Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming

Aim We aim to: (1) explore thermal habitat preferences in alpine plant species across mosaics of topographically controlled micro-habitats; (2) test the predictive value of so-called ‘indicator values'; and (3) quantify the shift in micro-habitat conditions under the influence of climate warmin...

Full description

Saved in:
Bibliographic Details
Published inJournal of biogeography Vol. 38; no. 2; pp. 406 - 416
Main Authors Scherrer, Daniel, Körner, Christian
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.02.2011
Blackwell Publishing
Blackwell
Subjects
Online AccessGet full text
ISSN0305-0270
1365-2699
DOI10.1111/j.1365-2699.2010.02407.x

Cover

Abstract Aim We aim to: (1) explore thermal habitat preferences in alpine plant species across mosaics of topographically controlled micro-habitats; (2) test the predictive value of so-called ‘indicator values'; and (3) quantify the shift in micro-habitat conditions under the influence of climate warming. Location Alpine vegetation 2200-2800 m a.s.l., Swiss central Alps. Methods High-resolution infra-red thermometry and large numbers of small data loggers were used to assess the spatial and temporal variation of plant-surface and ground temperatures as well as snow-melt patterns for 889 plots distributed across three alpine slopes of contrasting exposure. These environmental data were then correlated with Landolt indicator values for temperature preferences of different plant species and vegetation units. By simulating a uniform 2 K warming we estimated the changes in abundance of micro-habitat temperatures within the study area. Results Within the study area we observed a substantial variation between micro-habitats in seasonal mean soil temperature (ΔT = 7.2 K), surface temperature (ΔT = 10.5 K) and season length (>32 days). Plant species with low indicator values for temperature (plants commonly found in cool habitats) grew in significantly colder micro-habitats than plants with higher indicator values found on the same slope. A 2 K warming will lead to the loss of the coldest habitats (3% of current area), 75% of the current thermal micro-habitats will be reduced in abundance (crowding effect) and 22% will become more abundant. Main conclusions Our results demonstrate that the topographically induced mosaics of micro-climatic conditions in an alpine landscape are associated with local plant species distribution. Semi-quantitative plant species indicator values based on expert knowledge and aggregated to community means match measured thermal habitat conditions. Metre-scale thermal contrasts significantly exceed IPCC warming projections for the next 100 years. The data presented here thus indicate a great risk of overestimating alpine habitat losses in isotherm-based model scenarios. While all but the species depending on the very coldest micro-habitats will find thermally suitable ‘escape' habitats within short distances, there will be enhanced competition for those cooler places on a given slope in an alpine climate that is 2 K warmer. Yet, due to their topographic variability, alpine landscapes are likely to be safer places for most species than lowland terrain in a warming world.
AbstractList Aim We aim to: (1) explore thermal habitat preferences in alpine plant species across mosaics of topographically controlled micro-habitats; (2) test the predictive value of so-called ‘indicator values'; and (3) quantify the shift in micro-habitat conditions under the influence of climate warming. Location Alpine vegetation 2200-2800 m a.s.l., Swiss central Alps. Methods High-resolution infra-red thermometry and large numbers of small data loggers were used to assess the spatial and temporal variation of plant-surface and ground temperatures as well as snow-melt patterns for 889 plots distributed across three alpine slopes of contrasting exposure. These environmental data were then correlated with Landolt indicator values for temperature preferences of different plant species and vegetation units. By simulating a uniform 2 K warming we estimated the changes in abundance of micro-habitat temperatures within the study area. Results Within the study area we observed a substantial variation between micro-habitats in seasonal mean soil temperature (ΔT = 7.2 K), surface temperature (ΔT = 10.5 K) and season length (>32 days). Plant species with low indicator values for temperature (plants commonly found in cool habitats) grew in significantly colder micro-habitats than plants with higher indicator values found on the same slope. A 2 K warming will lead to the loss of the coldest habitats (3% of current area), 75% of the current thermal micro-habitats will be reduced in abundance (crowding effect) and 22% will become more abundant. Main conclusions Our results demonstrate that the topographically induced mosaics of micro-climatic conditions in an alpine landscape are associated with local plant species distribution. Semi-quantitative plant species indicator values based on expert knowledge and aggregated to community means match measured thermal habitat conditions. Metre-scale thermal contrasts significantly exceed IPCC warming projections for the next 100 years. The data presented here thus indicate a great risk of overestimating alpine habitat losses in isotherm-based model scenarios. While all but the species depending on the very coldest micro-habitats will find thermally suitable ‘escape' habitats within short distances, there will be enhanced competition for those cooler places on a given slope in an alpine climate that is 2 K warmer. Yet, due to their topographic variability, alpine landscapes are likely to be safer places for most species than lowland terrain in a warming world.
Aim We aim to: (1) explore thermal habitat preferences in alpine plant species across mosaics of topographically controlled micro-habitats; (2) test the predictive value of so-called 'indicator values'; and (3) quantify the shift in micro-habitat conditions under the influence of climate warming. Location Alpine vegetation 2200-2800m a.s.l., Swiss central Alps. Methods High-resolution infra-red thermometry and large numbers of small data loggers were used to assess the spatial and temporal variation of plant-surface and ground temperatures as well as snow-melt patterns for 889 plots distributed across three alpine slopes of contrasting exposure. These environmental data were then correlated with Landolt indicator values for temperature preferences of different plant species and vegetation units. By simulating a uniform 2K warming we estimated the changes in abundance of micro-habitat temperatures within the study area. Results Within the study area we observed a substantial variation between micro-habitats in seasonal mean soil temperature ( Delta T=7.2K), surface temperature ( Delta T=10.5K) and season length (>32days). Plant species with low indicator values for temperature (plants commonly found in cool habitats) grew in significantly colder micro-habitats than plants with higher indicator values found on the same slope. A 2K warming will lead to the loss of the coldest habitats (3% of current area), 75% of the current thermal micro-habitats will be reduced in abundance (crowding effect) and 22% will become more abundant. Main conclusions Our results demonstrate that the topographically induced mosaics of micro-climatic conditions in an alpine landscape are associated with local plant species distribution. Semi-quantitative plant species indicator values based on expert knowledge and aggregated to community means match measured thermal habitat conditions. Metre-scale thermal contrasts significantly exceed IPCC warming projections for the next 100years. The data presented here thus indicate a great risk of overestimating alpine habitat losses in isotherm-based model scenarios. While all but the species depending on the very coldest micro-habitats will find thermally suitable 'escape' habitats within short distances, there will be enhanced competition for those cooler places on a given slope in an alpine climate that is 2K warmer. Yet, due to their topographic variability, alpine landscapes are likely to be safer places for most species than lowland terrain in a warming world.
Aim: We Aim: to: (1) explore thermal habitat preferences in alpine plant species across mosaics of topographically controlled micro-habitats; (2) test the predictive value of so-called 'indicator values'; and (3) quantify the shift in micro-habitat conditions under the influence of climate warming. Location: Alpine vegetation 2200-2800 m a.s.l., Swiss central Alps. Methods: High-resolution infra-red thermometry and large numbers of small data loggers were used to assess the spatial and temporal variation of plantsurface and ground temperatures as well as snow-melt patterns for 889 plots distributed across three alpine slopes of contrasting exposure. These environmental data were then correlated with Landolt indicator values for temperature preferences of different plant species and vegetation units. By simulating a uniform 2 K warming we estimated the changes in abundance of micro-habitat temperatures within the study area. Results: Within the study area we observed a substantial variation between micro-habitats in seasonal mean soil temperature (∆T = 7.2 K), surface temperature (∆T = 10.5 K) and season length (>32 days). Plant species with low indicator values for temperature (plants commonly found in cool habitats) grew in significantly colder micro-habitats than plants with higher indicator values found on the same slope. A 2 K warming will lead to the loss of the coldest habitats (3% of current area), 75% of the current thermal micro-habitats will be reduced in abundance (crowding effect) and 22% will become more abundant. Main conclusions: Our Results: demonstrate that the topographically induced mosaics of micro-climatic conditions in an alpine landscape are associated with local plant species distribution. Semi-quantitative plant species indicator values based on expert knowledge and aggregated to community means match measured thermal habitat conditions. Metre-scale thermal contrasts significantly exceed IPCC warming projections for the next 100 years. The data presented here thus indicate a great risk of overestimating alpine habitat losses in isotherm-based model scenarios. While all but the species depending on the very coldest microhabitats will find thermally suitable 'escape' habitats within short distances, there will be enhanced competition for those cooler places on a given slope in an alpine climate that is 2 K warmer. Yet, due to their topographic variability, alpine landscapes are likely to be safer places for most species than lowland terrain in a warming world.
Aim  We aim to: (1) explore thermal habitat preferences in alpine plant species across mosaics of topographically controlled micro‐habitats; (2) test the predictive value of so‐called ‘indicator values’; and (3) quantify the shift in micro‐habitat conditions under the influence of climate warming. Location  Alpine vegetation 2200–2800 m a.s.l., Swiss central Alps. Methods  High‐resolution infra‐red thermometry and large numbers of small data loggers were used to assess the spatial and temporal variation of plant‐surface and ground temperatures as well as snow‐melt patterns for 889 plots distributed across three alpine slopes of contrasting exposure. These environmental data were then correlated with Landolt indicator values for temperature preferences of different plant species and vegetation units. By simulating a uniform 2 K warming we estimated the changes in abundance of micro‐habitat temperatures within the study area. Results  Within the study area we observed a substantial variation between micro‐habitats in seasonal mean soil temperature (ΔT = 7.2 K), surface temperature (ΔT = 10.5 K) and season length (>32 days). Plant species with low indicator values for temperature (plants commonly found in cool habitats) grew in significantly colder micro‐habitats than plants with higher indicator values found on the same slope. A 2 K warming will lead to the loss of the coldest habitats (3% of current area), 75% of the current thermal micro‐habitats will be reduced in abundance (crowding effect) and 22% will become more abundant. Main conclusions  Our results demonstrate that the topographically induced mosaics of micro‐climatic conditions in an alpine landscape are associated with local plant species distribution. Semi‐quantitative plant species indicator values based on expert knowledge and aggregated to community means match measured thermal habitat conditions. Metre‐scale thermal contrasts significantly exceed IPCC warming projections for the next 100 years. The data presented here thus indicate a great risk of overestimating alpine habitat losses in isotherm‐based model scenarios. While all but the species depending on the very coldest micro‐habitats will find thermally suitable ‘escape’ habitats within short distances, there will be enhanced competition for those cooler places on a given slope in an alpine climate that is 2 K warmer. Yet, due to their topographic variability, alpine landscapes are likely to be safer places for most species than lowland terrain in a warming world.
Author Scherrer, Daniel
Körner, Christian
Author_xml – sequence: 1
  givenname: Daniel
  surname: Scherrer
  fullname: Scherrer, Daniel
– sequence: 2
  givenname: Christian
  surname: Körner
  fullname: Körner, Christian
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23751523$$DView record in Pascal Francis
BookMark eNp9kUFvFCEUx4mpidvqRzDOxehlVhhgGA4ebKNtzbaa2MYjeTPD7LKywxRYu_vtC26zR7kA7_97j8f7n6KT0Y0aoYLgOUnr03pOaM3LqpZyXuEUxRXDYr57gWZH4QTNMMW8xJXAr9BpCGuMseSUzdDDnZvc0sO0Mh1Yuy86N0bvrNV9EVfab8CWK2hNhFj0Zhi012M0EI0bi3ab76EAO5lRF5OFMUN_U8zEfQFLMGOIRWfNBqIuHsFvzLh8jV4OYIN-87yfoftvX-8ursrFj8vriy-LcmCciVIQwlnTCQKkl7hmFDDnDe-lFm03UFzXrNV9L0CAJp3UFenaVrekoaSthobSM_ThUHfy7mGrQ1QbEzptU5fabYNqhGSCco4T-fG_JJFpcUZpLvr-GYWQ5jV4GDsT1OTTF_1eVVRwwqvMfT5wj8bq_VEnWGXT1Fplb1T2RmXT1D_T1E59P7_Op5T_9pC_DtH5Yz4jmDdNlfXyoJsQ9e6og_-japGaUL9vL9VNI27lz5uFahL_7sAP4BQsfer5_ld6mWIi0yxTy0_V3rLA
CODEN JBIODN
ContentType Journal Article
Copyright Copyright © 2011 Blackwell Publishing Ltd.
2010 Blackwell Publishing Ltd
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2011 Blackwell Publishing Ltd.
– notice: 2010 Blackwell Publishing Ltd
– notice: 2015 INIST-CNRS
DBID FBQ
BSCLL
IQODW
7S9
L.6
7SN
7ST
7U6
C1K
SOI
DOI 10.1111/j.1365-2699.2010.02407.x
DatabaseName AGRIS
Istex
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
Ecology Abstracts
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitle AGRICOLA
AGRICOLA - Academic
Ecology Abstracts
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Ecology Abstracts

AGRICOLA

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Biology
Ecology
EISSN 1365-2699
EndPage 416
ExternalDocumentID 23751523
JBI2407
41058827
ark_67375_WNG_M87N9PML_8
US201301930652
Genre article
GeographicLocations Switzerland
Europe
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29J
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABHUG
ABJNI
ABLJU
ABPLY
ABPPZ
ABPTK
ABPVW
ABTLG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AGUYK
AI.
AIRJO
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANHSF
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
CWIXF
D-E
D-F
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
DWIUU
EBS
ECGQY
EJD
EQZMY
ESX
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HQ2
HTVGU
HVGLF
HZI
HZ~
H~9
IHE
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SAMSI
SUPJJ
TN5
UB1
VH1
VOH
VQP
W8V
W99
WBKPD
WIH
WIK
WMRSR
WOHZO
WQJ
WRC
WSUWO
WXSBR
XG1
YQT
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ABSQW
ABXSQ
ACHIC
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
ALVPJ
AQVQM
BSCLL
HGLYW
IPSME
OIG
IQODW
7S9
L.6
7SN
7ST
7U6
C1K
SOI
ID FETCH-LOGICAL-f4547-711548c71a1d90643a05585d9e7bcf30664bedd7a7ae1c9e21cbbeb1831b2f833
IEDL.DBID DR2
ISSN 0305-0270
IngestDate Fri Jul 11 12:43:24 EDT 2025
Fri Jul 11 09:33:59 EDT 2025
Mon Jul 21 09:16:13 EDT 2025
Wed Jan 22 16:57:00 EST 2025
Thu Jul 03 21:30:49 EDT 2025
Sun Sep 21 06:19:27 EDT 2025
Wed Dec 27 18:49:00 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Warming
snow distribution
Snow
Biogeography
Surface temperature
Switzerland
Indicator
indicator values
micro-habitat
Dynamical climatology
Climate change
Species diversity
Alpine vegetation
Habitat
Differentiation
thermometry
Soil temperature
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-f4547-711548c71a1d90643a05585d9e7bcf30664bedd7a7ae1c9e21cbbeb1831b2f833
Notes http://dx.doi.org/10.1111/j.1365-2699.2010.02407.x
ArticleID:JBI2407
istex:F6F38F28E3BF480C01E889B68993162E8D38CF19
ark:/67375/WNG-M87N9PML-8
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1999954333
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_879473550
proquest_miscellaneous_1999954333
pascalfrancis_primary_23751523
wiley_primary_10_1111_j_1365_2699_2010_02407_x_JBI2407
jstor_primary_41058827
istex_primary_ark_67375_WNG_M87N9PML_8
fao_agris_US201301930652
PublicationCentury 2000
PublicationDate February 2011
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: February 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Journal of biogeography
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Blackwell Publishing
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell Publishing
– name: Blackwell
References New, M., Lister, D., Hulme, M. & Makin, I. (2002) A high-resolution data set of surface climate over global land areas. Climate Research, 21, 1-25.
Randin, C.F., Engler, R., Normand, S., Zappa, M., Zimmermann, N.E., Pearman, P.B., Vittoz, P., Thuiller, W. & Guisan, A. (2009) Climate change and plant distribution: local models predict high-elevation persistence. Global Change Biology, 15, 1557-1569.
Zimmermann, N.E. & Kienast, F. (1999) Predictive mapping of alpine grasslands in Switzerland: species versus community approach. Journal of Vegetation Science, 10, 469-482.
Galen, C. & Stanton, M.L. (1995) Responses of snowbed plant-species to changes in growing-season length. Ecology, 76, 1546-1557.
Hill, M.O., Roy, D.B., Mountford, J.O. & Bunce, R.G.H. (2000) Extending Ellenberg's indicator values to a new area: an algorithmic approach. Journal of Applied Ecology, 37, 3-15.
Lawesson, J.E. & Oksanen, J. (2002) Niche characteristics of Danish woody species as derived from coenoclines. Journal of Vegetation Science, 13, 279-290.
Friedel, H. (1961) Schneedeckendauer und Vegetationsverteilung im Gelände. Mitteilungen der Forstlichen Bundes-Versuchsanstalt Mariabrunn (Wien), 59, 317-369.
Landolt, E. (1977) Oekologische Zeigerwerte zur Schweizer Flora. Veröffentlichungen des Geobotanischen Instituts der ETH Stiftung Rübel, Zürich.
Mark, A.F. (1975) Photosynthesis and dark respiration in three environments. New Zealand Journal of Botany, 13, 93-122.
Prieditis, N. (1997) Alnus glutinosa-dominated wetland forests of the Baltic region: community structure, syntaxonomy and conservation. Plant Ecology, 129, 49-94.
Braun-Blanquet, J. (1964) Pflanzensoziologie Grundzüge der Vegetationskunde, 3rd edn. Springer, Vienna.
Gjærevoll, O. (1956) The plant communities of the Scandinavian alpine snow-beds. Kommisjon Hos F. Bruns Bokhandel, Trondheim.
Silvertown, J. (2004) Plant coexistence and the niche. Trends in Ecology and Evolution, 19, 605-611.
Wamelink, G.W.W., Joosten, V., van Dobben, H.F. & Berendse, F. (2002) Validity of Ellenberg indicator values judged from physico-chemical field measurements. Journal of Vegetation Science, 13, 269-278.
Ellenberg, H. (1992) Zeigerwerte von Pflanzen in Mitteleuropa, 2nd edn. Goltze, Göttingen.
Helm, D. (1982) Multivariate analysis of alpine snow-patch vegetation cover near Milner Pass, Rocky Mountain National Park, Colorado, U.S.A. Arctic and Alpine Research, 14, 87-95.
Randin, C.F., Dirnbock, T., Dullinger, S., Zimmermann, N.E., Zappa, M. & Guisan, A. (2006) Are niche-based species distribution models transferable in space? Journal of Biogeography, 33, 1689-1703.
Woodward, F.I. & Friend, A.D. (1988) Controlled environment studies on the temperature responses of leaf extension in species of Poa with diverse altitudinal ranges. Journal of Experimental Botany, 39, 411-420.
Blagowestschenski, W. (1935) Über den Verlauf der Photosynthese im Hochgebirge des Pamirs. Planta, 24, 276-287.
Pulliam, H.R. (2000) On the relationship between niche and distribution. Ecology Letters, 3, 349-361.
Nogués-Bravo, D., Araújo, M.B., Errea, M.P. & Martínez-Rica, J.P. (2007) Exposure of global mountain systems to climate warming during the 21st Century. Global Environmental Change-Human and Policy Dimensions, 17, 420-428.
Körner, C. & Cochrane, P. (1983) Influence of plant physiognomy on leaf temperature on clear midsummer days in the Snowy Mountains, south-eastern Australia. Acta Oecologica-Oecologia Plantarum, 4, 117-124.
Medellin, R.A., Equihua, M. & Amin, M.A. (2000) Bat diversity and abundance as indicators of disturbance in Neotropical rainforests. Conservation Biology, 14, 1666-1675.
Schöb, C., Kammer, P.M., Choler, P. & Veit, H. (2009) Small-scale plant species distribution in snowbeds and its sensitivity to climate change. Plant Ecology, 200, 91-104.
Körner, C. & Diemer, M. (1987) In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. Functional Ecology, 1, 179-194.
Hutchinson, G.E. (1957) Population studies - animal ecology and demography - concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415-427.
Økland, R. (1990) Vegetation ecology: theory, methods and applications with reference to Scandinavia. Sommerfeltia Supplement, 1, 1-233.
Cernusca, A. (1976) Structure of forest stand, bioclimatology and energy economy of dwarf shrub communities in the Alps. Oecologia Plantarum, 11, 71-101.
Binz, A. & Heitz, C. (1990) Schul- und Exkursionsflora für die Schweiz, mit Berücksichtigung der Grenzgebiete Bestimmungsbuch für die wildwachsenden Gefässpflanzen, 19th edn, pp. 100-107. Schwabe, Basel.
Diekmann, M. & Lawesson, J.E. (1999) Shifts in ecological behaviour of herbaceous forest species along a transect from northern Central to North Europe. Folia Geobotanica, 34, 127-141.
Caro, T.M. & O'Doherty, G. (1999) On the use of surrogate species in conservation biology. Conservation Biology, 13, 805-814.
Körner, C. (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115, 445-459.
Schaffers, A.P. & Sykora, K.V. (2000) Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. Journal of Vegetation Science, 11, 225-244.
Tuhkanen, S. (1980) Climatic parameters and indices in plant geography. Almquist and Wiksell International, Uppsala.
Kremen, C. (1992) Assessing the indicator properties of species assemblages for natural areas monitoring. Ecological Applications, 2, 203-217.
Takasu, K. (1953) Leaf temperature under natural environments (Microclimatic study V). Memorial College of Science, Series B, 20, 179-188.
Hill, M.O. & Carey, P.D. (1997) Prediction of yield in the Rothamsted Park Grass Experiment by Ellenberg indicator values. Journal of Vegetation Science, 8, 579-586.
Körner, C. & Paulsen, J. (2004) A world-wide study of high altitude treeline temperatures. Journal of Biogeography, 31, 713-732.
Niemi, G.J. & McDonald, M.E. (2004) Application of ecological indicators. Annual Review of Ecology, Evolution, and Systematics, 35, 89-111.
R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, Available at: http://www.R-project.org.
Larcher, W. & Wagner, J. (1976) Temperature limits of CO2 uptake and temperature resistance of leaves of alpine plants during growing season. Oecologia Plantarum, 11, 361-374.
Diekmann, M. (2003) Species indicator values as an important tool in applied plant ecology - a review. Basic and Applied Ecology, 4, 493-506.
Körner, C. (2003) Alpine plant life, 2nd edn. Springer, Berlin.
Persson, S. (1981) Ecological indicator values as an aid in the interpretation of ordination diagrams. Journal of Ecology, 69, 71-84.
Trivedi, M.R., Browne, M.K., Berry, P.M., Dawson, T.P. & Morecroft, M.D. (2007) Projecting climate change impacts on mountain snow cover in central Scotland from historical patterns. Arctic, Antarctic, and Alpine Research, 39, 488-499.
Scherrer, D. & Körner, C. (2010) Infra-red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biology, 16, 2602-2613.
Dierschke, H. (1994) Pflanzensoziologie Grundlagen und Methoden. Eugen Ulmer, Stuttgart.
Henrici, M. (1921) Zweigipflige Assimilationskurven. Mit alpinen phanerogamen Schattenpflanzen und Flechten. Verhandlungen der Naturforschenden Gesellschaft Basel, 32, 107-172.
Ellenberg, H. (1974) Zeigerwerte der Gefässpflanzen Mitteleuropas. Goltze, Göttingen.
Körner, C. & Woodward, F.I. (1987) The dynamics of leaf extension in plants with diverse altitudinal ranges. 2. Field studies in Poa species between 600 and 3200 m altitude. Oecologia, 72, 279-283.
Salisbury, F.B. & Spomer, G.G. (1964) Leaf temperatures of alpine plants in the field. Planta, 60, 497-505.
Trivedi, M.R., Berry, P.M., Morecroft, M.D. & Dawson, T.P. (2008) Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Global Change Biology, 14, 1089-1103.
Jonsson, B.G. & Jonsell, M. (1999) Exploring potential biodiversity indicators in boreal forests. Biodiversity and Conservation, 8, 1417-1433.
2007; 39
1987; 1
1982; 14
2010; 16
1987; 72
2000; 3
2006; 33
2002; 13
1983; 4
1995; 76
1988; 39
1975; 13
1974
1998; 115
1997; 8
1977
2004; 31
1990
2000; 14
2000; 11
2004; 35
1999; 13
2003; 4
2009; 200
1999; 10
1921; 32
1980
1935; 24
1992; 2
2009; 15
1953; 20
2007; 17
1981; 69
2008; 14
2008
1994
1992
2003
1999; 8
1961; 59
1956
1964; 60
1957; 22
1990; 1
1997; 129
1976; 11
2000; 37
2004; 19
2002; 21
1964
1999; 34
References_xml – reference: Braun-Blanquet, J. (1964) Pflanzensoziologie Grundzüge der Vegetationskunde, 3rd edn. Springer, Vienna.
– reference: New, M., Lister, D., Hulme, M. & Makin, I. (2002) A high-resolution data set of surface climate over global land areas. Climate Research, 21, 1-25.
– reference: Hill, M.O. & Carey, P.D. (1997) Prediction of yield in the Rothamsted Park Grass Experiment by Ellenberg indicator values. Journal of Vegetation Science, 8, 579-586.
– reference: Scherrer, D. & Körner, C. (2010) Infra-red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biology, 16, 2602-2613.
– reference: Körner, C. & Diemer, M. (1987) In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. Functional Ecology, 1, 179-194.
– reference: Diekmann, M. & Lawesson, J.E. (1999) Shifts in ecological behaviour of herbaceous forest species along a transect from northern Central to North Europe. Folia Geobotanica, 34, 127-141.
– reference: Trivedi, M.R., Berry, P.M., Morecroft, M.D. & Dawson, T.P. (2008) Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Global Change Biology, 14, 1089-1103.
– reference: Woodward, F.I. & Friend, A.D. (1988) Controlled environment studies on the temperature responses of leaf extension in species of Poa with diverse altitudinal ranges. Journal of Experimental Botany, 39, 411-420.
– reference: Økland, R. (1990) Vegetation ecology: theory, methods and applications with reference to Scandinavia. Sommerfeltia Supplement, 1, 1-233.
– reference: Schaffers, A.P. & Sykora, K.V. (2000) Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. Journal of Vegetation Science, 11, 225-244.
– reference: Kremen, C. (1992) Assessing the indicator properties of species assemblages for natural areas monitoring. Ecological Applications, 2, 203-217.
– reference: Hutchinson, G.E. (1957) Population studies - animal ecology and demography - concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415-427.
– reference: Persson, S. (1981) Ecological indicator values as an aid in the interpretation of ordination diagrams. Journal of Ecology, 69, 71-84.
– reference: Tuhkanen, S. (1980) Climatic parameters and indices in plant geography. Almquist and Wiksell International, Uppsala.
– reference: Niemi, G.J. & McDonald, M.E. (2004) Application of ecological indicators. Annual Review of Ecology, Evolution, and Systematics, 35, 89-111.
– reference: Körner, C. (2003) Alpine plant life, 2nd edn. Springer, Berlin.
– reference: Caro, T.M. & O'Doherty, G. (1999) On the use of surrogate species in conservation biology. Conservation Biology, 13, 805-814.
– reference: Ellenberg, H. (1992) Zeigerwerte von Pflanzen in Mitteleuropa, 2nd edn. Goltze, Göttingen.
– reference: Körner, C. & Cochrane, P. (1983) Influence of plant physiognomy on leaf temperature on clear midsummer days in the Snowy Mountains, south-eastern Australia. Acta Oecologica-Oecologia Plantarum, 4, 117-124.
– reference: R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, Available at: http://www.R-project.org.
– reference: Schöb, C., Kammer, P.M., Choler, P. & Veit, H. (2009) Small-scale plant species distribution in snowbeds and its sensitivity to climate change. Plant Ecology, 200, 91-104.
– reference: Cernusca, A. (1976) Structure of forest stand, bioclimatology and energy economy of dwarf shrub communities in the Alps. Oecologia Plantarum, 11, 71-101.
– reference: Binz, A. & Heitz, C. (1990) Schul- und Exkursionsflora für die Schweiz, mit Berücksichtigung der Grenzgebiete Bestimmungsbuch für die wildwachsenden Gefässpflanzen, 19th edn, pp. 100-107. Schwabe, Basel.
– reference: Trivedi, M.R., Browne, M.K., Berry, P.M., Dawson, T.P. & Morecroft, M.D. (2007) Projecting climate change impacts on mountain snow cover in central Scotland from historical patterns. Arctic, Antarctic, and Alpine Research, 39, 488-499.
– reference: Gjærevoll, O. (1956) The plant communities of the Scandinavian alpine snow-beds. Kommisjon Hos F. Bruns Bokhandel, Trondheim.
– reference: Salisbury, F.B. & Spomer, G.G. (1964) Leaf temperatures of alpine plants in the field. Planta, 60, 497-505.
– reference: Zimmermann, N.E. & Kienast, F. (1999) Predictive mapping of alpine grasslands in Switzerland: species versus community approach. Journal of Vegetation Science, 10, 469-482.
– reference: Randin, C.F., Engler, R., Normand, S., Zappa, M., Zimmermann, N.E., Pearman, P.B., Vittoz, P., Thuiller, W. & Guisan, A. (2009) Climate change and plant distribution: local models predict high-elevation persistence. Global Change Biology, 15, 1557-1569.
– reference: Ellenberg, H. (1974) Zeigerwerte der Gefässpflanzen Mitteleuropas. Goltze, Göttingen.
– reference: Lawesson, J.E. & Oksanen, J. (2002) Niche characteristics of Danish woody species as derived from coenoclines. Journal of Vegetation Science, 13, 279-290.
– reference: Takasu, K. (1953) Leaf temperature under natural environments (Microclimatic study V). Memorial College of Science, Series B, 20, 179-188.
– reference: Blagowestschenski, W. (1935) Über den Verlauf der Photosynthese im Hochgebirge des Pamirs. Planta, 24, 276-287.
– reference: Galen, C. & Stanton, M.L. (1995) Responses of snowbed plant-species to changes in growing-season length. Ecology, 76, 1546-1557.
– reference: Diekmann, M. (2003) Species indicator values as an important tool in applied plant ecology - a review. Basic and Applied Ecology, 4, 493-506.
– reference: Silvertown, J. (2004) Plant coexistence and the niche. Trends in Ecology and Evolution, 19, 605-611.
– reference: Hill, M.O., Roy, D.B., Mountford, J.O. & Bunce, R.G.H. (2000) Extending Ellenberg's indicator values to a new area: an algorithmic approach. Journal of Applied Ecology, 37, 3-15.
– reference: Larcher, W. & Wagner, J. (1976) Temperature limits of CO2 uptake and temperature resistance of leaves of alpine plants during growing season. Oecologia Plantarum, 11, 361-374.
– reference: Prieditis, N. (1997) Alnus glutinosa-dominated wetland forests of the Baltic region: community structure, syntaxonomy and conservation. Plant Ecology, 129, 49-94.
– reference: Henrici, M. (1921) Zweigipflige Assimilationskurven. Mit alpinen phanerogamen Schattenpflanzen und Flechten. Verhandlungen der Naturforschenden Gesellschaft Basel, 32, 107-172.
– reference: Helm, D. (1982) Multivariate analysis of alpine snow-patch vegetation cover near Milner Pass, Rocky Mountain National Park, Colorado, U.S.A. Arctic and Alpine Research, 14, 87-95.
– reference: Körner, C. (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115, 445-459.
– reference: Mark, A.F. (1975) Photosynthesis and dark respiration in three environments. New Zealand Journal of Botany, 13, 93-122.
– reference: Medellin, R.A., Equihua, M. & Amin, M.A. (2000) Bat diversity and abundance as indicators of disturbance in Neotropical rainforests. Conservation Biology, 14, 1666-1675.
– reference: Friedel, H. (1961) Schneedeckendauer und Vegetationsverteilung im Gelände. Mitteilungen der Forstlichen Bundes-Versuchsanstalt Mariabrunn (Wien), 59, 317-369.
– reference: Pulliam, H.R. (2000) On the relationship between niche and distribution. Ecology Letters, 3, 349-361.
– reference: Dierschke, H. (1994) Pflanzensoziologie Grundlagen und Methoden. Eugen Ulmer, Stuttgart.
– reference: Körner, C. & Paulsen, J. (2004) A world-wide study of high altitude treeline temperatures. Journal of Biogeography, 31, 713-732.
– reference: Wamelink, G.W.W., Joosten, V., van Dobben, H.F. & Berendse, F. (2002) Validity of Ellenberg indicator values judged from physico-chemical field measurements. Journal of Vegetation Science, 13, 269-278.
– reference: Körner, C. & Woodward, F.I. (1987) The dynamics of leaf extension in plants with diverse altitudinal ranges. 2. Field studies in Poa species between 600 and 3200 m altitude. Oecologia, 72, 279-283.
– reference: Nogués-Bravo, D., Araújo, M.B., Errea, M.P. & Martínez-Rica, J.P. (2007) Exposure of global mountain systems to climate warming during the 21st Century. Global Environmental Change-Human and Policy Dimensions, 17, 420-428.
– reference: Randin, C.F., Dirnbock, T., Dullinger, S., Zimmermann, N.E., Zappa, M. & Guisan, A. (2006) Are niche-based species distribution models transferable in space? Journal of Biogeography, 33, 1689-1703.
– reference: Jonsson, B.G. & Jonsell, M. (1999) Exploring potential biodiversity indicators in boreal forests. Biodiversity and Conservation, 8, 1417-1433.
– reference: Landolt, E. (1977) Oekologische Zeigerwerte zur Schweizer Flora. Veröffentlichungen des Geobotanischen Instituts der ETH Stiftung Rübel, Zürich.
– year: 1956
– volume: 39
  start-page: 488
  year: 2007
  end-page: 499
  article-title: Projecting climate change impacts on mountain snow cover in central Scotland from historical patterns
  publication-title: Arctic, Antarctic, and Alpine Research
– volume: 4
  start-page: 117
  year: 1983
  end-page: 124
  article-title: Influence of plant physiognomy on leaf temperature on clear midsummer days in the Snowy Mountains, south‐eastern Australia
  publication-title: Acta Oecologica-Oecologia Plantarum
– volume: 31
  start-page: 713
  year: 2004
  end-page: 732
  article-title: A world‐wide study of high altitude treeline temperatures
  publication-title: Journal of Biogeography
– volume: 2
  start-page: 203
  year: 1992
  end-page: 217
  article-title: Assessing the indicator properties of species assemblages for natural areas monitoring
  publication-title: Ecological Applications
– volume: 13
  start-page: 279
  year: 2002
  end-page: 290
  article-title: Niche characteristics of Danish woody species as derived from coenoclines
  publication-title: Journal of Vegetation Science
– volume: 32
  start-page: 107
  year: 1921
  end-page: 172
  article-title: Zweigipflige Assimilationskurven. Mit alpinen phanerogamen Schattenpflanzen und Flechten
  publication-title: Verhandlungen der Naturforschenden Gesellschaft Basel
– volume: 60
  start-page: 497
  year: 1964
  end-page: 505
  article-title: Leaf temperatures of alpine plants in the field
  publication-title: Planta
– volume: 129
  start-page: 49
  year: 1997
  end-page: 94
  article-title: ‐dominated wetland forests of the Baltic region: community structure, syntaxonomy and conservation
  publication-title: Plant Ecology
– volume: 19
  start-page: 605
  year: 2004
  end-page: 611
  article-title: Plant coexistence and the niche
  publication-title: Trends in Ecology and Evolution
– year: 1994
– volume: 14
  start-page: 87
  year: 1982
  end-page: 95
  article-title: Multivariate analysis of alpine snow‐patch vegetation cover near Milner Pass, Rocky Mountain National Park, Colorado, U.S.A
  publication-title: Arctic and Alpine Research
– start-page: 100
  year: 1990
  end-page: 107
– volume: 72
  start-page: 279
  year: 1987
  end-page: 283
  article-title: The dynamics of leaf extension in plants with diverse altitudinal ranges. 2. Field studies in species between 600 and 3200 m altitude
  publication-title: Oecologia
– volume: 115
  start-page: 445
  year: 1998
  end-page: 459
  article-title: A re‐assessment of high elevation treeline positions and their explanation
  publication-title: Oecologia
– volume: 14
  start-page: 1089
  year: 2008
  end-page: 1103
  article-title: Spatial scale affects bioclimate model projections of climate change impacts on mountain plants
  publication-title: Global Change Biology
– year: 2008
– volume: 17
  start-page: 420
  year: 2007
  end-page: 428
  article-title: Exposure of global mountain systems to climate warming during the 21st Century
  publication-title: Global Environmental Change–Human and Policy Dimensions
– volume: 1
  start-page: 179
  year: 1987
  end-page: 194
  article-title: In photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude
  publication-title: Functional Ecology
– volume: 13
  start-page: 805
  year: 1999
  end-page: 814
  article-title: On the use of surrogate species in conservation biology
  publication-title: Conservation Biology
– volume: 37
  start-page: 3
  year: 2000
  end-page: 15
  article-title: Extending Ellenberg’s indicator values to a new area: an algorithmic approach
  publication-title: Journal of Applied Ecology
– volume: 21
  start-page: 1
  year: 2002
  end-page: 25
  article-title: A high‐resolution data set of surface climate over global land areas
  publication-title: Climate Research
– volume: 11
  start-page: 71
  year: 1976
  end-page: 101
  article-title: Structure of forest stand, bioclimatology and energy economy of dwarf shrub communities in the Alps
  publication-title: Oecologia Plantarum
– year: 1964
– volume: 11
  start-page: 225
  year: 2000
  end-page: 244
  article-title: Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements
  publication-title: Journal of Vegetation Science
– volume: 59
  start-page: 317
  year: 1961
  end-page: 369
  article-title: Schneedeckendauer und Vegetationsverteilung im Gelände
  publication-title: Mitteilungen der Forstlichen Bundes-Versuchsanstalt Mariabrunn (Wien)
– volume: 33
  start-page: 1689
  year: 2006
  end-page: 1703
  article-title: Are niche‐based species distribution models transferable in space?
  publication-title: Journal of Biogeography
– volume: 13
  start-page: 93
  year: 1975
  end-page: 122
  article-title: Photosynthesis and dark respiration in three environments
  publication-title: New Zealand Journal of Botany
– year: 2003
– volume: 8
  start-page: 579
  year: 1997
  end-page: 586
  article-title: Prediction of yield in the Rothamsted Park Grass Experiment by Ellenberg indicator values
  publication-title: Journal of Vegetation Science
– volume: 16
  start-page: 2602
  year: 2010
  end-page: 2613
  article-title: Infra‐red thermometry of alpine landscapes challenges climatic warming projections
  publication-title: Global Change Biology
– volume: 76
  start-page: 1546
  year: 1995
  end-page: 1557
  article-title: Responses of snowbed plant‐species to changes in growing‐season length
  publication-title: Ecology
– year: 1977
– year: 1992
– volume: 69
  start-page: 71
  year: 1981
  end-page: 84
  article-title: Ecological indicator values as an aid in the interpretation of ordination diagrams
  publication-title: Journal of Ecology
– volume: 1
  start-page: 1
  year: 1990
  end-page: 233
  article-title: Vegetation ecology: theory, methods and applications with reference to Scandinavia
  publication-title: Sommerfeltia Supplement
– volume: 14
  start-page: 1666
  year: 2000
  end-page: 1675
  article-title: Bat diversity and abundance as indicators of disturbance in Neotropical rainforests
  publication-title: Conservation Biology
– volume: 20
  start-page: 179
  year: 1953
  end-page: 188
  article-title: Leaf temperature under natural environments (Microclimatic study V)
  publication-title: Memorial College of Science, Series B
– volume: 15
  start-page: 1557
  year: 2009
  end-page: 1569
  article-title: Climate change and plant distribution: local models predict high‐elevation persistence
  publication-title: Global Change Biology
– volume: 24
  start-page: 276
  year: 1935
  end-page: 287
  article-title: Über den Verlauf der Photosynthese im Hochgebirge des Pamirs
  publication-title: Planta
– year: 1980
– volume: 35
  start-page: 89
  year: 2004
  end-page: 111
  article-title: Application of ecological indicators
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 22
  start-page: 415
  year: 1957
  end-page: 427
  article-title: Population studies – animal ecology and demography – concluding remarks
  publication-title: Cold Spring Harbor Symposia on Quantitative Biology
– volume: 13
  start-page: 269
  year: 2002
  end-page: 278
  article-title: Validity of Ellenberg indicator values judged from physico‐chemical field measurements
  publication-title: Journal of Vegetation Science
– volume: 34
  start-page: 127
  year: 1999
  end-page: 141
  article-title: Shifts in ecological behaviour of herbaceous forest species along a transect from northern Central to North Europe
  publication-title: Folia Geobotanica
– year: 1974
– volume: 8
  start-page: 1417
  year: 1999
  end-page: 1433
  article-title: Exploring potential biodiversity indicators in boreal forests
  publication-title: Biodiversity and Conservation
– volume: 4
  start-page: 493
  year: 2003
  end-page: 506
  article-title: Species indicator values as an important tool in applied plant ecology – a review
  publication-title: Basic and Applied Ecology
– volume: 39
  start-page: 411
  year: 1988
  end-page: 420
  article-title: Controlled environment studies on the temperature responses of leaf extension in species of with diverse altitudinal ranges
  publication-title: Journal of Experimental Botany
– volume: 11
  start-page: 361
  year: 1976
  end-page: 374
  article-title: Temperature limits of CO uptake and temperature resistance of leaves of alpine plants during growing season
  publication-title: Oecologia Plantarum
– volume: 10
  start-page: 469
  year: 1999
  end-page: 482
  article-title: Predictive mapping of alpine grasslands in Switzerland: species versus community approach
  publication-title: Journal of Vegetation Science
– volume: 3
  start-page: 349
  year: 2000
  end-page: 361
  article-title: On the relationship between niche and distribution
  publication-title: Ecology Letters
– volume: 200
  start-page: 91
  year: 2009
  end-page: 104
  article-title: Small‐scale plant species distribution in snowbeds and its sensitivity to climate change
  publication-title: Plant Ecology
SSID ssj0009534
Score 2.5416434
Snippet Aim We aim to: (1) explore thermal habitat preferences in alpine plant species across mosaics of topographically controlled micro-habitats; (2) test the...
Aim: We Aim: to: (1) explore thermal habitat preferences in alpine plant species across mosaics of topographically controlled micro-habitats; (2) test the...
Aim  We aim to: (1) explore thermal habitat preferences in alpine plant species across mosaics of topographically controlled micro‐habitats; (2) test the...
SourceID proquest
pascalfrancis
wiley
jstor
istex
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 406
SubjectTerms Alpine plants
Animal and plant ecology
Animal, plant and microbial ecology
biogeography
Biological and medical sciences
climate
Climate change
Climate models
Climatology. Bioclimatology. Climate change
Earth, ocean, space
Environmental gradients
Exact sciences and technology
expert opinion
External geophysics
Fundamental and applied biological sciences. Psychology
General aspects
global warming
habitat destruction
habitat preferences
indicator species
indicator values
landscapes
Meteorology
micro-habitat
microhabitats
Plants
risk
Sloping terrain
snow distribution
Soil temperature
Soil temperature regimes
Species
species diversity
Surface temperature
Switzerland
Synecology
Temperature measuring instruments
temporal variation
thermometry
Vegetation
Title Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming
URI https://api.istex.fr/ark:/67375/WNG-M87N9PML-8/fulltext.pdf
https://www.jstor.org/stable/41058827
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2699.2010.02407.x
https://www.proquest.com/docview/1999954333
https://www.proquest.com/docview/879473550
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLXQJAQvfE8Lg8lIiLdUjfNh53HAxphYhWAVe7OuHbtMDW21tGLliZ_Ab-SXcG-cVi2CF8Sbo9xYcnJsn5ucnMvYc1FIL8pKxNbnmKBkeR6DMiq2EsCnuCWAad0-B8XJMDu9yC86_RP9CxP8IdYv3GhmtOs1TXAwzfYkDwqtsuwUWpSc9IhP4gmy0X_9QWz476bBSYq0akL2t0U9f-wIdxsPUyStdL-vV3pFEk9Cg_fPh8IXW8x0k9-2G9TxXTZeDS3oUsa9xdz07LffXB__z9jvsTsdj-WHAXj32Q03ecBuhsqWS2wd2a51qyuz_nn5kDXn01k4IGjUS94J5WtXcSKiX6D--f0HWYcjBear2i3zgB5uFnTccKhnOAA-qxEUGNTpSjiM4BK5Lrf1JbJwx78CyXxGj9jw-Oj81UncVX2IPZmLxZIMgpSVCSRVSYQJ-jnmNFXppLEeM5wiM66qJEhwiS2dSKwxuOOoNDHCqzTdZTuT6cTtMQ6Qe-eyonSuyFQuMWMWmJNjiuicFIWJ2B4-YQ0jXE_18KOgr7hIaJGViYi9aB-7ngXTDw1XY9LAyVx_GrzRZ0oOyvdn77SK2G6Li3Ug6WYxbZERO9gCyjpAYCfImtKIPVshR-Ocpg81MHHTRaPJGqLMszTFGP6XGIULqUSy2I9Y0UJl3f9GWocg0QQSTSDRLUj0tT59-ZZaj__1wn12O7xZJ1HPE7Yzv1q4p0jN5uagnXS_AHFFKzQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFL1Cm9B4YXxNyzaGkRBvqRrnw8kjoI1ubBWCVuzNuk6cblpoq7UVK0_7CfxGfgn3xmnVInhBvDmSa8nJufa59um5AK9kokqZFdLPy5gSlCiOfUxN6ucKsQxpS0BTu312k04_Or2IL5pyQPxfGOcPsTxw48io12sOcD6QXo9yJ9HKskaixdlJiwjlZn1dxwzpk1xx4A2dlxSr1aRqr8t6_jgS7Tcljoi28hu_XSgWWT6JE3qDpSt9scZNVxluvUUdb0O1mJxTply3ZlPTyr__5vv4n2b_CB42VFa8cdh7DPfs8Ancd8Ut59Q6ypvWVlNp_XL-FCa90dg9MDqquWi08pUtBHPRr1j9vPvB7uHEgsWifMvUAUiYGT9PBFZjmoEYV4QL6tRISwQO8IrorsirKyLiVnxDVvoMnkH_-Kj3ruM3hR_8kv3FfMUeQWmuAgyKjDkTtmNKa4rMKpOXlOQkkbFFoVChDfLMyiA3hjadNAyMLNMw3IGN4Whod0EgxqW1UZJZm0RprChplpSWU5ZorZKJ8WCXPrHGAS2puv9Z8kUucVoiZtKD1_V312Pn-6Hx5pplcCrWX7rv9XmqutnH8zOderBTA2PZkaWzlLkoDw7XkLLsIGkQIk6hBy8X0NEU1nxXg0M7mk00u0NkcRSG1Ef8pU9Ka6kivtj2IKmxshx_JbMjkGgGiWaQ6Bok-lafvj3h1t6__vAFbHV6NPezk-6HfXjgDtpZ43MAG9ObmX1OTG1qDusI_AUmIS9S
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQEJcX7tPCZRgJ8ZaqcS5OHrmsbGOrJljF3qxjx-6mhjZaW7HyxE_gN_JLOCdOqxbBC-LNkVxLTr7j853k63cYeyky6URRitC4FAuUJE1DyHUeGgngYkwJoBu3z362P0gOz9KzVv9E_4Xx_hCrF24UGc15TQFel24zyL1CqyhahRYVJx3kk9eTDLMmEaSPYs2AN_ZWUiRWE7K7qer540qYbhxMkLXSDb9aChZJPQlTvIHOd77YoKbrBLfJUL27bLTcmxemjDrzme6Yb7_ZPv6fzd9jd1oiy1975N1n1-z4AbvhW1sucLRn2tGtts_6-eIhm55Oan9B2KgWvFXKV7bkxES_QPXz-w_yDkcOzJfNW2YePlzP6XrKoapxA7yuEBU4qRWWcBjCBZJdbqoLpOGWfwXS-QwfsUFv7_Ttfti2fQgduYuFkhyCciMjiMqCGBN0UyxqysJKbRyWOFmibVlKkGAjU1gRGa0x5eRxpIXL43ibbY0nY7vDOEDqrE2ywtosyVOJJbPAohxrRGulyHTAdvAJKxjigaoGnwR9xkVGi7RMBOxV89hV7V0_FFyOSAQnU_W5_14d57JfnBwfqTxg2w0uVhNJOIt1iwzY7gZQVhMELoK0KQ7YiyVyFAY1famBsZ3Mp4q8IYo0iWOcw_8yJ8eTVCJb7AYsa6CyWn-trkOQKAKJIpCoBiTqSh2-OaDR43_94XN28-RdTx0d9D88Ybf9W3YS-DxlW7PLuX2GNG2md5v4-wVmBi4B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topographically+controlled+thermal-habitat+differentiation+buffers+alpine+plant+diversity+against+climate+warming&rft.jtitle=Journal+of+biogeography&rft.au=SCHERRER%2C+Daniel&rft.au=K%C3%96RNER%2C+Christian&rft.date=2011-02-01&rft.pub=Blackwell&rft.issn=0305-0270&rft.volume=38&rft.issue=2&rft.spage=406&rft.epage=416&rft_id=info:doi/10.1111%2Fj.1365-2699.2010.02407.x&rft.externalDBID=n%2Fa&rft.externalDocID=23751523
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0270&client=summon