Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1. Background
Battery management systems (BMS) in hybrid-electric-vehicle (HEV) battery packs must estimate values descriptive of the pack’s present operating condition. These include: battery state of charge, power fade, capacity fade, and instantaneous available power. The estimation mechanism must adapt to cha...
Saved in:
| Published in | Journal of power sources Vol. 134; no. 2; pp. 252 - 261 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Lausanne
Elsevier B.V
12.08.2004
Elsevier Sequoia |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0378-7753 1873-2755 |
| DOI | 10.1016/j.jpowsour.2004.02.031 |
Cover
| Abstract | Battery management systems (BMS) in hybrid-electric-vehicle (HEV) battery packs must estimate values descriptive of the pack’s present operating condition. These include: battery state of charge, power fade, capacity fade, and instantaneous available power. The estimation mechanism must adapt to changing cell characteristics as cells age and therefore provide accurate estimates over the lifetime of the pack.
In a series of three papers, we propose a method, based on extended Kalman filtering (EKF), that is able to accomplish these goals on a lithium-ion polymer battery pack. We expect that it will also work well on other battery chemistries. These papers cover the required mathematical background, cell modeling and system identification requirements, and the final solution, together with results.
This first paper investigates the estimation requirements for HEV BMS in some detail, in parallel to the requirements for other battery-powered applications. The comparison leads us to understand that the HEV environment is very challenging on batteries and the BMS, and that precise estimation of some parameters will improve performance and robustness, and will ultimately lengthen the useful lifetime of the pack. This conclusion motivates the use of more complex algorithms than might be used in other applications. Our premise is that EKF then becomes a very attractive approach. This paper introduces the basic method, gives some intuitive feel to the necessary computational steps, and concludes by presenting an illustrative example as to the type of results that may be obtained using EKF. |
|---|---|
| AbstractList | Battery management systems (BMS) in hybrid-electric-vehicle (HEV) battery packs must estimate values descriptive of the pack’s present operating condition. These include: battery state of charge, power fade, capacity fade, and instantaneous available power. The estimation mechanism must adapt to changing cell characteristics as cells age and therefore provide accurate estimates over the lifetime of the pack.
In a series of three papers, we propose a method, based on extended Kalman filtering (EKF), that is able to accomplish these goals on a lithium-ion polymer battery pack. We expect that it will also work well on other battery chemistries. These papers cover the required mathematical background, cell modeling and system identification requirements, and the final solution, together with results.
This first paper investigates the estimation requirements for HEV BMS in some detail, in parallel to the requirements for other battery-powered applications. The comparison leads us to understand that the HEV environment is very challenging on batteries and the BMS, and that precise estimation of some parameters will improve performance and robustness, and will ultimately lengthen the useful lifetime of the pack. This conclusion motivates the use of more complex algorithms than might be used in other applications. Our premise is that EKF then becomes a very attractive approach. This paper introduces the basic method, gives some intuitive feel to the necessary computational steps, and concludes by presenting an illustrative example as to the type of results that may be obtained using EKF. Battery management systems (BMS) in hybrid-electric-vehicle (HEV) battery packs must estimate values descriptive of the pack's present operating condition. These include: battery state of charge, power fade, capacity fade, and instantaneous available power. The estimation mechanism must adapt to changing cell characteristics as cells age and therefore provide accurate estimates over the lifetime of the pack. In a series of three papers, we propose a method, based on extended Kalman filtering (EKF), that is able to accomplish these goals on a lithium-ion polymer battery pack. We expect that it will also work well on other battery chemistries. These papers cover the required mathematical background, cell modeling and system identification requirements, and the final solution, together with results. This first paper investigates the estimation requirements for REV BMS in some detail, in parallel to the requirements for other battery-powered applications. The comparison leads us to understand that the HEV environment is very challenging on batteries and the BMS, and that precise estimation of some parameters will improve performance and robustness, and will ultimately lengthen the useful lifetime of the pack. This conclusion motivates the use of more complex algorithms than might be used in other applications. Our premise is that EKF then becomes a very attractive approach. This paper introduces the basic method, gives some intuitive feel to the necessary computational steps, and concludes by presenting an illustrative example as to the type of results that may be obtained using EKF. Battery management systems (BMSs) in hybrid electric vehicle (HEV) battery packs must be capable of estimating values descriptive of the system's current operating conditions, such as battery state of charge and power fade. Estimation requirements for HEV BMS are detailed, noting that precise estimation of some parameters will enhance performance and will ultimately extend the useful lifetime of the pack. A method based on extended Kalman filtering is proposed to perform such estimations for a lithium ion polymer battery pack. |
| Author | Plett, Gregory L. |
| Author_xml | – sequence: 1 givenname: Gregory L. surname: Plett fullname: Plett, Gregory L. email: glp@eas.uccs.edu organization: Department of Electrical and Computer Engineering, University of Colorado at Colorado Springs, 1420 Austin Bluffs Parkway, P.O. Box 7150, Colorado Springs, CO 80933-7150, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15988099$$DView record in Pascal Francis |
| BookMark | eNqFkU1v1DAQQC1UJLaFv4B8gVvC2E5imxO0WijqSu2hcLUce7LykjiL7S3df09WLVw5jUbz5kvvnJzFOSIhbxnUDFj3YVfv9vPvPB9SzQGaGngNgr0gK6akqLhs2zOyAiFVJWUrXpHznHcAwJiEFRnXjwWjR09v7DjZSIcwFkwhbukwJ9rbsmRHulTsFieMheZjLjhlOg90E-4uq97mpft6_eMfvLfuZ_5I72wqlNX0ckm3aT5E_5q8HOyY8c1zvCDfv6zvr66rze3Xb1efNxUK4KVquqEfhl5x1D3jChrXtgPvmGKeC2BC6k5br0FLJ5RqXNcyL73XrIUGpdTigrx_mrtP868D5mKmkB2Oo404H7Lhqulkp_l_QdbI5QDJFvDdM2izs-OQbHQhm30Kk01Hw1qtFOjT5k9PHC7vPQRMJruA0aEPCV0xfg6GgTl5Mzvz15s5eTPAzeJN_AH98I_x |
| CODEN | JPSODZ |
| ContentType | Journal Article |
| Copyright | 2004 Elsevier B.V. 2005 INIST-CNRS |
| Copyright_xml | – notice: 2004 Elsevier B.V. – notice: 2005 INIST-CNRS |
| DBID | IQODW 7ST C1K SOI 7SP 7TB 8FD FR3 L7M |
| DOI | 10.1016/j.jpowsour.2004.02.031 |
| DatabaseName | Pascal-Francis Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | Environment Abstracts Environmental Sciences and Pollution Management Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Engineering Research Database Environment Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EISSN | 1873-2755 |
| EndPage | 261 |
| ExternalDocumentID | 15988099 S0378775304003593 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AI. AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HLY HVGLF HZ~ IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SCE SDF SDG SDP SES SEW SPC SPCBC SSK SSM SSR SSZ T5K T9H VH1 VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV EFKBS IQODW SSH 7ST ACLOT C1K SOI ~HD 7SP 7TB 8FD FR3 L7M |
| ID | FETCH-LOGICAL-e302t-46fbffb82e9b12804c55f26181d230137969ad9097c3884c651d7dd91504e7793 |
| IEDL.DBID | AIKHN |
| ISSN | 0378-7753 |
| IngestDate | Sat Sep 27 18:57:54 EDT 2025 Mon Oct 06 17:40:20 EDT 2025 Mon Jul 21 09:15:21 EDT 2025 Fri Feb 23 02:27:57 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Extended Kalman filter (EKF) Hybrid electric vehicle (HEV) Lithium-ion polymer battery (LiPB) State of health (SOH) Battery management system (BMS) State of charge (SOC) Hybrid vehicle Electric vehicle Parallel Electric batteries Modeling Operating conditions Hybrid system Lithium battery Lifetime State of charge Comparative study |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-e302t-46fbffb82e9b12804c55f26181d230137969ad9097c3884c651d7dd91504e7793 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 14712871 |
| PQPubID | 23462 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_28467692 proquest_miscellaneous_14712871 pascalfrancis_primary_15988099 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2004_02_031 |
| PublicationCentury | 2000 |
| PublicationDate | 2004-08-12 |
| PublicationDateYYYYMMDD | 2004-08-12 |
| PublicationDate_xml | – month: 08 year: 2004 text: 2004-08-12 day: 12 |
| PublicationDecade | 2000 |
| PublicationPlace | Lausanne |
| PublicationPlace_xml | – name: Lausanne |
| PublicationTitle | Journal of power sources |
| PublicationYear | 2004 |
| Publisher | Elsevier B.V Elsevier Sequoia |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Sequoia |
| References | Ehsani, Gao, Butler (BIB6) 1999; 48 C.-T. Chen, Linear System Theory and Design, Oxford University Press, New York, 1998. Butler, Ehsani, Kamath (BIB5) 1999; 48 G. Plett, Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 3. State and parameter estimation, J. Power Sources 134 (2) (2004) 277–292. G. Plett, Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 2. Modeling and identification, J. Power Sources 134 (2) (2004) 262–276. S. Haykin, Kalman filters, in: S. Haykin (Ed.), Kalman Filtering and Neural Networks, Wiley/Interscience, New York, 2001, pp. 1–22. Methods, Addison Wessley, Menlo Park, CA, 1999. S. Haykin, Adaptive Filter Theory, 3rd ed., Prentice-Hall, Upper Saddle River, NJ, 1996. J. Marsden, A. Tromba, Vector Calculus, 3rd ed., Freeman, 1998, pp. 243–247. C. Barbier, H. Meyer, B. Nogarede, S. Bensaoud, A battery state of charge indicator for electric vehicle, in: Proceedings of the International Conference of Institution of Mechanical Engineers, Automotive Electronics, London, UK, May 17–19, 1994, pp. 29–34. . Kalman (BIB8) 1960; 82 E. Wan, R. van der Merwe, The unscented Kalman filter, in: S. Haykin (Ed.), Kalman Filtering and Neural Networks, Wiley/Interscience, New York, pp. 221–282. E. Wan, A. Nelson, Dual extended Kalman filter methods, in: S. Haykin (Ed.), Kalman Filtering and Neural Networks, Wiley/Interscience, New York, 2001, pp. 123–174. S. Julier, J. Uhlmann, A new extension of the Kalman filter to nonlinear systems, in: Proceedings of the 1997 SPIE AeroSense Symposium, SPIE, Orlando, FL, April 21–24, 1997. P. Lürkens, W. Steffens, Ladezustandsschätzung von Bleibatterien mit Hilfe des Kalman-Filters, etzArchiv, vol. 8, No. 7, July 1986, pp. 231–236 (in German, English title: State of charge estimation of lead-acid batteries using a Kalman filtering technique). The Seminal Kalman Filter Paper, 1960, Accessed 20 May 2003. and S. Dhameja, Electric Vehicle Battery Systems, Newnes Press (an imprint of Butterworth-Heinemann), Boston, 2002. J. Burl, Linear Optimal Control M. Nørgaard, N. Poulsen, O. Ravn, Advances in derivative-free state estimation for nonlinear systems, Technical Report IMM-REP-1998-15, Technical University of Denmark, 2000. |
| References_xml | – reference: S. Dhameja, Electric Vehicle Battery Systems, Newnes Press (an imprint of Butterworth-Heinemann), Boston, 2002. – reference: M. Nørgaard, N. Poulsen, O. Ravn, Advances in derivative-free state estimation for nonlinear systems, Technical Report IMM-REP-1998-15, Technical University of Denmark, 2000. – reference: E. Wan, R. van der Merwe, The unscented Kalman filter, in: S. Haykin (Ed.), Kalman Filtering and Neural Networks, Wiley/Interscience, New York, pp. 221–282. – reference: J. Marsden, A. Tromba, Vector Calculus, 3rd ed., Freeman, 1998, pp. 243–247. – reference: G. Plett, Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 2. Modeling and identification, J. Power Sources 134 (2) (2004) 262–276. – reference: P. Lürkens, W. Steffens, Ladezustandsschätzung von Bleibatterien mit Hilfe des Kalman-Filters, etzArchiv, vol. 8, No. 7, July 1986, pp. 231–236 (in German, English title: State of charge estimation of lead-acid batteries using a Kalman filtering technique). – reference: C.-T. Chen, Linear System Theory and Design, Oxford University Press, New York, 1998. – reference: S. Haykin, Adaptive Filter Theory, 3rd ed., Prentice-Hall, Upper Saddle River, NJ, 1996. – reference: C. Barbier, H. Meyer, B. Nogarede, S. Bensaoud, A battery state of charge indicator for electric vehicle, in: Proceedings of the International Conference of Institution of Mechanical Engineers, Automotive Electronics, London, UK, May 17–19, 1994, pp. 29–34. – reference: S. Haykin, Kalman filters, in: S. Haykin (Ed.), Kalman Filtering and Neural Networks, Wiley/Interscience, New York, 2001, pp. 1–22. – reference: Methods, Addison Wessley, Menlo Park, CA, 1999. – volume: 48 start-page: 1770 year: 1999 end-page: 1778 ident: BIB5 article-title: A Matlab-based modeling and simulation package for electric and hybrid electric vehicles design publication-title: IEEE Trans. Veh. Technol. – reference: and – reference: The Seminal Kalman Filter Paper, 1960, Accessed 20 May 2003. – reference: G. Plett, Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 3. State and parameter estimation, J. Power Sources 134 (2) (2004) 277–292. – volume: 48 start-page: 1779 year: 1999 end-page: 1787 ident: BIB6 article-title: Application of electrically peaking hybrid (ELPH) propulsion system to a full size passenger car with simulated design verification publication-title: IEEE Trans. Veh. Technol. – reference: J. Burl, Linear Optimal Control: – reference: S. Julier, J. Uhlmann, A new extension of the Kalman filter to nonlinear systems, in: Proceedings of the 1997 SPIE AeroSense Symposium, SPIE, Orlando, FL, April 21–24, 1997. – volume: 82 start-page: 35 year: 1960 end-page: 45 ident: BIB8 article-title: A new approach to linear filtering and prediction problems publication-title: Trans. ASME—J. Basic Eng., Ser. D – reference: . – reference: E. Wan, A. Nelson, Dual extended Kalman filter methods, in: S. Haykin (Ed.), Kalman Filtering and Neural Networks, Wiley/Interscience, New York, 2001, pp. 123–174. |
| SSID | ssj0001170 |
| Score | 2.4238584 |
| Snippet | Battery management systems (BMS) in hybrid-electric-vehicle (HEV) battery packs must estimate values descriptive of the pack’s present operating condition.... Battery management systems (BMSs) in hybrid electric vehicle (HEV) battery packs must be capable of estimating values descriptive of the system's current... Battery management systems (BMS) in hybrid-electric-vehicle (HEV) battery packs must estimate values descriptive of the pack's present operating condition.... |
| SourceID | proquest pascalfrancis elsevier |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 252 |
| SubjectTerms | Applied sciences Battery management system (BMS) Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Extended Kalman filter (EKF) Fuel cells Hybrid electric vehicle (HEV) Lithium-ion polymer battery (LiPB) State of charge (SOC) State of health (SOH) |
| Title | Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1. Background |
| URI | https://dx.doi.org/10.1016/j.jpowsour.2004.02.031 https://www.proquest.com/docview/14712871 https://www.proquest.com/docview/28467692 |
| Volume | 134 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-2755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001170 issn: 0378-7753 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-2755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001170 issn: 0378-7753 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-2755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001170 issn: 0378-7753 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001170 issn: 0378-7753 databaseCode: AKRWK dateStart: 19761201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60vSgiPrE-ag5et93NPuOtlUq1KoIPvIVkN4GWdrvYFvHib3eyj6qIJ4-7m4Uwk3zzTTIPgDOJLBUBUVjajaWF_F9bMlSBxZgy5anQRMbmQP_2Lug_edcv_ssKXFS5MCasssT-AtNztC7ftEtptrPhsP1gu7jYkG2bZej6zF2FOtqfKKpBvXM16N8tAdk0V8kvE9BhMj98SxQetUbZ9M2ck-euYl6-M-8392WYNjIxQ3Hpos_FL8jO7dDlFmyWBJJ0ijluw4pKd2D9W1nBXRj3ypNtMhDjiUiJHpo7cfxGkKISmZfUfCeTZeQLKeo5z8hUk5vhfdcyti0h_d7zcnBmcvHPyT3Khjgt0sVHkxCSJnvwdNl7vOhbZVcFS7k2nVteoKXWMqKKSTROthf7vkY_CokruiOOG7KAiYTZLIxRml4c-E4SJglD5uipELfzPtTSaaoOgGjtSaqoEoLGXiwSGSVUMOWioB1fyqgBrJIj_6FUjnjNq_iyEa90YHpietymHHXQgOYPwfOsqL7BkX8h5jDWgNNKExy3hLnnEKmaLmbozYSOcQT_HkEN6woYPfzHBI9grYjiQS-cHkNt_rpQJ0hQ5rIJq60Pp1kuw08VP-c0 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHAAhxCrK0vrANW3iOIu5ASoqtCAkFnGz7MSWWkEa0SLEhW9nnIWCECeOcXywZuyZ9-xZAI4UolQ0iNIxfqIcxP_GUZEOHc61LU-FLjKxF_pX12Hvnl0-Bo9zcFbnwtiwysr2lza9sNbVSKeSZicfDju3ro-bDdG23YZ-wP15WGQBjSwDa3_M4jxsa5XiKQHpkp3-LU141B7l4zd7S14QxaJ4Z9FtbuaWVnM5QWGZssvFL4NdeKHzdVir4CM5KVe4AXM624SVb0UFt-CpW91rk758epYZMUP7Io7_CAJUooqCmu_k-SvuhZTVnCdkbMhgeHPqWM-Wkl734WtybjPxj8kNSoZ4bXKKnzYdJEu34f68e3fWc6qeCo72XTp1WGiUMSqmmit0TS5LgsAgi0LYimTE8yMecplyl0eJH8csCQMvjdKUI25kOsLDvAML2TjTu0CMYYpqqqWkCUtkquKUSq59FLQXKBU3gNdyFD9UKtBaizq6bCRqHdiOmEy4VKAOGtD8IXiRl7U3BKIvtDicN6BVa0LggbCvHDLT49cJcpnIszTw7xnUYq6Q071_LLAFS727q4EYXFz392G5jOdBPk4PYGH68qoPEapMVbPYip8Ejef8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extended+Kalman+filtering+for+battery+management+systems+of+LiPB-based+HEV+battery+packs.+Part+1.+Background&rft.jtitle=Journal+of+power+sources&rft.au=PLETT%2C+Gregory+L&rft.date=2004-08-12&rft.pub=Elsevier+Sequoia&rft.issn=0378-7753&rft.volume=134&rft.issue=2&rft.spage=252&rft.epage=261&rft_id=info:doi/10.1016%2Fj.jpowsour.2004.02.031&rft.externalDBID=n%2Fa&rft.externalDocID=15988099 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |