas de referencia con respecto a otros enfoques de la literatura. Además, tuvo mejores resultados con respecto a los algoritmos del estado del arte. PALABRAS CLAVES: EDA celulares; Redes bayesianas; aprendizaje; algoritmo evolutivo.
AbstractList In this paper, a new Cellular Estimation Bayesian Algorithm for discrete optimization problems is presented. This class of stochastic optimization algorithm with learning from the structure and parameters of local populations are based on independence test and decentralized populations scheme, which can reduce the number of function evaluations solving for discrete optimization problems. The experimental results showed that this proposal reduces the number of evaluations in the search of the optimal for a benchmark discrete function with respect to other approaches of the literature. Also, it achieved better performance than them.
In this paper, a new Cellular Estimation Bayesian Algorithm for discrete optimization problems is presented. This class of stochastic optimization algorithm with learning from the structure and parameters of local populations are based on independence test and decentralized populations scheme, which can reduce the number of function evaluations solving for discrete optimization problems. The experimental results showed that this proposal reduces the number of evaluations in the search of the optimal for a benchmark discrete function with respect to other approaches of the literature. Also, it achieved better performance than them. KEYWORDS: Cellular EDAs, Bayesian networks, learning, evolutionary algorithm. MSC: 60-08 En este documento, se presenta un nuevo algoritmo bayesiano de estimación celular para problemas de optimización discretos. Esta clase de algoritmo de optimización estocástica con aprendizaje de la estructura y los parámetros de las poblaciones locales se basa en la prueba de independencia y el esquema de poblaciones descentralizadas, lo que puede reducir el número de evaluaciones de funciones que resuelven problemas de optimización discretos. Los resultados experimentales mostraron que esta propuesta reduce el número de evaluaciones en la búsqueda del óptimo para funciones discretas de referencia con respecto a otros enfoques de la literatura. Además, tuvo mejores resultados con respecto a los algoritmos del estado del arte. PALABRAS CLAVES: EDA celulares; Redes bayesianas; aprendizaje; algoritmo evolutivo.
Audience Academic
Author Martínez-López, Yoan
Rodríguez-González, Ansel Y
Mahdi, Gaafar Sadeq S
Madera, Julio
Author_xml – sequence: 1
  fullname: Martínez-López, Yoan
– sequence: 2
  fullname: Madera, Julio
– sequence: 3
  fullname: Mahdi, Gaafar Sadeq S
– sequence: 4
  fullname: Rodríguez-González, Ansel Y
BookMark eNptkEFrwjAAhXNwMHX7D4GdO5ImaZpj7KIGUiNtPWwXadNEOrTC6v9nAXfwMN7hweN77_AWYDZeRz8Dc5QynlCCsmewmKZvhChOaTYHulDGHIysoKobXcpG2x1cyU9Va7mD0mxspZttCde2gh-6LirVKGj3EdVfd3hf2ZVRZf0CnkJ7nvzrny_BYa2aYpsYu9GFNMkJE35LWop9SoVHzFEs8oACz_IQHBG94L4XLieYha7PfNcxzBihgtK2z2nqY8NjsgRv991Te_bHYQzX20_rLsPkjjKjgmDKOY_U-z9UVO8vg4ufhCHmD4VfKYFSLA
ContentType Journal Article
Copyright COPYRIGHT 2020 Editorial Universitaria de la Republica de Cuba
Copyright_xml – notice: COPYRIGHT 2020 Editorial Universitaria de la Republica de Cuba
DBID INF
DatabaseName Gale OneFile: Informe Academico
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID A649314777
GeographicLocations Cuba
México
GeographicLocations_xml – name: México
– name: Cuba
GroupedDBID 29J
5GY
AAFWJ
ABDBF
ACUHS
ALMA_UNASSIGNED_HOLDINGS
AMVHM
B14
E3Z
EFA
ESX
FAEIB
IAO
INF
KQ8
MK~
OK1
RNS
TUS
~8M
ID FETCH-LOGICAL-g137t-a41e249e05c4198f0f768ffc39d97ed9c8315fbd6ebb515534944ad842e5c4e13
ISSN 0257-4306
IngestDate Tue Jun 17 21:47:42 EDT 2025
Tue Jun 10 20:41:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g137t-a41e249e05c4198f0f768ffc39d97ed9c8315fbd6ebb515534944ad842e5c4e13
ParticipantIDs gale_infotracmisc_A649314777
gale_infotracacademiconefile_A649314777
PublicationCentury 2000
PublicationDate 20201215
PublicationDateYYYYMMDD 2020-12-15
PublicationDate_xml – month: 12
  year: 2020
  text: 20201215
  day: 15
PublicationDecade 2020
PublicationTitle Investigación operacional
PublicationYear 2020
Publisher Editorial Universitaria de la Republica de Cuba
Publisher_xml – name: Editorial Universitaria de la Republica de Cuba
SSID ssj0041246
Score 2.1358829
Snippet In this paper, a new Cellular Estimation Bayesian Algorithm for discrete optimization problems is presented. This class of stochastic optimization algorithm...
SourceID gale
SourceType Aggregation Database
StartPage 1010
Title CELLULAR ESTIMATION BAYESIAN ALGORITHM FOR DISCRETE OPTIMIZATION PROBLEMS
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  issn: 0257-4306
  databaseCode: KQ8
  dateStart: 20000101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  omitProxy: true
  ssIdentifier: ssj0041246
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 0257-4306
  databaseCode: ABDBF
  dateStart: 20000201
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041246
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  issn: 0257-4306
  databaseCode: AMVHM
  dateStart: 20000201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  omitProxy: false
  ssIdentifier: ssj0041246
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb5swFLfW7LIdpnYfWrd24jBpB8QEsfk6koQlTNBUhEztLpXBpu1UQRuRS_76PmMTqLRDtwvC5mEj3s_Pfs_vPSP01fM9k5duYZg29wwYiY7h5XZulGVh57jEnDERnJycOYs1-XlhX_Q23Ta6pMm_F7u_xpX8D1ehDvgqomT_gbP7RqEC7oG_cAUOw_VZPJ6GcbyOg1QPV1mUyAN0JsFluIqCMz2I58s0yhaJDoqePotW0zTMQn15DqTRb0l8ni4ncajs0n86p3aVeaO4FbvoEwwLynu-gWLdfZBKP9Buss8qvjNiSXkvzdGXdQ-5RHhK0y4Su-6rb1jrRzCntKQbfQVkD70ZNq2Z3MKfXW-h-Xld7dqidSd7CEQcvZo6lMli3Lp_yKBNaUdjtyIBCkBw73xCoagzrt9RoXhIg6UoT7c5HUhEkC8GwaYzFN8yb5aCqTuQxSBszH6W2_seBg7xsUVc1z1AB9gaj9DLIPm1SLr5WxzH3e5wd52pyXqw7MgO0RulL2iBZP4ResGrt-j1IIvkOxR1MNB6GGgdDLQ9DDSAgdbBQBvCQOtg8B6tf4TZdGGoEzKMawu7jUGJxUF_5qZdEMv3SrME7RGGGfaZ73LmFx627DJnDs9zcZaPyEVEKPPImMMb3MIf0KiqK_4RaXyMXauwS5_apsgB6eOCMBNT7kKzDibH6Jv4C1didDSAOarCN-BtkUHsqv-tx-jkCSXIq2Lw-NOzG_qMXvXoOUGjZrPlp7AEbPIvimePqoRVNg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CELLULAR+ESTIMATION+BAYESIAN+ALGORITHM+FOR+DISCRETE+OPTIMIZATION+PROBLEMS&rft.jtitle=Investigaci%C3%B3n+operacional&rft.au=Mart%C3%ADnez-L%C3%B3pez%2C+Yoan&rft.au=Madera%2C+Julio&rft.au=Mahdi%2C+Gaafar+Sadeq+S&rft.au=Rodr%C3%ADguez-Gonz%C3%A1lez%2C+Ansel+Y&rft.date=2020-12-15&rft.pub=Editorial+Universitaria+de+la+Republica+de+Cuba&rft.issn=0257-4306&rft.volume=41&rft.issue=7&rft.spage=1010&rft.externalDocID=A649314777
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-4306&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-4306&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-4306&client=summon