Comparative Analysis of ANN-MLP, ANFIS-ACO[sub.R] and MLR Modeling Approaches for Estimation of Bending Strength of Glulam
Multiple linear regression (MLR), adaptive network-based fuzzy inference system–ant colony optimization algorithm hybrid (ANFIS-ACO[sub.R] ) and artificial neural network–multilayer perceptron (ANN-MLP) were tested to model the bending strength of Glulam (glue-laminated timber) manufactured with a p...
Saved in:
| Published in | Journal of composites science Vol. 7; no. 2 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
MDPI AG
01.02.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2504-477X 2504-477X |
| DOI | 10.3390/jcs7020057 |
Cover
| Abstract | Multiple linear regression (MLR), adaptive network-based fuzzy inference system–ant colony optimization algorithm hybrid (ANFIS-ACO[sub.R] ) and artificial neural network–multilayer perceptron (ANN-MLP) were tested to model the bending strength of Glulam (glue-laminated timber) manufactured with a plane tree (Platanus orientalis L.) wood layer adhered with different weight ratios (WR) of modified starch/urea formaldehyde (UF) adhesive containing different levels of nano-ZnO (NC) used at different levels of the press temperature (Tem) and time (Tim). According to X-ray diffraction (XRD) and stress–strain curves, some changes in the behavior of the product were seen. After selecting the best model through determining statistics such as the determination coefficient (R2) and root mean square error (RMSE), mean absolute error (MAE) and sum of squares error (SSE), the production process was optimized to obtain the highest modulus of rupture (MOR) using the Genetic Algorithm (GA) combined with MLP. It was determined that the MLP had the best accuracy in estimating the response. According to the MLP-GA hybrid, the optimum input values for obtaining the best response include: WR—49.1%, NC—3.385%, Tem—199.4 °C and Tim—19.974 min. |
|---|---|
| AbstractList | Multiple linear regression (MLR), adaptive network-based fuzzy inference system–ant colony optimization algorithm hybrid (ANFIS-ACO[sub.R] ) and artificial neural network–multilayer perceptron (ANN-MLP) were tested to model the bending strength of Glulam (glue-laminated timber) manufactured with a plane tree (Platanus orientalis L.) wood layer adhered with different weight ratios (WR) of modified starch/urea formaldehyde (UF) adhesive containing different levels of nano-ZnO (NC) used at different levels of the press temperature (Tem) and time (Tim). According to X-ray diffraction (XRD) and stress–strain curves, some changes in the behavior of the product were seen. After selecting the best model through determining statistics such as the determination coefficient (R2) and root mean square error (RMSE), mean absolute error (MAE) and sum of squares error (SSE), the production process was optimized to obtain the highest modulus of rupture (MOR) using the Genetic Algorithm (GA) combined with MLP. It was determined that the MLP had the best accuracy in estimating the response. According to the MLP-GA hybrid, the optimum input values for obtaining the best response include: WR—49.1%, NC—3.385%, Tem—199.4 °C and Tim—19.974 min. |
| Audience | Academic |
| Author | Nazerian, Morteza Akbarzadeh, Masood Papadopoulos, Antonios N |
| Author_xml | – sequence: 1 fullname: Nazerian, Morteza – sequence: 2 fullname: Akbarzadeh, Masood – sequence: 3 fullname: Papadopoulos, Antonios N |
| BookMark | eNpNkFFLwzAcxINMcM69-AnyAez8p0lN-ljLnINuk01BEJG0SbqONhlNJ-int0Uf5B7uOI7fw12ikXVWI3RNYEZpDLeHwnMIASJ-hsZhBCxgnL-O_uULNPX-AAAhjxnEdIy-U9ccZSu76lPjxMr6y1ceO4OT9TpYZU83fXhY7oIk3bz5Uz7bvmNpFV5lW7xySteVLXFyPLZOFnvtsXEtnvuuanqgswPnXls1jHZdq23Z7YduUZ9q2VyhcyNrr6d_PkEvD_Pn9DHINotlmmRBSULWBSRWVAtGcpEDoZESoeEkl1QRouIITFRodscKziKipYRQKVGYYW0ABBBOJ2j2yy1lrT8qa1zXyqKX0k1V9Beaqu8THkEoeCwE_QGJS2Ou |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG |
| DOI | 10.3390/jcs7020057 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2504-477X |
| ExternalDocumentID | A750287988 |
| GeographicLocations | Iran |
| GeographicLocations_xml | – name: Iran |
| GroupedDBID | 8FE 8FG AADQD AAFWJ ABJCF ADBBV ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ CCPQU D1I HCIFZ IAO ITC KB. MODMG M~E OK1 P62 PDBOC PHGZM PHGZT PIMPY PQGLB PROAC |
| ID | FETCH-LOGICAL-g124t-19d3e841b8b0135d82f71ba3d11d950f5ce464c7451eaa02dd8cf1b8bf0080173 |
| ISSN | 2504-477X |
| IngestDate | Mon Oct 20 16:54:28 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-g124t-19d3e841b8b0135d82f71ba3d11d950f5ce464c7451eaa02dd8cf1b8bf0080173 |
| ParticipantIDs | gale_infotracacademiconefile_A750287988 |
| PublicationCentury | 2000 |
| PublicationDate | 20230201 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 20230201 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of composites science |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| SSID | ssj0002794093 |
| Score | 2.2331076 |
| Snippet | Multiple linear regression (MLR), adaptive network-based fuzzy inference system–ant colony optimization algorithm hybrid (ANFIS-ACO[sub.R] ) and artificial... |
| SourceID | gale |
| SourceType | Aggregation Database |
| SubjectTerms | Algorithms Materials Neural networks Testing |
| Title | Comparative Analysis of ANN-MLP, ANFIS-ACO[sub.R] and MLR Modeling Approaches for Estimation of Bending Strength of Glulam |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2504-477X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002794093 issn: 2504-477X databaseCode: ADMLS dateStart: 20180301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2504-477X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002794093 issn: 2504-477X databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2504-477X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002794093 issn: 2504-477X databaseCode: BENPR dateStart: 20170901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2504-477X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002794093 issn: 2504-477X databaseCode: 8FG dateStart: 20170901 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9MIFgVoElKI9tOJQDH6s4_XRSdOXWhOFVoqEULX2rltoGleJIyT_ema868chSIWLZY3skbXzeWZ2dh6E7IeSg2IEz40nA27hwZzFJex5QuEkmeByoKo-BZfx4PSanc_8Wa_3u1tdUiSf03JjXcn_SBVoIFeskv0HyTZMgQD3IF-4goTh-iQZjzqtu7vdRaI4ti4vJtV_Hx-ffbOi0dcDf4jjrqYH_pFOrriYVoPQqnL0yHQWV1V3hsMx_PcPjS85VLryBQ-wF7fFHdJO5uu5ePiLZ4tp6pgLBtyMgW1CzqLEddH5w5jmWzZWIbpPxLIUUt3pEqKVmWKvz7cehcwf8_VcJwVGOPj4Z74y50gmaOF6dZ5znbh0NDk7jE5aXYeN1CwWBDNtljbQjLIOOph0N5kAzwsxZ_JXugpsjJgFraFr0g8jcJNgpxhy_oxsuWAO7D7ZGo7jybQJz7mgp-yqZXPzGbq5LfL_0nI3lrzjk1y9JC_MktNII-MV6anFNik7qKA1KmieUYOKT7TBxPcKET8o4IECHmiNB9rigQIeaIsH5GPwQGs8IE3jYYdcH4-vRqeWmbBh3YJfV1hOKD3FmZNwDIf7krtZ4CTCk44jQ9_O_FSxAUsD5jtKCNuVkqcZPp3hTsMJvNekv8gX6g2hCeOwpqAPmMeZl7HQA8vphwl4PzhUgL8lH3GhblBWxVKkwpR_wNvYgeymlcm7Jz-5S5634HpP-sVyrfbARyySD0aefwCniGgA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Analysis+of+ANN-MLP%2C+ANFIS-ACO%5Bsub.R%5D+and+MLR+Modeling+Approaches+for+Estimation+of+Bending+Strength+of+Glulam&rft.jtitle=Journal+of+composites+science&rft.au=Nazerian%2C+Morteza&rft.au=Akbarzadeh%2C+Masood&rft.au=Papadopoulos%2C+Antonios+N&rft.date=2023-02-01&rft.pub=MDPI+AG&rft.issn=2504-477X&rft.eissn=2504-477X&rft.volume=7&rft.issue=2&rft_id=info:doi/10.3390%2Fjcs7020057&rft.externalDocID=A750287988 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-477X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-477X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-477X&client=summon |