Version 2 of the IASI NH.sub.3 neural network retrieval algorithm: near-real-time and reanalysed datasets
Recently, Whitburn et al.(2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH.sub.3) columns from Infrared Atmospheric Sounding Interferometer (IASI) satellite observations. In the past year, several improvements have been introduced, and the resulting new baseli...
Saved in:
| Published in | Atmospheric measurement techniques Vol. 10; no. 12; pp. 4905 - 9809 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Copernicus GmbH
15.12.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1867-1381 |
Cover
| Abstract | Recently, Whitburn et al.(2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH.sub.3) columns from Infrared Atmospheric Sounding Interferometer (IASI) satellite observations. In the past year, several improvements have been introduced, and the resulting new baseline version, Artificial Neural Network for IASI (ANNI)-NH.sub.3 -v2.1, is documented here. One of the main changes to the algorithm is that separate neural networks were trained for land and sea observations, resulting in a better training performance for both groups. By reducing and transforming the input parameter space, performance is now also better for observations associated with favourable sounding conditions (i.e. enhanced thermal contrasts). Other changes relate to the introduction of a bias correction over land and sea and the treatment of the satellite zenith angle. In addition to these algorithmic changes, new recommendations for post-filtering the data and for averaging data in time or space are formulated. We also introduce a second dataset (ANNI-NH.sub.3 -v2.1R-I) which relies on ERA-Interim ECMWF meteorological input data, along with surface temperature retrieved from a dedicated network, rather than the operationally provided Eumetsat IASI Level 2 (L2) data used for the standard near-real-time version. The need for such a dataset emerged after a series of sharp discontinuities were identified in the NH.sub.3 time series, which could be traced back to incremental changes in the IASI L2 algorithms for temperature and clouds. The reanalysed dataset is coherent in time and can therefore be used to study trends. Furthermore, both datasets agree reasonably well in the mean on recent data, after the date when the IASI meteorological L2 version 6 became operational (30 September 2014). |
|---|---|
| AbstractList | Recently, Whitburn et al.(2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH.sub.3) columns from Infrared Atmospheric Sounding Interferometer (IASI) satellite observations. In the past year, several improvements have been introduced, and the resulting new baseline version, Artificial Neural Network for IASI (ANNI)-NH.sub.3 -v2.1, is documented here. One of the main changes to the algorithm is that separate neural networks were trained for land and sea observations, resulting in a better training performance for both groups. By reducing and transforming the input parameter space, performance is now also better for observations associated with favourable sounding conditions (i.e. enhanced thermal contrasts). Other changes relate to the introduction of a bias correction over land and sea and the treatment of the satellite zenith angle. In addition to these algorithmic changes, new recommendations for post-filtering the data and for averaging data in time or space are formulated. We also introduce a second dataset (ANNI-NH.sub.3 -v2.1R-I) which relies on ERA-Interim ECMWF meteorological input data, along with surface temperature retrieved from a dedicated network, rather than the operationally provided Eumetsat IASI Level 2 (L2) data used for the standard near-real-time version. The need for such a dataset emerged after a series of sharp discontinuities were identified in the NH.sub.3 time series, which could be traced back to incremental changes in the IASI L2 algorithms for temperature and clouds. The reanalysed dataset is coherent in time and can therefore be used to study trends. Furthermore, both datasets agree reasonably well in the mean on recent data, after the date when the IASI meteorological L2 version 6 became operational (30 September 2014). |
| Audience | Academic |
| Author | Whitburn, Simon Clarisse, Lieven Clerbaux, Cathy Hurtmans, Daniel Coheur, Pierre-François Van Damme, Martin |
| Author_xml | – sequence: 1 fullname: Van Damme, Martin – sequence: 2 fullname: Whitburn, Simon – sequence: 3 fullname: Clarisse, Lieven – sequence: 4 fullname: Clerbaux, Cathy – sequence: 5 fullname: Hurtmans, Daniel – sequence: 6 fullname: Coheur, Pierre-François |
| BookMark | eNptkF9LwzAUxfMwwW36HQI--dCRtGub-laGusJQcOrruGluumibQpL559svoA8O5D4cOPd3zsOZkYkdLU7IlIuiTHgm-DmZef_GWLHkZTol5hWdN6OlKR01DXukTb1t6MN64Q9ykVGLBwd9lPA5unfqMDiDH9GBvhudCfvhJj7BJQ6hT4IZkIJVkQML_bdHRRUE8Bj8BTnT0Hu8_NU5ebm7fV6tk83jfbOqN0nHGU8TBVIiKMFVLkWe5koWqWSg1JIxLTMuStRltcx41Wohc65byLFsmVBZoViZZnNy9dPbQY87Y_UYHLSD8e2uzrmohIi1kVr8Q8VTOJg2bqZN9E8C1yeByAT8Ch0cvN8126e_7BGHG3IJ |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2017 Copernicus GmbH |
| Copyright_xml | – notice: COPYRIGHT 2017 Copernicus GmbH |
| DBID | ISR |
| DatabaseName | Gale In Context: Science |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| ExternalDocumentID | A518988852 |
| GroupedDBID | 23N 5VS 8FE 8FG 8FH 8R4 8R5 AAFWJ ABDBF ABUWG ACGFO ACUHS ADBBV AEGXH AENEX AEUYN AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU D1K E3Z ESX GROUPED_DOAJ H13 HCIFZ IAO IEA IPNFZ ISR ITC K6- KQ8 LK5 M7R OK1 P2P P62 PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC Q2X RIG RKB RNS TR2 TUS |
| ID | FETCH-LOGICAL-g1012-dabbead81d5b8525db62b0add400fb3187ef794319cf8b51fca5e7c08d36d0723 |
| ISSN | 1867-1381 |
| IngestDate | Mon Oct 20 22:34:09 EDT 2025 Mon Oct 20 16:19:43 EDT 2025 Thu Oct 16 15:06:55 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-g1012-dabbead81d5b8525db62b0add400fb3187ef794319cf8b51fca5e7c08d36d0723 |
| PageCount | 4905 |
| ParticipantIDs | gale_infotracmisc_A518988852 gale_infotracacademiconefile_A518988852 gale_incontextgauss_ISR_A518988852 |
| PublicationCentury | 2000 |
| PublicationDate | 20171215 |
| PublicationDateYYYYMMDD | 2017-12-15 |
| PublicationDate_xml | – month: 12 year: 2017 text: 20171215 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Atmospheric measurement techniques |
| PublicationYear | 2017 |
| Publisher | Copernicus GmbH |
| Publisher_xml | – name: Copernicus GmbH |
| SSID | ssj0064172 |
| Score | 2.1367948 |
| Snippet | Recently, Whitburn et al.(2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH.sub.3) columns from Infrared Atmospheric... |
| SourceID | gale |
| SourceType | Aggregation Database |
| StartPage | 4905 |
| SubjectTerms | Algorithms Artificial neural networks Methods Remote sensing |
| Title | Version 2 of the IASI NH.sub.3 neural network retrieval algorithm: near-real-time and reanalysed datasets |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library issn: 1867-1381 databaseCode: KQ8 dateStart: 20080101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html omitProxy: true ssIdentifier: ssj0064172 providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1867-1381 databaseCode: DOA dateStart: 20080101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0064172 providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate issn: 1867-1381 databaseCode: ABDBF dateStart: 20100501 customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn omitProxy: true ssIdentifier: ssj0064172 providerName: EBSCOhost – providerCode: PRVPQU databaseName: Continental Europe Database issn: 1867-1381 databaseCode: BFMQW dateStart: 20100501 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.proquest.com/conteurope omitProxy: false ssIdentifier: ssj0064172 providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central issn: 1867-1381 databaseCode: BENPR dateStart: 20100501 customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.proquest.com/central omitProxy: true ssIdentifier: ssj0064172 providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection issn: 1867-1381 databaseCode: 8FG dateStart: 20100501 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.proquest.com/technologycollection1 omitProxy: true ssIdentifier: ssj0064172 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagXLggnqKwIAshOERGeTkPbsuy0CJthfaB9lbFidON1CYoTVcLv57PsfOoxGHhErWOlaSZr-OZ8cw3hLwNYj9OchGw0OOS-WlssxjeDxNBaPuZH6W-VLXDJ4tgduF_u-SXQ0pQW13SiA_p77_WlfyPVDEGuaoq2X-QbH9RDOAz5IsjJIzjrWRsgl2W2-30zw_P5tZi1ja28izFVQkJlDrT26rb5lnXihxgvarqorlqg_QlsM5gOq6Z6jOv881l0nKVwBhVGaRbqemeerbaZlNtFR1BkVqbIcZo9XywvZ3-A9rjs4qNm7KgjufbdOaDQHX4tdgM2QAqY0glCeiIgSKYGs4AA8nupqtc_DUOWWAZdFymizZ15lD1U9Zlke621teNmI20bwSt7Xi6h0uvnu0xDN2RsvVjmw_LWLd1Pz873R_U7L7ciWJ4-xzL9V3PcSfk3qfjxffTbtUOfKdt9NU_glmiR8bG-UPywHgJ9FCL_BG5I8vHZHoCB6eq230Q-o4erQt4G-23J6QwUKAurXIKKFAFBdpBgWooUAMF2kOB9lD4SPeBQAEEOgCBdkB4Si6-HJ8fzZjposFWiruNZYkQUBfwS7jAz-eZCFxhY1mD9s4FVHooc8US6MRpHgnu5GnCZZjaUeYFmR263jMyKatSPifUzfJQusrqtvEXj_IowSXgAMCKhFXK_Sl5o97ZUvGKlCpxaZXsttslJLIc3v-UvDeT8qqpkzQxdSC4haIi25t5sDcTii8dnX5xm7u9JPcHBB6QSVPv5CuYkY14bRDwB3vUfBM |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Version+2+of+the+IASI+NH.sub.3+neural+network+retrieval+algorithm%3A+near-real-time+and+reanalysed+datasets&rft.jtitle=Atmospheric+measurement+techniques&rft.au=Van+Damme%2C+Martin&rft.au=Whitburn%2C+Simon&rft.au=Clarisse%2C+Lieven&rft.au=Clerbaux%2C+Cathy&rft.date=2017-12-15&rft.pub=Copernicus+GmbH&rft.issn=1867-1381&rft.volume=10&rft.issue=12&rft.spage=4905&rft.externalDBID=ISR&rft.externalDocID=A518988852 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-1381&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-1381&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-1381&client=summon |