CELLULAR ESTIMATION BAYESIAN ALGORITHM FOR DISCRETE OPTIMIZATION PROBLEMS
In this paper, a new Cellular Estimation Bayesian Algorithm for discrete optimization problems is presented. This class of stochastic optimization algorithm with learning from the structure and parameters of local populations are based on independence test and decentralized populations scheme, which...
Saved in:
| Published in | Investigación operacional Vol. 41; no. 7; p. 1010 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Editorial Universitaria de la Republica de Cuba
15.12.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0257-4306 |
Cover
| Abstract | In this paper, a new Cellular Estimation Bayesian Algorithm for discrete optimization problems is presented. This class of stochastic optimization algorithm with learning from the structure and parameters of local populations are based on independence test and decentralized populations scheme, which can reduce the number of function evaluations solving for discrete optimization problems. The experimental results showed that this proposal reduces the number of evaluations in the search of the optimal for a benchmark discrete function with respect to other approaches of the literature. Also, it achieved better performance than them. KEYWORDS: Cellular EDAs, Bayesian networks, learning, evolutionary algorithm. MSC: 60-08 En este documento, se presenta un nuevo algoritmo bayesiano de estimación celular para problemas de optimización discretos. Esta clase de algoritmo de optimización estocástica con aprendizaje de la estructura y los parámetros de las poblaciones locales se basa en la prueba de independencia y el esquema de poblaciones descentralizadas, lo que puede reducir el número de evaluaciones de funciones que resuelven problemas de optimización discretos. Los resultados experimentales mostraron que esta propuesta reduce el número de evaluaciones en la búsqueda del óptimo para funciones discretas de referencia con respecto a otros enfoques de la literatura. Además, tuvo mejores resultados con respecto a los algoritmos del estado del arte. PALABRAS CLAVES: EDA celulares; Redes bayesianas; aprendizaje; algoritmo evolutivo. |
|---|---|
| AbstractList | In this paper, a new Cellular Estimation Bayesian Algorithm for discrete optimization problems is presented. This class of stochastic optimization algorithm with learning from the structure and parameters of local populations are based on independence test and decentralized populations scheme, which can reduce the number of function evaluations solving for discrete optimization problems. The experimental results showed that this proposal reduces the number of evaluations in the search of the optimal for a benchmark discrete function with respect to other approaches of the literature. Also, it achieved better performance than them. In this paper, a new Cellular Estimation Bayesian Algorithm for discrete optimization problems is presented. This class of stochastic optimization algorithm with learning from the structure and parameters of local populations are based on independence test and decentralized populations scheme, which can reduce the number of function evaluations solving for discrete optimization problems. The experimental results showed that this proposal reduces the number of evaluations in the search of the optimal for a benchmark discrete function with respect to other approaches of the literature. Also, it achieved better performance than them. KEYWORDS: Cellular EDAs, Bayesian networks, learning, evolutionary algorithm. MSC: 60-08 En este documento, se presenta un nuevo algoritmo bayesiano de estimación celular para problemas de optimización discretos. Esta clase de algoritmo de optimización estocástica con aprendizaje de la estructura y los parámetros de las poblaciones locales se basa en la prueba de independencia y el esquema de poblaciones descentralizadas, lo que puede reducir el número de evaluaciones de funciones que resuelven problemas de optimización discretos. Los resultados experimentales mostraron que esta propuesta reduce el número de evaluaciones en la búsqueda del óptimo para funciones discretas de referencia con respecto a otros enfoques de la literatura. Además, tuvo mejores resultados con respecto a los algoritmos del estado del arte. PALABRAS CLAVES: EDA celulares; Redes bayesianas; aprendizaje; algoritmo evolutivo. |
| Audience | Academic |
| Author | Martínez-López, Yoan Rodríguez-González, Ansel Y Mahdi, Gaafar Sadeq S Madera, Julio |
| Author_xml | – sequence: 1 fullname: Martínez-López, Yoan – sequence: 2 fullname: Madera, Julio – sequence: 3 fullname: Mahdi, Gaafar Sadeq S – sequence: 4 fullname: Rodríguez-González, Ansel Y |
| BookMark | eNptkEFrwjAAhXNwMHX7D4GdO5ImaZpj7KIGUiNtPWwXadNEOrTC6v9nAXfwMN7hweN77_AWYDZeRz8Dc5QynlCCsmewmKZvhChOaTYHulDGHIysoKobXcpG2x1cyU9Va7mD0mxspZttCde2gh-6LirVKGj3EdVfd3hf2ZVRZf0CnkJ7nvzrny_BYa2aYpsYu9GFNMkJE35LWop9SoVHzFEs8oACz_IQHBG94L4XLieYha7PfNcxzBihgtK2z2nqY8NjsgRv991Te_bHYQzX20_rLsPkjjKjgmDKOY_U-z9UVO8vg4ufhCHmD4VfKYFSLA |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2020 Editorial Universitaria de la Republica de Cuba |
| Copyright_xml | – notice: COPYRIGHT 2020 Editorial Universitaria de la Republica de Cuba |
| DBID | INF |
| DatabaseName | Gale OneFile: Informe Academico |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | A649314777 |
| GeographicLocations | Cuba México |
| GeographicLocations_xml | – name: México – name: Cuba |
| GroupedDBID | 29J 5GY AAFWJ ABDBF ACUHS ALMA_UNASSIGNED_HOLDINGS AMVHM B14 E3Z EFA ESX FAEIB IAO INF KQ8 MK~ OK1 RNS TUS ~8M |
| ID | FETCH-LOGICAL-g137t-a41e249e05c4198f0f768ffc39d97ed9c8315fbd6ebb515534944ad842e5c4e13 |
| ISSN | 0257-4306 |
| IngestDate | Tue Jun 17 21:47:42 EDT 2025 Tue Jun 10 20:41:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-g137t-a41e249e05c4198f0f768ffc39d97ed9c8315fbd6ebb515534944ad842e5c4e13 |
| ParticipantIDs | gale_infotracmisc_A649314777 gale_infotracacademiconefile_A649314777 |
| PublicationCentury | 2000 |
| PublicationDate | 20201215 |
| PublicationDateYYYYMMDD | 2020-12-15 |
| PublicationDate_xml | – month: 12 year: 2020 text: 20201215 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Investigación operacional |
| PublicationYear | 2020 |
| Publisher | Editorial Universitaria de la Republica de Cuba |
| Publisher_xml | – name: Editorial Universitaria de la Republica de Cuba |
| SSID | ssj0041246 |
| Score | 2.1358829 |
| Snippet | In this paper, a new Cellular Estimation Bayesian Algorithm for discrete optimization problems is presented. This class of stochastic optimization algorithm... |
| SourceID | gale |
| SourceType | Aggregation Database |
| StartPage | 1010 |
| Title | CELLULAR ESTIMATION BAYESIAN ALGORITHM FOR DISCRETE OPTIMIZATION PROBLEMS |
| Volume | 41 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library issn: 0257-4306 databaseCode: KQ8 dateStart: 20000101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html omitProxy: true ssIdentifier: ssj0041246 providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate issn: 0257-4306 databaseCode: ABDBF dateStart: 20000201 customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn omitProxy: true ssIdentifier: ssj0041246 providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST issn: 0257-4306 databaseCode: AMVHM dateStart: 20000201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source omitProxy: false ssIdentifier: ssj0041246 providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb5swFLfW7LIdpnYfWrd24jBpB8QEsfk6koQlTNBUhEztLpXBpu1UQRuRS_76PmMTqLRDtwvC5mEj3s_Pfs_vPSP01fM9k5duYZg29wwYiY7h5XZulGVh57jEnDERnJycOYs1-XlhX_Q23Ta6pMm_F7u_xpX8D1ehDvgqomT_gbP7RqEC7oG_cAUOw_VZPJ6GcbyOg1QPV1mUyAN0JsFluIqCMz2I58s0yhaJDoqePotW0zTMQn15DqTRb0l8ni4ncajs0n86p3aVeaO4FbvoEwwLynu-gWLdfZBKP9Buss8qvjNiSXkvzdGXdQ-5RHhK0y4Su-6rb1jrRzCntKQbfQVkD70ZNq2Z3MKfXW-h-Xld7dqidSd7CEQcvZo6lMli3Lp_yKBNaUdjtyIBCkBw73xCoagzrt9RoXhIg6UoT7c5HUhEkC8GwaYzFN8yb5aCqTuQxSBszH6W2_seBg7xsUVc1z1AB9gaj9DLIPm1SLr5WxzH3e5wd52pyXqw7MgO0RulL2iBZP4ResGrt-j1IIvkOxR1MNB6GGgdDLQ9DDSAgdbBQBvCQOtg8B6tf4TZdGGoEzKMawu7jUGJxUF_5qZdEMv3SrME7RGGGfaZ73LmFx627DJnDs9zcZaPyEVEKPPImMMb3MIf0KiqK_4RaXyMXauwS5_apsgB6eOCMBNT7kKzDibH6Jv4C1didDSAOarCN-BtkUHsqv-tx-jkCSXIq2Lw-NOzG_qMXvXoOUGjZrPlp7AEbPIvimePqoRVNg |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CELLULAR+ESTIMATION+BAYESIAN+ALGORITHM+FOR+DISCRETE+OPTIMIZATION+PROBLEMS&rft.jtitle=Investigaci%C3%B3n+operacional&rft.au=Mart%C3%ADnez-L%C3%B3pez%2C+Yoan&rft.au=Madera%2C+Julio&rft.au=Mahdi%2C+Gaafar+Sadeq+S&rft.au=Rodr%C3%ADguez-Gonz%C3%A1lez%2C+Ansel+Y&rft.date=2020-12-15&rft.pub=Editorial+Universitaria+de+la+Republica+de+Cuba&rft.issn=0257-4306&rft.volume=41&rft.issue=7&rft.spage=1010&rft.externalDocID=A649314777 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-4306&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-4306&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-4306&client=summon |