Reconstruction of global surface ocean pCO.sub.2 using region-specific predictors based on a stepwise FFNN regression algorithm

Various machine learning methods were attempted in the global mapping of surface ocean partial pressure of CO.sub.2 (pCO.sub.2) to reduce the uncertainty of the global ocean CO.sub.2 sink estimate due to undersampling of pCO.sub.2 . In previous research, the predictors of pCO.sub.2 were usually sele...

Full description

Saved in:
Bibliographic Details
Published inBiogeosciences Vol. 19; no. 3; pp. 845 - 1689
Main Authors Zhong, Guorong, Li, Xuegang, Song, Jinming, Qu, Baoxiao, Wang, Fan, Wang, Yanjun, Zhang, Bin, Sun, Xiaoxia, Zhang, Wuchang, Wang, Zhenyan, Ma, Jun, Yuan, Huamao, Duan, Liqin
Format Journal Article
LanguageEnglish
Published Copernicus GmbH 10.02.2022
Subjects
Online AccessGet full text
ISSN1726-4170

Cover

Abstract Various machine learning methods were attempted in the global mapping of surface ocean partial pressure of CO.sub.2 (pCO.sub.2) to reduce the uncertainty of the global ocean CO.sub.2 sink estimate due to undersampling of pCO.sub.2 . In previous research, the predictors of pCO.sub.2 were usually selected empirically based on theoretic drivers of surface ocean pCO.sub.2, and the same combination of predictors was applied in all areas except where there was a lack of coverage. However, the differences between the drivers of surface ocean pCO.sub.2 in different regions were not considered. In this work, we combined the stepwise regression algorithm and a feed-forward neural network (FFNN) to select predictors of pCO.sub.2 based on the mean absolute error in each of the 11 biogeochemical provinces defined by the self-organizing map (SOM) method. Based on the predictors selected, a monthly global 1.sup." x 1.sup." surface ocean pCO.sub.2 product from January 1992 to August 2019 was constructed. Validation of different combinations of predictors based on the Surface Ocean CO.sub.2 Atlas (SOCAT) dataset version 2020 and independent observations from time series stations was carried out. The prediction of pCO.sub.2 based on region-specific predictors selected by the stepwise FFNN algorithm was more precise than that based on predictors from previous research. Applying the FFNN size-improving algorithm in each province decreased the mean absolute error (MAE) of the global estimate to 11.32 µatm and the root mean square error (RMSE) to 17.99 µatm. The script file of the stepwise FFNN algorithm and pCO.sub.2 product are distributed through the Institute of Oceanology of the Chinese Academy of Sciences Marine Science Data Center (IOCAS,
AbstractList Various machine learning methods were attempted in the global mapping of surface ocean partial pressure of CO.sub.2 (pCO.sub.2) to reduce the uncertainty of the global ocean CO.sub.2 sink estimate due to undersampling of pCO.sub.2 . In previous research, the predictors of pCO.sub.2 were usually selected empirically based on theoretic drivers of surface ocean pCO.sub.2, and the same combination of predictors was applied in all areas except where there was a lack of coverage. However, the differences between the drivers of surface ocean pCO.sub.2 in different regions were not considered. In this work, we combined the stepwise regression algorithm and a feed-forward neural network (FFNN) to select predictors of pCO.sub.2 based on the mean absolute error in each of the 11 biogeochemical provinces defined by the self-organizing map (SOM) method. Based on the predictors selected, a monthly global 1.sup." x 1.sup." surface ocean pCO.sub.2 product from January 1992 to August 2019 was constructed. Validation of different combinations of predictors based on the Surface Ocean CO.sub.2 Atlas (SOCAT) dataset version 2020 and independent observations from time series stations was carried out. The prediction of pCO.sub.2 based on region-specific predictors selected by the stepwise FFNN algorithm was more precise than that based on predictors from previous research. Applying the FFNN size-improving algorithm in each province decreased the mean absolute error (MAE) of the global estimate to 11.32 µatm and the root mean square error (RMSE) to 17.99 µatm. The script file of the stepwise FFNN algorithm and pCO.sub.2 product are distributed through the Institute of Oceanology of the Chinese Academy of Sciences Marine Science Data Center (IOCAS,
Audience Academic
Author Sun, Xiaoxia
Wang, Zhenyan
Duan, Liqin
Song, Jinming
Zhong, Guorong
Zhang, Wuchang
Li, Xuegang
Wang, Yanjun
Zhang, Bin
Ma, Jun
Qu, Baoxiao
Wang, Fan
Yuan, Huamao
Author_xml – sequence: 1
  fullname: Zhong, Guorong
– sequence: 2
  fullname: Li, Xuegang
– sequence: 3
  fullname: Song, Jinming
– sequence: 4
  fullname: Qu, Baoxiao
– sequence: 5
  fullname: Wang, Fan
– sequence: 6
  fullname: Wang, Yanjun
– sequence: 7
  fullname: Zhang, Bin
– sequence: 8
  fullname: Sun, Xiaoxia
– sequence: 9
  fullname: Zhang, Wuchang
– sequence: 10
  fullname: Wang, Zhenyan
– sequence: 11
  fullname: Ma, Jun
– sequence: 12
  fullname: Yuan, Huamao
– sequence: 13
  fullname: Duan, Liqin
BookMark eNptkE1LAzEQhnOoYFv9DwFPHrYk2XazOZZitVBaqHou-ZhdI9vNksmiN_-6W_RgQeYwMDzPO_BOyKgNLYzImEtRZHMu2TWZIL4zlpesXIzJ1wFsaDHF3iYfWhoqWjfB6IZiHyttgQYLuqXdaj_D3swE7dG3NY1QD3iGHVhfeUu7CM7bFCJSoxEcHbI0xQTdh0eg6_Vud3YiIJ7f6KYO0ae30w25qnSDcPu7p-R1_fCyesq2-8fNarnNas64yuxCgJMF01pxzgRwMHlppVSaM8ONZUxIKASfA1inDGjhpMyZkwb4QuYun5K7n9xaN3D0bRVS1Pbk0R6XhRKlEoqpgZr9Qw3j4OSHnqDyw_1CuL8QBibBZ6p1j3jcPB_-st9y2nrE
ContentType Journal Article
Copyright COPYRIGHT 2022 Copernicus GmbH
Copyright_xml – notice: COPYRIGHT 2022 Copernicus GmbH
DBID ISR
DatabaseName Gale In Context: Science
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Biology
ExternalDocumentID A692892909
GroupedDBID 23N
2WC
2XV
4P2
5GY
5VS
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
ABJCF
ABUWG
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBNVY
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
E3Z
EBD
EBS
EDH
EJD
GROUPED_DOAJ
H13
HCIFZ
HH5
IAO
IEA
ISR
ITC
KQ8
L6V
L8X
LK5
LK8
M7P
M7R
M7S
MM-
M~E
OK1
OVT
P2P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
RKB
RNS
TR2
XSB
~02
ID FETCH-LOGICAL-g1019-c52ed760aa91102e1eb38c779a10b1bc0027e6214eecd9bea2d7730d7be1573d3
ISSN 1726-4170
IngestDate Mon Oct 20 22:05:54 EDT 2025
Mon Oct 20 16:29:35 EDT 2025
Thu Oct 16 14:42:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g1019-c52ed760aa91102e1eb38c779a10b1bc0027e6214eecd9bea2d7730d7be1573d3
PageCount 845
ParticipantIDs gale_infotracmisc_A692892909
gale_infotracacademiconefile_A692892909
gale_incontextgauss_ISR_A692892909
PublicationCentury 2000
PublicationDate 20220210
PublicationDateYYYYMMDD 2022-02-10
PublicationDate_xml – month: 02
  year: 2022
  text: 20220210
  day: 10
PublicationDecade 2020
PublicationTitle Biogeosciences
PublicationYear 2022
Publisher Copernicus GmbH
Publisher_xml – name: Copernicus GmbH
SSID ssj0038085
Score 2.335939
Snippet Various machine learning methods were attempted in the global mapping of surface ocean partial pressure of CO.sub.2 (pCO.sub.2) to reduce the uncertainty of...
SourceID gale
SourceType Aggregation Database
StartPage 845
SubjectTerms Algorithms
Machine learning
Marine accidents
Title Reconstruction of global surface ocean pCO.sub.2 using region-specific predictors based on a stepwise FFNN regression algorithm
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  issn: 1726-4170
  databaseCode: HH5
  dateStart: 20040101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://abc-chemistry.org/
  omitProxy: true
  ssIdentifier: ssj0038085
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  issn: 1726-4170
  databaseCode: KQ8
  dateStart: 20040101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  omitProxy: true
  ssIdentifier: ssj0038085
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  issn: 1726-4170
  databaseCode: DOA
  dateStart: 20040101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0038085
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 1726-4170
  databaseCode: M~E
  dateStart: 20040101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: true
  ssIdentifier: ssj0038085
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  issn: 1726-4170
  databaseCode: BFMQW
  dateStart: 20100601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.proquest.com/conteurope
  omitProxy: false
  ssIdentifier: ssj0038085
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest
  issn: 1726-4170
  databaseCode: BENPR
  dateStart: 20100601
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.proquest.com/central
  omitProxy: true
  ssIdentifier: ssj0038085
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  issn: 1726-4170
  databaseCode: 8FG
  dateStart: 20100601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.proquest.com/technologycollection1
  omitProxy: true
  ssIdentifier: ssj0038085
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bi9QwFICDLgi-iOsFV3cliODDUEkv07SPMuzsKDiiuwuDL0Nu7RacdphO8fLiX99z0m7Tig-rL2VIMw30Oz3JSc6FkNcaZEaZkHmRCcBA8bnvJRKjQDB5OShNniYY4PxxGS8uow-r6cqFENjokr18q379Na7kf6hCG3DFKNl_INs_FBrgN_CFKxCG660Yo-3oMsDiuq_L71E3u0zAFwuTE3y_29knW-oqmDR2ZwCLMVSlh0GW6CiEeQJ00ZbdwUlN4wGCmAD-7feiNpP5fLnE_7Qes3DrW17tiv3VZnQgXFS56RJjOrfEr1edx-9Zg5kS8t79x_oQrBqTC9d4fuMdXJSbwjV_btpzkepHIarhJgXYt1gyhfViNau2ZlcWqqknZxu5GOhbHsQoIWykkNOB4IUD7Zq0mSfHWbPfn38ZN7bZfOMUTMkgxdjOu6EfWJXdG0Zhwmyx1n74bkIeLC0uHpIHnU1A37WAD8kdUz4i99oqoT8fk99jzLTKaIuZdpipxUx7zNRipn9gpg4ztZgpPEvQG8wUMVOHmfaYn5DL-enFbOF1dTO8HBRs6qlpYDSPmRAwk7HA-EaGieI8FT6TvlS4FWHiwI-MUTqVRgSag6LXXBp_ykMdPiUHZVWaZ4SqiMcZZ5JnUxZJoUWUca5CloVZwpXPjsgrfG9rzCRSoqtSLpq6XgOTtSNwRN50nbJqvxNKdJEfMAQmHxv1PB71BFWnBref32a0F-S-k8BjcgB0zAksHPfypZWBa555eBw
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+of+global+surface+ocean+pCO.sub.2+using+region-specific+predictors+based+on+a+stepwise+FFNN+regression+algorithm&rft.jtitle=Biogeosciences&rft.au=Zhong%2C+Guorong&rft.au=Li%2C+Xuegang&rft.au=Song%2C+Jinming&rft.au=Qu%2C+Baoxiao&rft.date=2022-02-10&rft.pub=Copernicus+GmbH&rft.issn=1726-4170&rft.volume=19&rft.issue=3&rft.spage=845&rft.externalDBID=ISR&rft.externalDocID=A692892909
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1726-4170&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1726-4170&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1726-4170&client=summon