Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1. Background

Battery management systems (BMS) in hybrid-electric-vehicle (HEV) battery packs must estimate values descriptive of the pack’s present operating condition. These include: battery state of charge, power fade, capacity fade, and instantaneous available power. The estimation mechanism must adapt to cha...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 134; no. 2; pp. 252 - 261
Main Author Plett, Gregory L.
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 12.08.2004
Elsevier Sequoia
Subjects
Online AccessGet full text
ISSN0378-7753
1873-2755
DOI10.1016/j.jpowsour.2004.02.031

Cover

Abstract Battery management systems (BMS) in hybrid-electric-vehicle (HEV) battery packs must estimate values descriptive of the pack’s present operating condition. These include: battery state of charge, power fade, capacity fade, and instantaneous available power. The estimation mechanism must adapt to changing cell characteristics as cells age and therefore provide accurate estimates over the lifetime of the pack. In a series of three papers, we propose a method, based on extended Kalman filtering (EKF), that is able to accomplish these goals on a lithium-ion polymer battery pack. We expect that it will also work well on other battery chemistries. These papers cover the required mathematical background, cell modeling and system identification requirements, and the final solution, together with results. This first paper investigates the estimation requirements for HEV BMS in some detail, in parallel to the requirements for other battery-powered applications. The comparison leads us to understand that the HEV environment is very challenging on batteries and the BMS, and that precise estimation of some parameters will improve performance and robustness, and will ultimately lengthen the useful lifetime of the pack. This conclusion motivates the use of more complex algorithms than might be used in other applications. Our premise is that EKF then becomes a very attractive approach. This paper introduces the basic method, gives some intuitive feel to the necessary computational steps, and concludes by presenting an illustrative example as to the type of results that may be obtained using EKF.
AbstractList Battery management systems (BMS) in hybrid-electric-vehicle (HEV) battery packs must estimate values descriptive of the pack’s present operating condition. These include: battery state of charge, power fade, capacity fade, and instantaneous available power. The estimation mechanism must adapt to changing cell characteristics as cells age and therefore provide accurate estimates over the lifetime of the pack. In a series of three papers, we propose a method, based on extended Kalman filtering (EKF), that is able to accomplish these goals on a lithium-ion polymer battery pack. We expect that it will also work well on other battery chemistries. These papers cover the required mathematical background, cell modeling and system identification requirements, and the final solution, together with results. This first paper investigates the estimation requirements for HEV BMS in some detail, in parallel to the requirements for other battery-powered applications. The comparison leads us to understand that the HEV environment is very challenging on batteries and the BMS, and that precise estimation of some parameters will improve performance and robustness, and will ultimately lengthen the useful lifetime of the pack. This conclusion motivates the use of more complex algorithms than might be used in other applications. Our premise is that EKF then becomes a very attractive approach. This paper introduces the basic method, gives some intuitive feel to the necessary computational steps, and concludes by presenting an illustrative example as to the type of results that may be obtained using EKF.
Battery management systems (BMS) in hybrid-electric-vehicle (HEV) battery packs must estimate values descriptive of the pack's present operating condition. These include: battery state of charge, power fade, capacity fade, and instantaneous available power. The estimation mechanism must adapt to changing cell characteristics as cells age and therefore provide accurate estimates over the lifetime of the pack. In a series of three papers, we propose a method, based on extended Kalman filtering (EKF), that is able to accomplish these goals on a lithium-ion polymer battery pack. We expect that it will also work well on other battery chemistries. These papers cover the required mathematical background, cell modeling and system identification requirements, and the final solution, together with results. This first paper investigates the estimation requirements for REV BMS in some detail, in parallel to the requirements for other battery-powered applications. The comparison leads us to understand that the HEV environment is very challenging on batteries and the BMS, and that precise estimation of some parameters will improve performance and robustness, and will ultimately lengthen the useful lifetime of the pack. This conclusion motivates the use of more complex algorithms than might be used in other applications. Our premise is that EKF then becomes a very attractive approach. This paper introduces the basic method, gives some intuitive feel to the necessary computational steps, and concludes by presenting an illustrative example as to the type of results that may be obtained using EKF.
Battery management systems (BMSs) in hybrid electric vehicle (HEV) battery packs must be capable of estimating values descriptive of the system's current operating conditions, such as battery state of charge and power fade. Estimation requirements for HEV BMS are detailed, noting that precise estimation of some parameters will enhance performance and will ultimately extend the useful lifetime of the pack. A method based on extended Kalman filtering is proposed to perform such estimations for a lithium ion polymer battery pack.
Author Plett, Gregory L.
Author_xml – sequence: 1
  givenname: Gregory L.
  surname: Plett
  fullname: Plett, Gregory L.
  email: glp@eas.uccs.edu
  organization: Department of Electrical and Computer Engineering, University of Colorado at Colorado Springs, 1420 Austin Bluffs Parkway, P.O. Box 7150, Colorado Springs, CO 80933-7150, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15988099$$DView record in Pascal Francis
BookMark eNqFkU1v1DAQQC1UJLaFv4B8gVvC2E5imxO0WijqSu2hcLUce7LykjiL7S3df09WLVw5jUbz5kvvnJzFOSIhbxnUDFj3YVfv9vPvPB9SzQGaGngNgr0gK6akqLhs2zOyAiFVJWUrXpHznHcAwJiEFRnXjwWjR09v7DjZSIcwFkwhbukwJ9rbsmRHulTsFieMheZjLjhlOg90E-4uq97mpft6_eMfvLfuZ_5I72wqlNX0ckm3aT5E_5q8HOyY8c1zvCDfv6zvr66rze3Xb1efNxUK4KVquqEfhl5x1D3jChrXtgPvmGKeC2BC6k5br0FLJ5RqXNcyL73XrIUGpdTigrx_mrtP868D5mKmkB2Oo404H7Lhqulkp_l_QdbI5QDJFvDdM2izs-OQbHQhm30Kk01Hw1qtFOjT5k9PHC7vPQRMJruA0aEPCV0xfg6GgTl5Mzvz15s5eTPAzeJN_AH98I_x
CODEN JPSODZ
ContentType Journal Article
Copyright 2004 Elsevier B.V.
2005 INIST-CNRS
Copyright_xml – notice: 2004 Elsevier B.V.
– notice: 2005 INIST-CNRS
DBID IQODW
7ST
C1K
SOI
7SP
7TB
8FD
FR3
L7M
DOI 10.1016/j.jpowsour.2004.02.031
DatabaseName Pascal-Francis
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Environment Abstracts
Environmental Sciences and Pollution Management
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Engineering Research Database
Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-2755
EndPage 261
ExternalDocumentID 15988099
S0378775304003593
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
T9H
VH1
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
EFKBS
IQODW
SSH
7ST
ACLOT
C1K
SOI
~HD
7SP
7TB
8FD
FR3
L7M
ID FETCH-LOGICAL-e302t-46fbffb82e9b12804c55f26181d230137969ad9097c3884c651d7dd91504e7793
IEDL.DBID AIKHN
ISSN 0378-7753
IngestDate Sat Sep 27 18:57:54 EDT 2025
Mon Oct 06 17:40:20 EDT 2025
Mon Jul 21 09:15:21 EDT 2025
Fri Feb 23 02:27:57 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Extended Kalman filter (EKF)
Hybrid electric vehicle (HEV)
Lithium-ion polymer battery (LiPB)
State of health (SOH)
Battery management system (BMS)
State of charge (SOC)
Hybrid vehicle
Electric vehicle
Parallel
Electric batteries
Modeling
Operating conditions
Hybrid system
Lithium battery
Lifetime
State of charge
Comparative study
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-e302t-46fbffb82e9b12804c55f26181d230137969ad9097c3884c651d7dd91504e7793
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 14712871
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_28467692
proquest_miscellaneous_14712871
pascalfrancis_primary_15988099
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2004_02_031
PublicationCentury 2000
PublicationDate 2004-08-12
PublicationDateYYYYMMDD 2004-08-12
PublicationDate_xml – month: 08
  year: 2004
  text: 2004-08-12
  day: 12
PublicationDecade 2000
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Journal of power sources
PublicationYear 2004
Publisher Elsevier B.V
Elsevier Sequoia
Publisher_xml – name: Elsevier B.V
– name: Elsevier Sequoia
References Ehsani, Gao, Butler (BIB6) 1999; 48
C.-T. Chen, Linear System Theory and Design, Oxford University Press, New York, 1998.
Butler, Ehsani, Kamath (BIB5) 1999; 48
G. Plett, Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 3. State and parameter estimation, J. Power Sources 134 (2) (2004) 277–292.
G. Plett, Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 2. Modeling and identification, J. Power Sources 134 (2) (2004) 262–276.
S. Haykin, Kalman filters, in: S. Haykin (Ed.), Kalman Filtering and Neural Networks, Wiley/Interscience, New York, 2001, pp. 1–22.
Methods, Addison Wessley, Menlo Park, CA, 1999.
S. Haykin, Adaptive Filter Theory, 3rd ed., Prentice-Hall, Upper Saddle River, NJ, 1996.
J. Marsden, A. Tromba, Vector Calculus, 3rd ed., Freeman, 1998, pp. 243–247.
C. Barbier, H. Meyer, B. Nogarede, S. Bensaoud, A battery state of charge indicator for electric vehicle, in: Proceedings of the International Conference of Institution of Mechanical Engineers, Automotive Electronics, London, UK, May 17–19, 1994, pp. 29–34.
.
Kalman (BIB8) 1960; 82
E. Wan, R. van der Merwe, The unscented Kalman filter, in: S. Haykin (Ed.), Kalman Filtering and Neural Networks, Wiley/Interscience, New York, pp. 221–282.
E. Wan, A. Nelson, Dual extended Kalman filter methods, in: S. Haykin (Ed.), Kalman Filtering and Neural Networks, Wiley/Interscience, New York, 2001, pp. 123–174.
S. Julier, J. Uhlmann, A new extension of the Kalman filter to nonlinear systems, in: Proceedings of the 1997 SPIE AeroSense Symposium, SPIE, Orlando, FL, April 21–24, 1997.
P. Lürkens, W. Steffens, Ladezustandsschätzung von Bleibatterien mit Hilfe des Kalman-Filters, etzArchiv, vol. 8, No. 7, July 1986, pp. 231–236 (in German, English title: State of charge estimation of lead-acid batteries using a Kalman filtering technique).
The Seminal Kalman Filter Paper, 1960, Accessed 20 May 2003.
and
S. Dhameja, Electric Vehicle Battery Systems, Newnes Press (an imprint of Butterworth-Heinemann), Boston, 2002.
J. Burl, Linear Optimal Control
M. Nørgaard, N. Poulsen, O. Ravn, Advances in derivative-free state estimation for nonlinear systems, Technical Report IMM-REP-1998-15, Technical University of Denmark, 2000.
References_xml – reference: S. Dhameja, Electric Vehicle Battery Systems, Newnes Press (an imprint of Butterworth-Heinemann), Boston, 2002.
– reference: M. Nørgaard, N. Poulsen, O. Ravn, Advances in derivative-free state estimation for nonlinear systems, Technical Report IMM-REP-1998-15, Technical University of Denmark, 2000.
– reference: E. Wan, R. van der Merwe, The unscented Kalman filter, in: S. Haykin (Ed.), Kalman Filtering and Neural Networks, Wiley/Interscience, New York, pp. 221–282.
– reference: J. Marsden, A. Tromba, Vector Calculus, 3rd ed., Freeman, 1998, pp. 243–247.
– reference: G. Plett, Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 2. Modeling and identification, J. Power Sources 134 (2) (2004) 262–276.
– reference: P. Lürkens, W. Steffens, Ladezustandsschätzung von Bleibatterien mit Hilfe des Kalman-Filters, etzArchiv, vol. 8, No. 7, July 1986, pp. 231–236 (in German, English title: State of charge estimation of lead-acid batteries using a Kalman filtering technique).
– reference: C.-T. Chen, Linear System Theory and Design, Oxford University Press, New York, 1998.
– reference: S. Haykin, Adaptive Filter Theory, 3rd ed., Prentice-Hall, Upper Saddle River, NJ, 1996.
– reference: C. Barbier, H. Meyer, B. Nogarede, S. Bensaoud, A battery state of charge indicator for electric vehicle, in: Proceedings of the International Conference of Institution of Mechanical Engineers, Automotive Electronics, London, UK, May 17–19, 1994, pp. 29–34.
– reference: S. Haykin, Kalman filters, in: S. Haykin (Ed.), Kalman Filtering and Neural Networks, Wiley/Interscience, New York, 2001, pp. 1–22.
– reference: Methods, Addison Wessley, Menlo Park, CA, 1999.
– volume: 48
  start-page: 1770
  year: 1999
  end-page: 1778
  ident: BIB5
  article-title: A Matlab-based modeling and simulation package for electric and hybrid electric vehicles design
  publication-title: IEEE Trans. Veh. Technol.
– reference: and
– reference: The Seminal Kalman Filter Paper, 1960, Accessed 20 May 2003.
– reference: G. Plett, Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 3. State and parameter estimation, J. Power Sources 134 (2) (2004) 277–292.
– volume: 48
  start-page: 1779
  year: 1999
  end-page: 1787
  ident: BIB6
  article-title: Application of electrically peaking hybrid (ELPH) propulsion system to a full size passenger car with simulated design verification
  publication-title: IEEE Trans. Veh. Technol.
– reference: J. Burl, Linear Optimal Control:
– reference: S. Julier, J. Uhlmann, A new extension of the Kalman filter to nonlinear systems, in: Proceedings of the 1997 SPIE AeroSense Symposium, SPIE, Orlando, FL, April 21–24, 1997.
– volume: 82
  start-page: 35
  year: 1960
  end-page: 45
  ident: BIB8
  article-title: A new approach to linear filtering and prediction problems
  publication-title: Trans. ASME—J. Basic Eng., Ser. D
– reference: .
– reference: E. Wan, A. Nelson, Dual extended Kalman filter methods, in: S. Haykin (Ed.), Kalman Filtering and Neural Networks, Wiley/Interscience, New York, 2001, pp. 123–174.
SSID ssj0001170
Score 2.4238584
Snippet Battery management systems (BMS) in hybrid-electric-vehicle (HEV) battery packs must estimate values descriptive of the pack’s present operating condition....
Battery management systems (BMSs) in hybrid electric vehicle (HEV) battery packs must be capable of estimating values descriptive of the system's current...
Battery management systems (BMS) in hybrid-electric-vehicle (HEV) battery packs must estimate values descriptive of the pack's present operating condition....
SourceID proquest
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 252
SubjectTerms Applied sciences
Battery management system (BMS)
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Extended Kalman filter (EKF)
Fuel cells
Hybrid electric vehicle (HEV)
Lithium-ion polymer battery (LiPB)
State of charge (SOC)
State of health (SOH)
Title Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1. Background
URI https://dx.doi.org/10.1016/j.jpowsour.2004.02.031
https://www.proquest.com/docview/14712871
https://www.proquest.com/docview/28467692
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-2755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001170
  issn: 0378-7753
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001170
  issn: 0378-7753
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-2755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001170
  issn: 0378-7753
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001170
  issn: 0378-7753
  databaseCode: AKRWK
  dateStart: 19761201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60vSgiPrE-ag5et93NPuOtlUq1KoIPvIVkN4GWdrvYFvHib3eyj6qIJ4-7m4Uwk3zzTTIPgDOJLBUBUVjajaWF_F9bMlSBxZgy5anQRMbmQP_2Lug_edcv_ssKXFS5MCasssT-AtNztC7ftEtptrPhsP1gu7jYkG2bZej6zF2FOtqfKKpBvXM16N8tAdk0V8kvE9BhMj98SxQetUbZ9M2ck-euYl6-M-8392WYNjIxQ3Hpos_FL8jO7dDlFmyWBJJ0ijluw4pKd2D9W1nBXRj3ypNtMhDjiUiJHpo7cfxGkKISmZfUfCeTZeQLKeo5z8hUk5vhfdcyti0h_d7zcnBmcvHPyT3Khjgt0sVHkxCSJnvwdNl7vOhbZVcFS7k2nVteoKXWMqKKSTROthf7vkY_CokruiOOG7KAiYTZLIxRml4c-E4SJglD5uipELfzPtTSaaoOgGjtSaqoEoLGXiwSGSVUMOWioB1fyqgBrJIj_6FUjnjNq_iyEa90YHpietymHHXQgOYPwfOsqL7BkX8h5jDWgNNKExy3hLnnEKmaLmbozYSOcQT_HkEN6woYPfzHBI9grYjiQS-cHkNt_rpQJ0hQ5rIJq60Pp1kuw08VP-c0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHAAhxCrK0vrANW3iOIu5ASoqtCAkFnGz7MSWWkEa0SLEhW9nnIWCECeOcXywZuyZ9-xZAI4UolQ0iNIxfqIcxP_GUZEOHc61LU-FLjKxF_pX12Hvnl0-Bo9zcFbnwtiwysr2lza9sNbVSKeSZicfDju3ro-bDdG23YZ-wP15WGQBjSwDa3_M4jxsa5XiKQHpkp3-LU141B7l4zd7S14QxaJ4Z9FtbuaWVnM5QWGZssvFL4NdeKHzdVir4CM5KVe4AXM624SVb0UFt-CpW91rk758epYZMUP7Io7_CAJUooqCmu_k-SvuhZTVnCdkbMhgeHPqWM-Wkl734WtybjPxj8kNSoZ4bXKKnzYdJEu34f68e3fWc6qeCo72XTp1WGiUMSqmmit0TS5LgsAgi0LYimTE8yMecplyl0eJH8csCQMvjdKUI25kOsLDvAML2TjTu0CMYYpqqqWkCUtkquKUSq59FLQXKBU3gNdyFD9UKtBaizq6bCRqHdiOmEy4VKAOGtD8IXiRl7U3BKIvtDicN6BVa0LggbCvHDLT49cJcpnIszTw7xnUYq6Q071_LLAFS727q4EYXFz392G5jOdBPk4PYGH68qoPEapMVbPYip8Ejef8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extended+Kalman+filtering+for+battery+management+systems+of+LiPB-based+HEV+battery+packs.+Part+1.+Background&rft.jtitle=Journal+of+power+sources&rft.au=PLETT%2C+Gregory+L&rft.date=2004-08-12&rft.pub=Elsevier+Sequoia&rft.issn=0378-7753&rft.volume=134&rft.issue=2&rft.spage=252&rft.epage=261&rft_id=info:doi/10.1016%2Fj.jpowsour.2004.02.031&rft.externalDBID=n%2Fa&rft.externalDocID=15988099
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon