딥러닝 기반의 소비자 데이터를 응용한 외식업체 추천 시스템 구현에 관한 연구
In this study, a recommendation algorithm was implemented by learning a deep learning-based classification model for consumer data. For this purpose, a meaningful result is presented as a result of learning using ResNet50, which is commonly used in classification tasks by converting user data into i...
Saved in:
| Published in | Journal of the convergence on culture technology : JCCT Vol. 7; no. 2; pp. 437 - 442 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | Korean |
| Published |
국제문화기술진흥원
31.05.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2384-0358 2384-0366 |
Cover
| Summary: | In this study, a recommendation algorithm was implemented by learning a deep learning-based classification model for consumer data. For this purpose, a meaningful result is presented as a result of learning using ResNet50, which is commonly used in classification tasks by converting user data into images. 본 연구에서는 소비자 데이터를 딥러닝 기반의 분류(Classification) 모델을 학습 시켜 추천 알고리즘을 구현하였다. 이를 위하여 사용자 데이터를 이미지로 변환 시켜 분류 과제에서 보편적으로 사용되는 ResNet50을 사용하여 학습한 결과로서 유의미한 결과에 대하여 제시함 |
|---|---|
| Bibliography: | KISTI1.1003/JNL.JAKO202117242149803 http://ipact.kr/eng/bbs/board.php?bo_table=Recent_Issue_jcct&wr_id=37 |
| ISSN: | 2384-0358 2384-0366 |