Comparative Analysis of ANN-MLP, ANFIS-ACO[sub.R] and MLR Modeling Approaches for Estimation of Bending Strength of Glulam

Multiple linear regression (MLR), adaptive network-based fuzzy inference system–ant colony optimization algorithm hybrid (ANFIS-ACO[sub.R] ) and artificial neural network–multilayer perceptron (ANN-MLP) were tested to model the bending strength of Glulam (glue-laminated timber) manufactured with a p...

Full description

Saved in:
Bibliographic Details
Published inJournal of composites science Vol. 7; no. 2
Main Authors Nazerian, Morteza, Akbarzadeh, Masood, Papadopoulos, Antonios N
Format Journal Article
LanguageEnglish
Published MDPI AG 01.02.2023
Subjects
Online AccessGet full text
ISSN2504-477X
2504-477X
DOI10.3390/jcs7020057

Cover

Abstract Multiple linear regression (MLR), adaptive network-based fuzzy inference system–ant colony optimization algorithm hybrid (ANFIS-ACO[sub.R] ) and artificial neural network–multilayer perceptron (ANN-MLP) were tested to model the bending strength of Glulam (glue-laminated timber) manufactured with a plane tree (Platanus orientalis L.) wood layer adhered with different weight ratios (WR) of modified starch/urea formaldehyde (UF) adhesive containing different levels of nano-ZnO (NC) used at different levels of the press temperature (Tem) and time (Tim). According to X-ray diffraction (XRD) and stress–strain curves, some changes in the behavior of the product were seen. After selecting the best model through determining statistics such as the determination coefficient (R2) and root mean square error (RMSE), mean absolute error (MAE) and sum of squares error (SSE), the production process was optimized to obtain the highest modulus of rupture (MOR) using the Genetic Algorithm (GA) combined with MLP. It was determined that the MLP had the best accuracy in estimating the response. According to the MLP-GA hybrid, the optimum input values for obtaining the best response include: WR—49.1%, NC—3.385%, Tem—199.4 °C and Tim—19.974 min.
AbstractList Multiple linear regression (MLR), adaptive network-based fuzzy inference system–ant colony optimization algorithm hybrid (ANFIS-ACO[sub.R] ) and artificial neural network–multilayer perceptron (ANN-MLP) were tested to model the bending strength of Glulam (glue-laminated timber) manufactured with a plane tree (Platanus orientalis L.) wood layer adhered with different weight ratios (WR) of modified starch/urea formaldehyde (UF) adhesive containing different levels of nano-ZnO (NC) used at different levels of the press temperature (Tem) and time (Tim). According to X-ray diffraction (XRD) and stress–strain curves, some changes in the behavior of the product were seen. After selecting the best model through determining statistics such as the determination coefficient (R2) and root mean square error (RMSE), mean absolute error (MAE) and sum of squares error (SSE), the production process was optimized to obtain the highest modulus of rupture (MOR) using the Genetic Algorithm (GA) combined with MLP. It was determined that the MLP had the best accuracy in estimating the response. According to the MLP-GA hybrid, the optimum input values for obtaining the best response include: WR—49.1%, NC—3.385%, Tem—199.4 °C and Tim—19.974 min.
Audience Academic
Author Nazerian, Morteza
Akbarzadeh, Masood
Papadopoulos, Antonios N
Author_xml – sequence: 1
  fullname: Nazerian, Morteza
– sequence: 2
  fullname: Akbarzadeh, Masood
– sequence: 3
  fullname: Papadopoulos, Antonios N
BookMark eNpNkFFLwzAcxINMcM69-AnyAez8p0lN-ljLnINuk01BEJG0SbqONhlNJ-int0Uf5B7uOI7fw12ikXVWI3RNYEZpDLeHwnMIASJ-hsZhBCxgnL-O_uULNPX-AAAhjxnEdIy-U9ccZSu76lPjxMr6y1ceO4OT9TpYZU83fXhY7oIk3bz5Uz7bvmNpFV5lW7xySteVLXFyPLZOFnvtsXEtnvuuanqgswPnXls1jHZdq23Z7YduUZ9q2VyhcyNrr6d_PkEvD_Pn9DHINotlmmRBSULWBSRWVAtGcpEDoZESoeEkl1QRouIITFRodscKziKipYRQKVGYYW0ABBBOJ2j2yy1lrT8qa1zXyqKX0k1V9Beaqu8THkEoeCwE_QGJS2Ou
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
DOI 10.3390/jcs7020057
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2504-477X
ExternalDocumentID A750287988
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID 8FE
8FG
AADQD
AAFWJ
ABJCF
ADBBV
ADMLS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
D1I
HCIFZ
IAO
ITC
KB.
MODMG
M~E
OK1
P62
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
ID FETCH-LOGICAL-g124t-19d3e841b8b0135d82f71ba3d11d950f5ce464c7451eaa02dd8cf1b8bf0080173
ISSN 2504-477X
IngestDate Mon Oct 20 16:54:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g124t-19d3e841b8b0135d82f71ba3d11d950f5ce464c7451eaa02dd8cf1b8bf0080173
ParticipantIDs gale_infotracacademiconefile_A750287988
PublicationCentury 2000
PublicationDate 20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 20230201
  day: 01
PublicationDecade 2020
PublicationTitle Journal of composites science
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
SSID ssj0002794093
Score 2.2331076
Snippet Multiple linear regression (MLR), adaptive network-based fuzzy inference system–ant colony optimization algorithm hybrid (ANFIS-ACO[sub.R] ) and artificial...
SourceID gale
SourceType Aggregation Database
SubjectTerms Algorithms
Materials
Neural networks
Testing
Title Comparative Analysis of ANN-MLP, ANFIS-ACO[sub.R] and MLR Modeling Approaches for Estimation of Bending Strength of Glulam
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2504-477X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794093
  issn: 2504-477X
  databaseCode: ADMLS
  dateStart: 20180301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2504-477X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002794093
  issn: 2504-477X
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2504-477X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002794093
  issn: 2504-477X
  databaseCode: BENPR
  dateStart: 20170901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2504-477X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002794093
  issn: 2504-477X
  databaseCode: 8FG
  dateStart: 20170901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9MIFgVoElKI9tOJQDH6s4_XRSdOXWhOFVoqEULX2rltoGleJIyT_ema868chSIWLZY3skbXzeWZ2dh6E7IeSg2IEz40nA27hwZzFJex5QuEkmeByoKo-BZfx4PSanc_8Wa_3u1tdUiSf03JjXcn_SBVoIFeskv0HyTZMgQD3IF-4goTh-iQZjzqtu7vdRaI4ti4vJtV_Hx-ffbOi0dcDf4jjrqYH_pFOrriYVoPQqnL0yHQWV1V3hsMx_PcPjS85VLryBQ-wF7fFHdJO5uu5ePiLZ4tp6pgLBtyMgW1CzqLEddH5w5jmWzZWIbpPxLIUUt3pEqKVmWKvz7cehcwf8_VcJwVGOPj4Z74y50gmaOF6dZ5znbh0NDk7jE5aXYeN1CwWBDNtljbQjLIOOph0N5kAzwsxZ_JXugpsjJgFraFr0g8jcJNgpxhy_oxsuWAO7D7ZGo7jybQJz7mgp-yqZXPzGbq5LfL_0nI3lrzjk1y9JC_MktNII-MV6anFNik7qKA1KmieUYOKT7TBxPcKET8o4IECHmiNB9rigQIeaIsH5GPwQGs8IE3jYYdcH4-vRqeWmbBh3YJfV1hOKD3FmZNwDIf7krtZ4CTCk44jQ9_O_FSxAUsD5jtKCNuVkqcZPp3hTsMJvNekv8gX6g2hCeOwpqAPmMeZl7HQA8vphwl4PzhUgL8lH3GhblBWxVKkwpR_wNvYgeymlcm7Jz-5S5634HpP-sVyrfbARyySD0aefwCniGgA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Analysis+of+ANN-MLP%2C+ANFIS-ACO%5Bsub.R%5D+and+MLR+Modeling+Approaches+for+Estimation+of+Bending+Strength+of+Glulam&rft.jtitle=Journal+of+composites+science&rft.au=Nazerian%2C+Morteza&rft.au=Akbarzadeh%2C+Masood&rft.au=Papadopoulos%2C+Antonios+N&rft.date=2023-02-01&rft.pub=MDPI+AG&rft.issn=2504-477X&rft.eissn=2504-477X&rft.volume=7&rft.issue=2&rft_id=info:doi/10.3390%2Fjcs7020057&rft.externalDocID=A750287988
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-477X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-477X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-477X&client=summon