Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming
Aim We aim to: (1) explore thermal habitat preferences in alpine plant species across mosaics of topographically controlled micro-habitats; (2) test the predictive value of so-called ‘indicator values'; and (3) quantify the shift in micro-habitat conditions under the influence of climate warmin...
Saved in:
Published in | Journal of biogeography Vol. 38; no. 2; pp. 406 - 416 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.02.2011
Blackwell Publishing Blackwell |
Subjects | |
Online Access | Get full text |
ISSN | 0305-0270 1365-2699 |
DOI | 10.1111/j.1365-2699.2010.02407.x |
Cover
Abstract | Aim We aim to: (1) explore thermal habitat preferences in alpine plant species across mosaics of topographically controlled micro-habitats; (2) test the predictive value of so-called ‘indicator values'; and (3) quantify the shift in micro-habitat conditions under the influence of climate warming. Location Alpine vegetation 2200-2800 m a.s.l., Swiss central Alps. Methods High-resolution infra-red thermometry and large numbers of small data loggers were used to assess the spatial and temporal variation of plant-surface and ground temperatures as well as snow-melt patterns for 889 plots distributed across three alpine slopes of contrasting exposure. These environmental data were then correlated with Landolt indicator values for temperature preferences of different plant species and vegetation units. By simulating a uniform 2 K warming we estimated the changes in abundance of micro-habitat temperatures within the study area. Results Within the study area we observed a substantial variation between micro-habitats in seasonal mean soil temperature (ΔT = 7.2 K), surface temperature (ΔT = 10.5 K) and season length (>32 days). Plant species with low indicator values for temperature (plants commonly found in cool habitats) grew in significantly colder micro-habitats than plants with higher indicator values found on the same slope. A 2 K warming will lead to the loss of the coldest habitats (3% of current area), 75% of the current thermal micro-habitats will be reduced in abundance (crowding effect) and 22% will become more abundant. Main conclusions Our results demonstrate that the topographically induced mosaics of micro-climatic conditions in an alpine landscape are associated with local plant species distribution. Semi-quantitative plant species indicator values based on expert knowledge and aggregated to community means match measured thermal habitat conditions. Metre-scale thermal contrasts significantly exceed IPCC warming projections for the next 100 years. The data presented here thus indicate a great risk of overestimating alpine habitat losses in isotherm-based model scenarios. While all but the species depending on the very coldest micro-habitats will find thermally suitable ‘escape' habitats within short distances, there will be enhanced competition for those cooler places on a given slope in an alpine climate that is 2 K warmer. Yet, due to their topographic variability, alpine landscapes are likely to be safer places for most species than lowland terrain in a warming world. |
---|---|
AbstractList | Aim We aim to: (1) explore thermal habitat preferences in alpine plant species across mosaics of topographically controlled micro-habitats; (2) test the predictive value of so-called ‘indicator values'; and (3) quantify the shift in micro-habitat conditions under the influence of climate warming. Location Alpine vegetation 2200-2800 m a.s.l., Swiss central Alps. Methods High-resolution infra-red thermometry and large numbers of small data loggers were used to assess the spatial and temporal variation of plant-surface and ground temperatures as well as snow-melt patterns for 889 plots distributed across three alpine slopes of contrasting exposure. These environmental data were then correlated with Landolt indicator values for temperature preferences of different plant species and vegetation units. By simulating a uniform 2 K warming we estimated the changes in abundance of micro-habitat temperatures within the study area. Results Within the study area we observed a substantial variation between micro-habitats in seasonal mean soil temperature (ΔT = 7.2 K), surface temperature (ΔT = 10.5 K) and season length (>32 days). Plant species with low indicator values for temperature (plants commonly found in cool habitats) grew in significantly colder micro-habitats than plants with higher indicator values found on the same slope. A 2 K warming will lead to the loss of the coldest habitats (3% of current area), 75% of the current thermal micro-habitats will be reduced in abundance (crowding effect) and 22% will become more abundant. Main conclusions Our results demonstrate that the topographically induced mosaics of micro-climatic conditions in an alpine landscape are associated with local plant species distribution. Semi-quantitative plant species indicator values based on expert knowledge and aggregated to community means match measured thermal habitat conditions. Metre-scale thermal contrasts significantly exceed IPCC warming projections for the next 100 years. The data presented here thus indicate a great risk of overestimating alpine habitat losses in isotherm-based model scenarios. While all but the species depending on the very coldest micro-habitats will find thermally suitable ‘escape' habitats within short distances, there will be enhanced competition for those cooler places on a given slope in an alpine climate that is 2 K warmer. Yet, due to their topographic variability, alpine landscapes are likely to be safer places for most species than lowland terrain in a warming world. Aim We aim to: (1) explore thermal habitat preferences in alpine plant species across mosaics of topographically controlled micro-habitats; (2) test the predictive value of so-called 'indicator values'; and (3) quantify the shift in micro-habitat conditions under the influence of climate warming. Location Alpine vegetation 2200-2800m a.s.l., Swiss central Alps. Methods High-resolution infra-red thermometry and large numbers of small data loggers were used to assess the spatial and temporal variation of plant-surface and ground temperatures as well as snow-melt patterns for 889 plots distributed across three alpine slopes of contrasting exposure. These environmental data were then correlated with Landolt indicator values for temperature preferences of different plant species and vegetation units. By simulating a uniform 2K warming we estimated the changes in abundance of micro-habitat temperatures within the study area. Results Within the study area we observed a substantial variation between micro-habitats in seasonal mean soil temperature ( Delta T=7.2K), surface temperature ( Delta T=10.5K) and season length (>32days). Plant species with low indicator values for temperature (plants commonly found in cool habitats) grew in significantly colder micro-habitats than plants with higher indicator values found on the same slope. A 2K warming will lead to the loss of the coldest habitats (3% of current area), 75% of the current thermal micro-habitats will be reduced in abundance (crowding effect) and 22% will become more abundant. Main conclusions Our results demonstrate that the topographically induced mosaics of micro-climatic conditions in an alpine landscape are associated with local plant species distribution. Semi-quantitative plant species indicator values based on expert knowledge and aggregated to community means match measured thermal habitat conditions. Metre-scale thermal contrasts significantly exceed IPCC warming projections for the next 100years. The data presented here thus indicate a great risk of overestimating alpine habitat losses in isotherm-based model scenarios. While all but the species depending on the very coldest micro-habitats will find thermally suitable 'escape' habitats within short distances, there will be enhanced competition for those cooler places on a given slope in an alpine climate that is 2K warmer. Yet, due to their topographic variability, alpine landscapes are likely to be safer places for most species than lowland terrain in a warming world. Aim: We Aim: to: (1) explore thermal habitat preferences in alpine plant species across mosaics of topographically controlled micro-habitats; (2) test the predictive value of so-called 'indicator values'; and (3) quantify the shift in micro-habitat conditions under the influence of climate warming. Location: Alpine vegetation 2200-2800 m a.s.l., Swiss central Alps. Methods: High-resolution infra-red thermometry and large numbers of small data loggers were used to assess the spatial and temporal variation of plantsurface and ground temperatures as well as snow-melt patterns for 889 plots distributed across three alpine slopes of contrasting exposure. These environmental data were then correlated with Landolt indicator values for temperature preferences of different plant species and vegetation units. By simulating a uniform 2 K warming we estimated the changes in abundance of micro-habitat temperatures within the study area. Results: Within the study area we observed a substantial variation between micro-habitats in seasonal mean soil temperature (∆T = 7.2 K), surface temperature (∆T = 10.5 K) and season length (>32 days). Plant species with low indicator values for temperature (plants commonly found in cool habitats) grew in significantly colder micro-habitats than plants with higher indicator values found on the same slope. A 2 K warming will lead to the loss of the coldest habitats (3% of current area), 75% of the current thermal micro-habitats will be reduced in abundance (crowding effect) and 22% will become more abundant. Main conclusions: Our Results: demonstrate that the topographically induced mosaics of micro-climatic conditions in an alpine landscape are associated with local plant species distribution. Semi-quantitative plant species indicator values based on expert knowledge and aggregated to community means match measured thermal habitat conditions. Metre-scale thermal contrasts significantly exceed IPCC warming projections for the next 100 years. The data presented here thus indicate a great risk of overestimating alpine habitat losses in isotherm-based model scenarios. While all but the species depending on the very coldest microhabitats will find thermally suitable 'escape' habitats within short distances, there will be enhanced competition for those cooler places on a given slope in an alpine climate that is 2 K warmer. Yet, due to their topographic variability, alpine landscapes are likely to be safer places for most species than lowland terrain in a warming world. Aim We aim to: (1) explore thermal habitat preferences in alpine plant species across mosaics of topographically controlled micro‐habitats; (2) test the predictive value of so‐called ‘indicator values’; and (3) quantify the shift in micro‐habitat conditions under the influence of climate warming. Location Alpine vegetation 2200–2800 m a.s.l., Swiss central Alps. Methods High‐resolution infra‐red thermometry and large numbers of small data loggers were used to assess the spatial and temporal variation of plant‐surface and ground temperatures as well as snow‐melt patterns for 889 plots distributed across three alpine slopes of contrasting exposure. These environmental data were then correlated with Landolt indicator values for temperature preferences of different plant species and vegetation units. By simulating a uniform 2 K warming we estimated the changes in abundance of micro‐habitat temperatures within the study area. Results Within the study area we observed a substantial variation between micro‐habitats in seasonal mean soil temperature (ΔT = 7.2 K), surface temperature (ΔT = 10.5 K) and season length (>32 days). Plant species with low indicator values for temperature (plants commonly found in cool habitats) grew in significantly colder micro‐habitats than plants with higher indicator values found on the same slope. A 2 K warming will lead to the loss of the coldest habitats (3% of current area), 75% of the current thermal micro‐habitats will be reduced in abundance (crowding effect) and 22% will become more abundant. Main conclusions Our results demonstrate that the topographically induced mosaics of micro‐climatic conditions in an alpine landscape are associated with local plant species distribution. Semi‐quantitative plant species indicator values based on expert knowledge and aggregated to community means match measured thermal habitat conditions. Metre‐scale thermal contrasts significantly exceed IPCC warming projections for the next 100 years. The data presented here thus indicate a great risk of overestimating alpine habitat losses in isotherm‐based model scenarios. While all but the species depending on the very coldest micro‐habitats will find thermally suitable ‘escape’ habitats within short distances, there will be enhanced competition for those cooler places on a given slope in an alpine climate that is 2 K warmer. Yet, due to their topographic variability, alpine landscapes are likely to be safer places for most species than lowland terrain in a warming world. |
Author | Scherrer, Daniel Körner, Christian |
Author_xml | – sequence: 1 givenname: Daniel surname: Scherrer fullname: Scherrer, Daniel – sequence: 2 givenname: Christian surname: Körner fullname: Körner, Christian |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23751523$$DView record in Pascal Francis |
BookMark | eNp9kUFvFCEUx4mpidvqRzDOxehlVhhgGA4ebKNtzbaa2MYjeTPD7LKywxRYu_vtC26zR7kA7_97j8f7n6KT0Y0aoYLgOUnr03pOaM3LqpZyXuEUxRXDYr57gWZH4QTNMMW8xJXAr9BpCGuMseSUzdDDnZvc0sO0Mh1Yuy86N0bvrNV9EVfab8CWK2hNhFj0Zhi012M0EI0bi3ab76EAO5lRF5OFMUN_U8zEfQFLMGOIRWfNBqIuHsFvzLh8jV4OYIN-87yfoftvX-8ursrFj8vriy-LcmCciVIQwlnTCQKkl7hmFDDnDe-lFm03UFzXrNV9L0CAJp3UFenaVrekoaSthobSM_ThUHfy7mGrQ1QbEzptU5fabYNqhGSCco4T-fG_JJFpcUZpLvr-GYWQ5jV4GDsT1OTTF_1eVVRwwqvMfT5wj8bq_VEnWGXT1Fplb1T2RmXT1D_T1E59P7_Op5T_9pC_DtH5Yz4jmDdNlfXyoJsQ9e6og_-japGaUL9vL9VNI27lz5uFahL_7sAP4BQsfer5_ld6mWIi0yxTy0_V3rLA |
CODEN | JBIODN |
ContentType | Journal Article |
Copyright | Copyright © 2011 Blackwell Publishing Ltd. 2010 Blackwell Publishing Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2011 Blackwell Publishing Ltd. – notice: 2010 Blackwell Publishing Ltd – notice: 2015 INIST-CNRS |
DBID | FBQ BSCLL IQODW 7S9 L.6 7SN 7ST 7U6 C1K SOI |
DOI | 10.1111/j.1365-2699.2010.02407.x |
DatabaseName | AGRIS Istex Pascal-Francis AGRICOLA AGRICOLA - Academic Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitle | AGRICOLA AGRICOLA - Academic Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Ecology Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Biology Ecology |
EISSN | 1365-2699 |
EndPage | 416 |
ExternalDocumentID | 23751523 JBI2407 41058827 ark_67375_WNG_M87N9PML_8 US201301930652 |
Genre | article |
GeographicLocations | Switzerland Europe |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29J 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABEML ABHUG ABJNI ABLJU ABPLY ABPPZ ABPTK ABPVW ABTLG ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACSTJ ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZLD ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AESBF AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AGUYK AI. AIRJO AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANHSF ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI CWIXF D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 DWIUU EBS ECGQY EJD EQZMY ESX F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HQ2 HTVGU HVGLF HZI HZ~ H~9 IHE IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SAMSI SUPJJ TN5 UB1 VH1 VOH VQP W8V W99 WBKPD WIH WIK WMRSR WOHZO WQJ WRC WSUWO WXSBR XG1 YQT ZZTAW ~02 ~IA ~KM ~WT AAHBH AAHQN AAMMB AAMNL AANHP AAYCA ABSQW ABXSQ ACHIC ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG ALVPJ AQVQM BSCLL HGLYW IPSME OIG IQODW 7S9 L.6 7SN 7ST 7U6 C1K SOI |
ID | FETCH-LOGICAL-f4547-711548c71a1d90643a05585d9e7bcf30664bedd7a7ae1c9e21cbbeb1831b2f833 |
IEDL.DBID | DR2 |
ISSN | 0305-0270 |
IngestDate | Fri Jul 11 12:43:24 EDT 2025 Fri Jul 11 09:33:59 EDT 2025 Mon Jul 21 09:16:13 EDT 2025 Wed Jan 22 16:57:00 EST 2025 Thu Jul 03 21:30:49 EDT 2025 Sun Sep 21 06:19:27 EDT 2025 Wed Dec 27 18:49:00 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Warming snow distribution Snow Biogeography Surface temperature Switzerland Indicator indicator values micro-habitat Dynamical climatology Climate change Species diversity Alpine vegetation Habitat Differentiation thermometry Soil temperature |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-f4547-711548c71a1d90643a05585d9e7bcf30664bedd7a7ae1c9e21cbbeb1831b2f833 |
Notes | http://dx.doi.org/10.1111/j.1365-2699.2010.02407.x ArticleID:JBI2407 istex:F6F38F28E3BF480C01E889B68993162E8D38CF19 ark:/67375/WNG-M87N9PML-8 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PQID | 1999954333 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_879473550 proquest_miscellaneous_1999954333 pascalfrancis_primary_23751523 wiley_primary_10_1111_j_1365_2699_2010_02407_x_JBI2407 jstor_primary_41058827 istex_primary_ark_67375_WNG_M87N9PML_8 fao_agris_US201301930652 |
PublicationCentury | 2000 |
PublicationDate | February 2011 |
PublicationDateYYYYMMDD | 2011-02-01 |
PublicationDate_xml | – month: 02 year: 2011 text: February 2011 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationTitle | Journal of biogeography |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd Blackwell Publishing Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell Publishing – name: Blackwell |
References | New, M., Lister, D., Hulme, M. & Makin, I. (2002) A high-resolution data set of surface climate over global land areas. Climate Research, 21, 1-25. Randin, C.F., Engler, R., Normand, S., Zappa, M., Zimmermann, N.E., Pearman, P.B., Vittoz, P., Thuiller, W. & Guisan, A. (2009) Climate change and plant distribution: local models predict high-elevation persistence. Global Change Biology, 15, 1557-1569. Zimmermann, N.E. & Kienast, F. (1999) Predictive mapping of alpine grasslands in Switzerland: species versus community approach. Journal of Vegetation Science, 10, 469-482. Galen, C. & Stanton, M.L. (1995) Responses of snowbed plant-species to changes in growing-season length. Ecology, 76, 1546-1557. Hill, M.O., Roy, D.B., Mountford, J.O. & Bunce, R.G.H. (2000) Extending Ellenberg's indicator values to a new area: an algorithmic approach. Journal of Applied Ecology, 37, 3-15. Lawesson, J.E. & Oksanen, J. (2002) Niche characteristics of Danish woody species as derived from coenoclines. Journal of Vegetation Science, 13, 279-290. Friedel, H. (1961) Schneedeckendauer und Vegetationsverteilung im Gelände. Mitteilungen der Forstlichen Bundes-Versuchsanstalt Mariabrunn (Wien), 59, 317-369. Landolt, E. (1977) Oekologische Zeigerwerte zur Schweizer Flora. Veröffentlichungen des Geobotanischen Instituts der ETH Stiftung Rübel, Zürich. Mark, A.F. (1975) Photosynthesis and dark respiration in three environments. New Zealand Journal of Botany, 13, 93-122. Prieditis, N. (1997) Alnus glutinosa-dominated wetland forests of the Baltic region: community structure, syntaxonomy and conservation. Plant Ecology, 129, 49-94. Braun-Blanquet, J. (1964) Pflanzensoziologie Grundzüge der Vegetationskunde, 3rd edn. Springer, Vienna. Gjærevoll, O. (1956) The plant communities of the Scandinavian alpine snow-beds. Kommisjon Hos F. Bruns Bokhandel, Trondheim. Silvertown, J. (2004) Plant coexistence and the niche. Trends in Ecology and Evolution, 19, 605-611. Wamelink, G.W.W., Joosten, V., van Dobben, H.F. & Berendse, F. (2002) Validity of Ellenberg indicator values judged from physico-chemical field measurements. Journal of Vegetation Science, 13, 269-278. Ellenberg, H. (1992) Zeigerwerte von Pflanzen in Mitteleuropa, 2nd edn. Goltze, Göttingen. Helm, D. (1982) Multivariate analysis of alpine snow-patch vegetation cover near Milner Pass, Rocky Mountain National Park, Colorado, U.S.A. Arctic and Alpine Research, 14, 87-95. Randin, C.F., Dirnbock, T., Dullinger, S., Zimmermann, N.E., Zappa, M. & Guisan, A. (2006) Are niche-based species distribution models transferable in space? Journal of Biogeography, 33, 1689-1703. Woodward, F.I. & Friend, A.D. (1988) Controlled environment studies on the temperature responses of leaf extension in species of Poa with diverse altitudinal ranges. Journal of Experimental Botany, 39, 411-420. Blagowestschenski, W. (1935) Über den Verlauf der Photosynthese im Hochgebirge des Pamirs. Planta, 24, 276-287. Pulliam, H.R. (2000) On the relationship between niche and distribution. Ecology Letters, 3, 349-361. Nogués-Bravo, D., Araújo, M.B., Errea, M.P. & Martínez-Rica, J.P. (2007) Exposure of global mountain systems to climate warming during the 21st Century. Global Environmental Change-Human and Policy Dimensions, 17, 420-428. Körner, C. & Cochrane, P. (1983) Influence of plant physiognomy on leaf temperature on clear midsummer days in the Snowy Mountains, south-eastern Australia. Acta Oecologica-Oecologia Plantarum, 4, 117-124. Medellin, R.A., Equihua, M. & Amin, M.A. (2000) Bat diversity and abundance as indicators of disturbance in Neotropical rainforests. Conservation Biology, 14, 1666-1675. Schöb, C., Kammer, P.M., Choler, P. & Veit, H. (2009) Small-scale plant species distribution in snowbeds and its sensitivity to climate change. Plant Ecology, 200, 91-104. Körner, C. & Diemer, M. (1987) In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. Functional Ecology, 1, 179-194. Hutchinson, G.E. (1957) Population studies - animal ecology and demography - concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415-427. Økland, R. (1990) Vegetation ecology: theory, methods and applications with reference to Scandinavia. Sommerfeltia Supplement, 1, 1-233. Cernusca, A. (1976) Structure of forest stand, bioclimatology and energy economy of dwarf shrub communities in the Alps. Oecologia Plantarum, 11, 71-101. Binz, A. & Heitz, C. (1990) Schul- und Exkursionsflora für die Schweiz, mit Berücksichtigung der Grenzgebiete Bestimmungsbuch für die wildwachsenden Gefässpflanzen, 19th edn, pp. 100-107. Schwabe, Basel. Diekmann, M. & Lawesson, J.E. (1999) Shifts in ecological behaviour of herbaceous forest species along a transect from northern Central to North Europe. Folia Geobotanica, 34, 127-141. Caro, T.M. & O'Doherty, G. (1999) On the use of surrogate species in conservation biology. Conservation Biology, 13, 805-814. Körner, C. (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115, 445-459. Schaffers, A.P. & Sykora, K.V. (2000) Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. Journal of Vegetation Science, 11, 225-244. Tuhkanen, S. (1980) Climatic parameters and indices in plant geography. Almquist and Wiksell International, Uppsala. Kremen, C. (1992) Assessing the indicator properties of species assemblages for natural areas monitoring. Ecological Applications, 2, 203-217. Takasu, K. (1953) Leaf temperature under natural environments (Microclimatic study V). Memorial College of Science, Series B, 20, 179-188. Hill, M.O. & Carey, P.D. (1997) Prediction of yield in the Rothamsted Park Grass Experiment by Ellenberg indicator values. Journal of Vegetation Science, 8, 579-586. Körner, C. & Paulsen, J. (2004) A world-wide study of high altitude treeline temperatures. Journal of Biogeography, 31, 713-732. Niemi, G.J. & McDonald, M.E. (2004) Application of ecological indicators. Annual Review of Ecology, Evolution, and Systematics, 35, 89-111. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, Available at: http://www.R-project.org. Larcher, W. & Wagner, J. (1976) Temperature limits of CO2 uptake and temperature resistance of leaves of alpine plants during growing season. Oecologia Plantarum, 11, 361-374. Diekmann, M. (2003) Species indicator values as an important tool in applied plant ecology - a review. Basic and Applied Ecology, 4, 493-506. Körner, C. (2003) Alpine plant life, 2nd edn. Springer, Berlin. Persson, S. (1981) Ecological indicator values as an aid in the interpretation of ordination diagrams. Journal of Ecology, 69, 71-84. Trivedi, M.R., Browne, M.K., Berry, P.M., Dawson, T.P. & Morecroft, M.D. (2007) Projecting climate change impacts on mountain snow cover in central Scotland from historical patterns. Arctic, Antarctic, and Alpine Research, 39, 488-499. Scherrer, D. & Körner, C. (2010) Infra-red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biology, 16, 2602-2613. Dierschke, H. (1994) Pflanzensoziologie Grundlagen und Methoden. Eugen Ulmer, Stuttgart. Henrici, M. (1921) Zweigipflige Assimilationskurven. Mit alpinen phanerogamen Schattenpflanzen und Flechten. Verhandlungen der Naturforschenden Gesellschaft Basel, 32, 107-172. Ellenberg, H. (1974) Zeigerwerte der Gefässpflanzen Mitteleuropas. Goltze, Göttingen. Körner, C. & Woodward, F.I. (1987) The dynamics of leaf extension in plants with diverse altitudinal ranges. 2. Field studies in Poa species between 600 and 3200 m altitude. Oecologia, 72, 279-283. Salisbury, F.B. & Spomer, G.G. (1964) Leaf temperatures of alpine plants in the field. Planta, 60, 497-505. Trivedi, M.R., Berry, P.M., Morecroft, M.D. & Dawson, T.P. (2008) Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Global Change Biology, 14, 1089-1103. Jonsson, B.G. & Jonsell, M. (1999) Exploring potential biodiversity indicators in boreal forests. Biodiversity and Conservation, 8, 1417-1433. 2007; 39 1987; 1 1982; 14 2010; 16 1987; 72 2000; 3 2006; 33 2002; 13 1983; 4 1995; 76 1988; 39 1975; 13 1974 1998; 115 1997; 8 1977 2004; 31 1990 2000; 14 2000; 11 2004; 35 1999; 13 2003; 4 2009; 200 1999; 10 1921; 32 1980 1935; 24 1992; 2 2009; 15 1953; 20 2007; 17 1981; 69 2008; 14 2008 1994 1992 2003 1999; 8 1961; 59 1956 1964; 60 1957; 22 1990; 1 1997; 129 1976; 11 2000; 37 2004; 19 2002; 21 1964 1999; 34 |
References_xml | – reference: Braun-Blanquet, J. (1964) Pflanzensoziologie Grundzüge der Vegetationskunde, 3rd edn. Springer, Vienna. – reference: New, M., Lister, D., Hulme, M. & Makin, I. (2002) A high-resolution data set of surface climate over global land areas. Climate Research, 21, 1-25. – reference: Hill, M.O. & Carey, P.D. (1997) Prediction of yield in the Rothamsted Park Grass Experiment by Ellenberg indicator values. Journal of Vegetation Science, 8, 579-586. – reference: Scherrer, D. & Körner, C. (2010) Infra-red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biology, 16, 2602-2613. – reference: Körner, C. & Diemer, M. (1987) In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. Functional Ecology, 1, 179-194. – reference: Diekmann, M. & Lawesson, J.E. (1999) Shifts in ecological behaviour of herbaceous forest species along a transect from northern Central to North Europe. Folia Geobotanica, 34, 127-141. – reference: Trivedi, M.R., Berry, P.M., Morecroft, M.D. & Dawson, T.P. (2008) Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Global Change Biology, 14, 1089-1103. – reference: Woodward, F.I. & Friend, A.D. (1988) Controlled environment studies on the temperature responses of leaf extension in species of Poa with diverse altitudinal ranges. Journal of Experimental Botany, 39, 411-420. – reference: Økland, R. (1990) Vegetation ecology: theory, methods and applications with reference to Scandinavia. Sommerfeltia Supplement, 1, 1-233. – reference: Schaffers, A.P. & Sykora, K.V. (2000) Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. Journal of Vegetation Science, 11, 225-244. – reference: Kremen, C. (1992) Assessing the indicator properties of species assemblages for natural areas monitoring. Ecological Applications, 2, 203-217. – reference: Hutchinson, G.E. (1957) Population studies - animal ecology and demography - concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415-427. – reference: Persson, S. (1981) Ecological indicator values as an aid in the interpretation of ordination diagrams. Journal of Ecology, 69, 71-84. – reference: Tuhkanen, S. (1980) Climatic parameters and indices in plant geography. Almquist and Wiksell International, Uppsala. – reference: Niemi, G.J. & McDonald, M.E. (2004) Application of ecological indicators. Annual Review of Ecology, Evolution, and Systematics, 35, 89-111. – reference: Körner, C. (2003) Alpine plant life, 2nd edn. Springer, Berlin. – reference: Caro, T.M. & O'Doherty, G. (1999) On the use of surrogate species in conservation biology. Conservation Biology, 13, 805-814. – reference: Ellenberg, H. (1992) Zeigerwerte von Pflanzen in Mitteleuropa, 2nd edn. Goltze, Göttingen. – reference: Körner, C. & Cochrane, P. (1983) Influence of plant physiognomy on leaf temperature on clear midsummer days in the Snowy Mountains, south-eastern Australia. Acta Oecologica-Oecologia Plantarum, 4, 117-124. – reference: R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, Available at: http://www.R-project.org. – reference: Schöb, C., Kammer, P.M., Choler, P. & Veit, H. (2009) Small-scale plant species distribution in snowbeds and its sensitivity to climate change. Plant Ecology, 200, 91-104. – reference: Cernusca, A. (1976) Structure of forest stand, bioclimatology and energy economy of dwarf shrub communities in the Alps. Oecologia Plantarum, 11, 71-101. – reference: Binz, A. & Heitz, C. (1990) Schul- und Exkursionsflora für die Schweiz, mit Berücksichtigung der Grenzgebiete Bestimmungsbuch für die wildwachsenden Gefässpflanzen, 19th edn, pp. 100-107. Schwabe, Basel. – reference: Trivedi, M.R., Browne, M.K., Berry, P.M., Dawson, T.P. & Morecroft, M.D. (2007) Projecting climate change impacts on mountain snow cover in central Scotland from historical patterns. Arctic, Antarctic, and Alpine Research, 39, 488-499. – reference: Gjærevoll, O. (1956) The plant communities of the Scandinavian alpine snow-beds. Kommisjon Hos F. Bruns Bokhandel, Trondheim. – reference: Salisbury, F.B. & Spomer, G.G. (1964) Leaf temperatures of alpine plants in the field. Planta, 60, 497-505. – reference: Zimmermann, N.E. & Kienast, F. (1999) Predictive mapping of alpine grasslands in Switzerland: species versus community approach. Journal of Vegetation Science, 10, 469-482. – reference: Randin, C.F., Engler, R., Normand, S., Zappa, M., Zimmermann, N.E., Pearman, P.B., Vittoz, P., Thuiller, W. & Guisan, A. (2009) Climate change and plant distribution: local models predict high-elevation persistence. Global Change Biology, 15, 1557-1569. – reference: Ellenberg, H. (1974) Zeigerwerte der Gefässpflanzen Mitteleuropas. Goltze, Göttingen. – reference: Lawesson, J.E. & Oksanen, J. (2002) Niche characteristics of Danish woody species as derived from coenoclines. Journal of Vegetation Science, 13, 279-290. – reference: Takasu, K. (1953) Leaf temperature under natural environments (Microclimatic study V). Memorial College of Science, Series B, 20, 179-188. – reference: Blagowestschenski, W. (1935) Über den Verlauf der Photosynthese im Hochgebirge des Pamirs. Planta, 24, 276-287. – reference: Galen, C. & Stanton, M.L. (1995) Responses of snowbed plant-species to changes in growing-season length. Ecology, 76, 1546-1557. – reference: Diekmann, M. (2003) Species indicator values as an important tool in applied plant ecology - a review. Basic and Applied Ecology, 4, 493-506. – reference: Silvertown, J. (2004) Plant coexistence and the niche. Trends in Ecology and Evolution, 19, 605-611. – reference: Hill, M.O., Roy, D.B., Mountford, J.O. & Bunce, R.G.H. (2000) Extending Ellenberg's indicator values to a new area: an algorithmic approach. Journal of Applied Ecology, 37, 3-15. – reference: Larcher, W. & Wagner, J. (1976) Temperature limits of CO2 uptake and temperature resistance of leaves of alpine plants during growing season. Oecologia Plantarum, 11, 361-374. – reference: Prieditis, N. (1997) Alnus glutinosa-dominated wetland forests of the Baltic region: community structure, syntaxonomy and conservation. Plant Ecology, 129, 49-94. – reference: Henrici, M. (1921) Zweigipflige Assimilationskurven. Mit alpinen phanerogamen Schattenpflanzen und Flechten. Verhandlungen der Naturforschenden Gesellschaft Basel, 32, 107-172. – reference: Helm, D. (1982) Multivariate analysis of alpine snow-patch vegetation cover near Milner Pass, Rocky Mountain National Park, Colorado, U.S.A. Arctic and Alpine Research, 14, 87-95. – reference: Körner, C. (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115, 445-459. – reference: Mark, A.F. (1975) Photosynthesis and dark respiration in three environments. New Zealand Journal of Botany, 13, 93-122. – reference: Medellin, R.A., Equihua, M. & Amin, M.A. (2000) Bat diversity and abundance as indicators of disturbance in Neotropical rainforests. Conservation Biology, 14, 1666-1675. – reference: Friedel, H. (1961) Schneedeckendauer und Vegetationsverteilung im Gelände. Mitteilungen der Forstlichen Bundes-Versuchsanstalt Mariabrunn (Wien), 59, 317-369. – reference: Pulliam, H.R. (2000) On the relationship between niche and distribution. Ecology Letters, 3, 349-361. – reference: Dierschke, H. (1994) Pflanzensoziologie Grundlagen und Methoden. Eugen Ulmer, Stuttgart. – reference: Körner, C. & Paulsen, J. (2004) A world-wide study of high altitude treeline temperatures. Journal of Biogeography, 31, 713-732. – reference: Wamelink, G.W.W., Joosten, V., van Dobben, H.F. & Berendse, F. (2002) Validity of Ellenberg indicator values judged from physico-chemical field measurements. Journal of Vegetation Science, 13, 269-278. – reference: Körner, C. & Woodward, F.I. (1987) The dynamics of leaf extension in plants with diverse altitudinal ranges. 2. Field studies in Poa species between 600 and 3200 m altitude. Oecologia, 72, 279-283. – reference: Nogués-Bravo, D., Araújo, M.B., Errea, M.P. & Martínez-Rica, J.P. (2007) Exposure of global mountain systems to climate warming during the 21st Century. Global Environmental Change-Human and Policy Dimensions, 17, 420-428. – reference: Randin, C.F., Dirnbock, T., Dullinger, S., Zimmermann, N.E., Zappa, M. & Guisan, A. (2006) Are niche-based species distribution models transferable in space? Journal of Biogeography, 33, 1689-1703. – reference: Jonsson, B.G. & Jonsell, M. (1999) Exploring potential biodiversity indicators in boreal forests. Biodiversity and Conservation, 8, 1417-1433. – reference: Landolt, E. (1977) Oekologische Zeigerwerte zur Schweizer Flora. Veröffentlichungen des Geobotanischen Instituts der ETH Stiftung Rübel, Zürich. – year: 1956 – volume: 39 start-page: 488 year: 2007 end-page: 499 article-title: Projecting climate change impacts on mountain snow cover in central Scotland from historical patterns publication-title: Arctic, Antarctic, and Alpine Research – volume: 4 start-page: 117 year: 1983 end-page: 124 article-title: Influence of plant physiognomy on leaf temperature on clear midsummer days in the Snowy Mountains, south‐eastern Australia publication-title: Acta Oecologica-Oecologia Plantarum – volume: 31 start-page: 713 year: 2004 end-page: 732 article-title: A world‐wide study of high altitude treeline temperatures publication-title: Journal of Biogeography – volume: 2 start-page: 203 year: 1992 end-page: 217 article-title: Assessing the indicator properties of species assemblages for natural areas monitoring publication-title: Ecological Applications – volume: 13 start-page: 279 year: 2002 end-page: 290 article-title: Niche characteristics of Danish woody species as derived from coenoclines publication-title: Journal of Vegetation Science – volume: 32 start-page: 107 year: 1921 end-page: 172 article-title: Zweigipflige Assimilationskurven. Mit alpinen phanerogamen Schattenpflanzen und Flechten publication-title: Verhandlungen der Naturforschenden Gesellschaft Basel – volume: 60 start-page: 497 year: 1964 end-page: 505 article-title: Leaf temperatures of alpine plants in the field publication-title: Planta – volume: 129 start-page: 49 year: 1997 end-page: 94 article-title: ‐dominated wetland forests of the Baltic region: community structure, syntaxonomy and conservation publication-title: Plant Ecology – volume: 19 start-page: 605 year: 2004 end-page: 611 article-title: Plant coexistence and the niche publication-title: Trends in Ecology and Evolution – year: 1994 – volume: 14 start-page: 87 year: 1982 end-page: 95 article-title: Multivariate analysis of alpine snow‐patch vegetation cover near Milner Pass, Rocky Mountain National Park, Colorado, U.S.A publication-title: Arctic and Alpine Research – start-page: 100 year: 1990 end-page: 107 – volume: 72 start-page: 279 year: 1987 end-page: 283 article-title: The dynamics of leaf extension in plants with diverse altitudinal ranges. 2. Field studies in species between 600 and 3200 m altitude publication-title: Oecologia – volume: 115 start-page: 445 year: 1998 end-page: 459 article-title: A re‐assessment of high elevation treeline positions and their explanation publication-title: Oecologia – volume: 14 start-page: 1089 year: 2008 end-page: 1103 article-title: Spatial scale affects bioclimate model projections of climate change impacts on mountain plants publication-title: Global Change Biology – year: 2008 – volume: 17 start-page: 420 year: 2007 end-page: 428 article-title: Exposure of global mountain systems to climate warming during the 21st Century publication-title: Global Environmental Change–Human and Policy Dimensions – volume: 1 start-page: 179 year: 1987 end-page: 194 article-title: In photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude publication-title: Functional Ecology – volume: 13 start-page: 805 year: 1999 end-page: 814 article-title: On the use of surrogate species in conservation biology publication-title: Conservation Biology – volume: 37 start-page: 3 year: 2000 end-page: 15 article-title: Extending Ellenberg’s indicator values to a new area: an algorithmic approach publication-title: Journal of Applied Ecology – volume: 21 start-page: 1 year: 2002 end-page: 25 article-title: A high‐resolution data set of surface climate over global land areas publication-title: Climate Research – volume: 11 start-page: 71 year: 1976 end-page: 101 article-title: Structure of forest stand, bioclimatology and energy economy of dwarf shrub communities in the Alps publication-title: Oecologia Plantarum – year: 1964 – volume: 11 start-page: 225 year: 2000 end-page: 244 article-title: Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements publication-title: Journal of Vegetation Science – volume: 59 start-page: 317 year: 1961 end-page: 369 article-title: Schneedeckendauer und Vegetationsverteilung im Gelände publication-title: Mitteilungen der Forstlichen Bundes-Versuchsanstalt Mariabrunn (Wien) – volume: 33 start-page: 1689 year: 2006 end-page: 1703 article-title: Are niche‐based species distribution models transferable in space? publication-title: Journal of Biogeography – volume: 13 start-page: 93 year: 1975 end-page: 122 article-title: Photosynthesis and dark respiration in three environments publication-title: New Zealand Journal of Botany – year: 2003 – volume: 8 start-page: 579 year: 1997 end-page: 586 article-title: Prediction of yield in the Rothamsted Park Grass Experiment by Ellenberg indicator values publication-title: Journal of Vegetation Science – volume: 16 start-page: 2602 year: 2010 end-page: 2613 article-title: Infra‐red thermometry of alpine landscapes challenges climatic warming projections publication-title: Global Change Biology – volume: 76 start-page: 1546 year: 1995 end-page: 1557 article-title: Responses of snowbed plant‐species to changes in growing‐season length publication-title: Ecology – year: 1977 – year: 1992 – volume: 69 start-page: 71 year: 1981 end-page: 84 article-title: Ecological indicator values as an aid in the interpretation of ordination diagrams publication-title: Journal of Ecology – volume: 1 start-page: 1 year: 1990 end-page: 233 article-title: Vegetation ecology: theory, methods and applications with reference to Scandinavia publication-title: Sommerfeltia Supplement – volume: 14 start-page: 1666 year: 2000 end-page: 1675 article-title: Bat diversity and abundance as indicators of disturbance in Neotropical rainforests publication-title: Conservation Biology – volume: 20 start-page: 179 year: 1953 end-page: 188 article-title: Leaf temperature under natural environments (Microclimatic study V) publication-title: Memorial College of Science, Series B – volume: 15 start-page: 1557 year: 2009 end-page: 1569 article-title: Climate change and plant distribution: local models predict high‐elevation persistence publication-title: Global Change Biology – volume: 24 start-page: 276 year: 1935 end-page: 287 article-title: Über den Verlauf der Photosynthese im Hochgebirge des Pamirs publication-title: Planta – year: 1980 – volume: 35 start-page: 89 year: 2004 end-page: 111 article-title: Application of ecological indicators publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 22 start-page: 415 year: 1957 end-page: 427 article-title: Population studies – animal ecology and demography – concluding remarks publication-title: Cold Spring Harbor Symposia on Quantitative Biology – volume: 13 start-page: 269 year: 2002 end-page: 278 article-title: Validity of Ellenberg indicator values judged from physico‐chemical field measurements publication-title: Journal of Vegetation Science – volume: 34 start-page: 127 year: 1999 end-page: 141 article-title: Shifts in ecological behaviour of herbaceous forest species along a transect from northern Central to North Europe publication-title: Folia Geobotanica – year: 1974 – volume: 8 start-page: 1417 year: 1999 end-page: 1433 article-title: Exploring potential biodiversity indicators in boreal forests publication-title: Biodiversity and Conservation – volume: 4 start-page: 493 year: 2003 end-page: 506 article-title: Species indicator values as an important tool in applied plant ecology – a review publication-title: Basic and Applied Ecology – volume: 39 start-page: 411 year: 1988 end-page: 420 article-title: Controlled environment studies on the temperature responses of leaf extension in species of with diverse altitudinal ranges publication-title: Journal of Experimental Botany – volume: 11 start-page: 361 year: 1976 end-page: 374 article-title: Temperature limits of CO uptake and temperature resistance of leaves of alpine plants during growing season publication-title: Oecologia Plantarum – volume: 10 start-page: 469 year: 1999 end-page: 482 article-title: Predictive mapping of alpine grasslands in Switzerland: species versus community approach publication-title: Journal of Vegetation Science – volume: 3 start-page: 349 year: 2000 end-page: 361 article-title: On the relationship between niche and distribution publication-title: Ecology Letters – volume: 200 start-page: 91 year: 2009 end-page: 104 article-title: Small‐scale plant species distribution in snowbeds and its sensitivity to climate change publication-title: Plant Ecology |
SSID | ssj0009534 |
Score | 2.5416434 |
Snippet | Aim We aim to: (1) explore thermal habitat preferences in alpine plant species across mosaics of topographically controlled micro-habitats; (2) test the... Aim: We Aim: to: (1) explore thermal habitat preferences in alpine plant species across mosaics of topographically controlled micro-habitats; (2) test the... Aim We aim to: (1) explore thermal habitat preferences in alpine plant species across mosaics of topographically controlled micro‐habitats; (2) test the... |
SourceID | proquest pascalfrancis wiley jstor istex fao |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 406 |
SubjectTerms | Alpine plants Animal and plant ecology Animal, plant and microbial ecology biogeography Biological and medical sciences climate Climate change Climate models Climatology. Bioclimatology. Climate change Earth, ocean, space Environmental gradients Exact sciences and technology expert opinion External geophysics Fundamental and applied biological sciences. Psychology General aspects global warming habitat destruction habitat preferences indicator species indicator values landscapes Meteorology micro-habitat microhabitats Plants risk Sloping terrain snow distribution Soil temperature Soil temperature regimes Species species diversity Surface temperature Switzerland Synecology Temperature measuring instruments temporal variation thermometry Vegetation |
Title | Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming |
URI | https://api.istex.fr/ark:/67375/WNG-M87N9PML-8/fulltext.pdf https://www.jstor.org/stable/41058827 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2699.2010.02407.x https://www.proquest.com/docview/1999954333 https://www.proquest.com/docview/879473550 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLXQJAQvfE8Lg8lIiLdUjfNh53HAxphYhWAVe7OuHbtMDW21tGLliZ_Ab-SXcG-cVi2CF8Sbo9xYcnJsn5ucnMvYc1FIL8pKxNbnmKBkeR6DMiq2EsCnuCWAad0-B8XJMDu9yC86_RP9CxP8IdYv3GhmtOs1TXAwzfYkDwqtsuwUWpSc9IhP4gmy0X_9QWz476bBSYq0akL2t0U9f-wIdxsPUyStdL-vV3pFEk9Cg_fPh8IXW8x0k9-2G9TxXTZeDS3oUsa9xdz07LffXB__z9jvsTsdj-WHAXj32Q03ecBuhsqWS2wd2a51qyuz_nn5kDXn01k4IGjUS94J5WtXcSKiX6D--f0HWYcjBear2i3zgB5uFnTccKhnOAA-qxEUGNTpSjiM4BK5Lrf1JbJwx78CyXxGj9jw-Oj81UncVX2IPZmLxZIMgpSVCSRVSYQJ-jnmNFXppLEeM5wiM66qJEhwiS2dSKwxuOOoNDHCqzTdZTuT6cTtMQ6Qe-eyonSuyFQuMWMWmJNjiuicFIWJ2B4-YQ0jXE_18KOgr7hIaJGViYi9aB-7ngXTDw1XY9LAyVx_GrzRZ0oOyvdn77SK2G6Li3Ug6WYxbZERO9gCyjpAYCfImtKIPVshR-Ocpg81MHHTRaPJGqLMszTFGP6XGIULqUSy2I9Y0UJl3f9GWocg0QQSTSDRLUj0tT59-ZZaj__1wn12O7xZJ1HPE7Yzv1q4p0jN5uagnXS_AHFFKzQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFL1Cm9B4YXxNyzaGkRBvqRrnw8kjoI1ubBWCVuzNuk6cblpoq7UVK0_7CfxGfgn3xmnVInhBvDmSa8nJufa59um5AK9kokqZFdLPy5gSlCiOfUxN6ucKsQxpS0BTu312k04_Or2IL5pyQPxfGOcPsTxw48io12sOcD6QXo9yJ9HKskaixdlJiwjlZn1dxwzpk1xx4A2dlxSr1aRqr8t6_jgS7Tcljoi28hu_XSgWWT6JE3qDpSt9scZNVxluvUUdb0O1mJxTply3ZlPTyr__5vv4n2b_CB42VFa8cdh7DPfs8Ancd8Ut59Q6ypvWVlNp_XL-FCa90dg9MDqquWi08pUtBHPRr1j9vPvB7uHEgsWifMvUAUiYGT9PBFZjmoEYV4QL6tRISwQO8IrorsirKyLiVnxDVvoMnkH_-Kj3ruM3hR_8kv3FfMUeQWmuAgyKjDkTtmNKa4rMKpOXlOQkkbFFoVChDfLMyiA3hjadNAyMLNMw3IGN4Whod0EgxqW1UZJZm0RprChplpSWU5ZorZKJ8WCXPrHGAS2puv9Z8kUucVoiZtKD1_V312Pn-6Hx5pplcCrWX7rv9XmqutnH8zOderBTA2PZkaWzlLkoDw7XkLLsIGkQIk6hBy8X0NEU1nxXg0M7mk00u0NkcRSG1Ef8pU9Ka6kivtj2IKmxshx_JbMjkGgGiWaQ6Bok-lafvj3h1t6__vAFbHV6NPezk-6HfXjgDtpZ43MAG9ObmX1OTG1qDusI_AUmIS9S |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQEJcX7tPCZRgJ8ZaqcS5OHrmsbGOrJljF3qxjx-6mhjZaW7HyxE_gN_JLOCdOqxbBC-LNkVxLTr7j853k63cYeyky6URRitC4FAuUJE1DyHUeGgngYkwJoBu3z362P0gOz9KzVv9E_4Xx_hCrF24UGc15TQFel24zyL1CqyhahRYVJx3kk9eTDLMmEaSPYs2AN_ZWUiRWE7K7qer540qYbhxMkLXSDb9aChZJPQlTvIHOd77YoKbrBLfJUL27bLTcmxemjDrzme6Yb7_ZPv6fzd9jd1oiy1975N1n1-z4AbvhW1sucLRn2tGtts_6-eIhm55Oan9B2KgWvFXKV7bkxES_QPXz-w_yDkcOzJfNW2YePlzP6XrKoapxA7yuEBU4qRWWcBjCBZJdbqoLpOGWfwXS-QwfsUFv7_Ttfti2fQgduYuFkhyCciMjiMqCGBN0UyxqysJKbRyWOFmibVlKkGAjU1gRGa0x5eRxpIXL43ibbY0nY7vDOEDqrE2ywtosyVOJJbPAohxrRGulyHTAdvAJKxjigaoGnwR9xkVGi7RMBOxV89hV7V0_FFyOSAQnU_W5_14d57JfnBwfqTxg2w0uVhNJOIt1iwzY7gZQVhMELoK0KQ7YiyVyFAY1famBsZ3Mp4q8IYo0iWOcw_8yJ8eTVCJb7AYsa6CyWn-trkOQKAKJIpCoBiTqSh2-OaDR43_94XN28-RdTx0d9D88Ybf9W3YS-DxlW7PLuX2GNG2md5v4-wVmBi4B |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topographically+controlled+thermal-habitat+differentiation+buffers+alpine+plant+diversity+against+climate+warming&rft.jtitle=Journal+of+biogeography&rft.au=SCHERRER%2C+Daniel&rft.au=K%C3%96RNER%2C+Christian&rft.date=2011-02-01&rft.pub=Blackwell&rft.issn=0305-0270&rft.volume=38&rft.issue=2&rft.spage=406&rft.epage=416&rft_id=info:doi/10.1111%2Fj.1365-2699.2010.02407.x&rft.externalDBID=n%2Fa&rft.externalDocID=23751523 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0270&client=summon |