Version 2 of the IASI NH.sub.3 neural network retrieval algorithm: near-real-time and reanalysed datasets

Recently, Whitburn et al.(2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH.sub.3) columns from Infrared Atmospheric Sounding Interferometer (IASI) satellite observations. In the past year, several improvements have been introduced, and the resulting new baseli...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric measurement techniques Vol. 10; no. 12; pp. 4905 - 9809
Main Authors Van Damme, Martin, Whitburn, Simon, Clarisse, Lieven, Clerbaux, Cathy, Hurtmans, Daniel, Coheur, Pierre-François
Format Journal Article
LanguageEnglish
Published Copernicus GmbH 15.12.2017
Subjects
Online AccessGet full text
ISSN1867-1381

Cover

Abstract Recently, Whitburn et al.(2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH.sub.3) columns from Infrared Atmospheric Sounding Interferometer (IASI) satellite observations. In the past year, several improvements have been introduced, and the resulting new baseline version, Artificial Neural Network for IASI (ANNI)-NH.sub.3 -v2.1, is documented here. One of the main changes to the algorithm is that separate neural networks were trained for land and sea observations, resulting in a better training performance for both groups. By reducing and transforming the input parameter space, performance is now also better for observations associated with favourable sounding conditions (i.e. enhanced thermal contrasts). Other changes relate to the introduction of a bias correction over land and sea and the treatment of the satellite zenith angle. In addition to these algorithmic changes, new recommendations for post-filtering the data and for averaging data in time or space are formulated. We also introduce a second dataset (ANNI-NH.sub.3 -v2.1R-I) which relies on ERA-Interim ECMWF meteorological input data, along with surface temperature retrieved from a dedicated network, rather than the operationally provided Eumetsat IASI Level 2 (L2) data used for the standard near-real-time version. The need for such a dataset emerged after a series of sharp discontinuities were identified in the NH.sub.3 time series, which could be traced back to incremental changes in the IASI L2 algorithms for temperature and clouds. The reanalysed dataset is coherent in time and can therefore be used to study trends. Furthermore, both datasets agree reasonably well in the mean on recent data, after the date when the IASI meteorological L2 version 6 became operational (30 September 2014).
AbstractList Recently, Whitburn et al.(2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH.sub.3) columns from Infrared Atmospheric Sounding Interferometer (IASI) satellite observations. In the past year, several improvements have been introduced, and the resulting new baseline version, Artificial Neural Network for IASI (ANNI)-NH.sub.3 -v2.1, is documented here. One of the main changes to the algorithm is that separate neural networks were trained for land and sea observations, resulting in a better training performance for both groups. By reducing and transforming the input parameter space, performance is now also better for observations associated with favourable sounding conditions (i.e. enhanced thermal contrasts). Other changes relate to the introduction of a bias correction over land and sea and the treatment of the satellite zenith angle. In addition to these algorithmic changes, new recommendations for post-filtering the data and for averaging data in time or space are formulated. We also introduce a second dataset (ANNI-NH.sub.3 -v2.1R-I) which relies on ERA-Interim ECMWF meteorological input data, along with surface temperature retrieved from a dedicated network, rather than the operationally provided Eumetsat IASI Level 2 (L2) data used for the standard near-real-time version. The need for such a dataset emerged after a series of sharp discontinuities were identified in the NH.sub.3 time series, which could be traced back to incremental changes in the IASI L2 algorithms for temperature and clouds. The reanalysed dataset is coherent in time and can therefore be used to study trends. Furthermore, both datasets agree reasonably well in the mean on recent data, after the date when the IASI meteorological L2 version 6 became operational (30 September 2014).
Audience Academic
Author Whitburn, Simon
Clarisse, Lieven
Clerbaux, Cathy
Hurtmans, Daniel
Coheur, Pierre-François
Van Damme, Martin
Author_xml – sequence: 1
  fullname: Van Damme, Martin
– sequence: 2
  fullname: Whitburn, Simon
– sequence: 3
  fullname: Clarisse, Lieven
– sequence: 4
  fullname: Clerbaux, Cathy
– sequence: 5
  fullname: Hurtmans, Daniel
– sequence: 6
  fullname: Coheur, Pierre-François
BookMark eNptkF9LwzAUxfMwwW36HQI--dCRtGub-laGusJQcOrruGluumibQpL559svoA8O5D4cOPd3zsOZkYkdLU7IlIuiTHgm-DmZef_GWLHkZTol5hWdN6OlKR01DXukTb1t6MN64Q9ykVGLBwd9lPA5unfqMDiDH9GBvhudCfvhJj7BJQ6hT4IZkIJVkQML_bdHRRUE8Bj8BTnT0Hu8_NU5ebm7fV6tk83jfbOqN0nHGU8TBVIiKMFVLkWe5koWqWSg1JIxLTMuStRltcx41Wohc65byLFsmVBZoViZZnNy9dPbQY87Y_UYHLSD8e2uzrmohIi1kVr8Q8VTOJg2bqZN9E8C1yeByAT8Ch0cvN8126e_7BGHG3IJ
ContentType Journal Article
Copyright COPYRIGHT 2017 Copernicus GmbH
Copyright_xml – notice: COPYRIGHT 2017 Copernicus GmbH
DBID ISR
DatabaseName Gale In Context: Science
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
ExternalDocumentID A518988852
GroupedDBID 23N
5VS
8FE
8FG
8FH
8R4
8R5
AAFWJ
ABDBF
ABUWG
ACGFO
ACUHS
ADBBV
AEGXH
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
D1K
E3Z
ESX
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
IPNFZ
ISR
ITC
K6-
KQ8
LK5
M7R
OK1
P2P
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
Q2X
RIG
RKB
RNS
TR2
TUS
ID FETCH-LOGICAL-g1012-dabbead81d5b8525db62b0add400fb3187ef794319cf8b51fca5e7c08d36d0723
ISSN 1867-1381
IngestDate Mon Oct 20 22:34:09 EDT 2025
Mon Oct 20 16:19:43 EDT 2025
Thu Oct 16 15:06:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g1012-dabbead81d5b8525db62b0add400fb3187ef794319cf8b51fca5e7c08d36d0723
PageCount 4905
ParticipantIDs gale_infotracmisc_A518988852
gale_infotracacademiconefile_A518988852
gale_incontextgauss_ISR_A518988852
PublicationCentury 2000
PublicationDate 20171215
PublicationDateYYYYMMDD 2017-12-15
PublicationDate_xml – month: 12
  year: 2017
  text: 20171215
  day: 15
PublicationDecade 2010
PublicationTitle Atmospheric measurement techniques
PublicationYear 2017
Publisher Copernicus GmbH
Publisher_xml – name: Copernicus GmbH
SSID ssj0064172
Score 2.1367948
Snippet Recently, Whitburn et al.(2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH.sub.3) columns from Infrared Atmospheric...
SourceID gale
SourceType Aggregation Database
StartPage 4905
SubjectTerms Algorithms
Artificial neural networks
Methods
Remote sensing
Title Version 2 of the IASI NH.sub.3 neural network retrieval algorithm: near-real-time and reanalysed datasets
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  issn: 1867-1381
  databaseCode: KQ8
  dateStart: 20080101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  omitProxy: true
  ssIdentifier: ssj0064172
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1867-1381
  databaseCode: DOA
  dateStart: 20080101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0064172
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1867-1381
  databaseCode: ABDBF
  dateStart: 20100501
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0064172
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  issn: 1867-1381
  databaseCode: BFMQW
  dateStart: 20100501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.proquest.com/conteurope
  omitProxy: false
  ssIdentifier: ssj0064172
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  issn: 1867-1381
  databaseCode: BENPR
  dateStart: 20100501
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.proquest.com/central
  omitProxy: true
  ssIdentifier: ssj0064172
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  issn: 1867-1381
  databaseCode: 8FG
  dateStart: 20100501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.proquest.com/technologycollection1
  omitProxy: true
  ssIdentifier: ssj0064172
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagXLggnqKwIAshOERGeTkPbsuy0CJthfaB9lbFidON1CYoTVcLv57PsfOoxGHhErWOlaSZr-OZ8cw3hLwNYj9OchGw0OOS-WlssxjeDxNBaPuZH6W-VLXDJ4tgduF_u-SXQ0pQW13SiA_p77_WlfyPVDEGuaoq2X-QbH9RDOAz5IsjJIzjrWRsgl2W2-30zw_P5tZi1ja28izFVQkJlDrT26rb5lnXihxgvarqorlqg_QlsM5gOq6Z6jOv881l0nKVwBhVGaRbqemeerbaZlNtFR1BkVqbIcZo9XywvZ3-A9rjs4qNm7KgjufbdOaDQHX4tdgM2QAqY0glCeiIgSKYGs4AA8nupqtc_DUOWWAZdFymizZ15lD1U9Zlke621teNmI20bwSt7Xi6h0uvnu0xDN2RsvVjmw_LWLd1Pz873R_U7L7ciWJ4-xzL9V3PcSfk3qfjxffTbtUOfKdt9NU_glmiR8bG-UPywHgJ9FCL_BG5I8vHZHoCB6eq230Q-o4erQt4G-23J6QwUKAurXIKKFAFBdpBgWooUAMF2kOB9lD4SPeBQAEEOgCBdkB4Si6-HJ8fzZjposFWiruNZYkQUBfwS7jAz-eZCFxhY1mD9s4FVHooc8US6MRpHgnu5GnCZZjaUeYFmR263jMyKatSPifUzfJQusrqtvEXj_IowSXgAMCKhFXK_Sl5o97ZUvGKlCpxaZXsttslJLIc3v-UvDeT8qqpkzQxdSC4haIi25t5sDcTii8dnX5xm7u9JPcHBB6QSVPv5CuYkY14bRDwB3vUfBM
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Version+2+of+the+IASI+NH.sub.3+neural+network+retrieval+algorithm%3A+near-real-time+and+reanalysed+datasets&rft.jtitle=Atmospheric+measurement+techniques&rft.au=Van+Damme%2C+Martin&rft.au=Whitburn%2C+Simon&rft.au=Clarisse%2C+Lieven&rft.au=Clerbaux%2C+Cathy&rft.date=2017-12-15&rft.pub=Copernicus+GmbH&rft.issn=1867-1381&rft.volume=10&rft.issue=12&rft.spage=4905&rft.externalDBID=ISR&rft.externalDocID=A518988852
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-1381&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-1381&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-1381&client=summon