Techniques from combinatorial approximation algorithms yield efficient algorithms for random 2k-SAT

We apply techniques from the theory of approximation algorithms to the problem of deciding whether a random k-SAT formula is satisfiable. Let Formn,k,m denote a random k-SAT instance with n variables and m clauses. Using known approximation algorithms for MAX CUT or MIN BISECTION, we show how to cer...

Full description

Saved in:
Bibliographic Details
Published inTheoretical computer science Vol. 329; no. 1-3; pp. 1 - 45
Main Authors Coja-Oghlan, Amin, Goerdt, Andreas, Lanka, André, Schädlich, Frank
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 13.12.2004
Elsevier
Subjects
Online AccessGet full text
ISSN0304-3975
1879-2294
DOI10.1016/j.tcs.2004.07.017

Cover

Abstract We apply techniques from the theory of approximation algorithms to the problem of deciding whether a random k-SAT formula is satisfiable. Let Formn,k,m denote a random k-SAT instance with n variables and m clauses. Using known approximation algorithms for MAX CUT or MIN BISECTION, we show how to certify that Formn,4,m is unsatisfiable efficiently, provided that m⩾Cn2 for a sufficiently large constant C>0. In addition, we present an algorithm based on the Lovász ϑ function that decides within polynomial expected time whether Formn,k,m is satisfiable, provided that k is even and m⩾C·4knk/2. Finally, we present an algorithm that approximates random MAX 2-SAT on input Formn,2,m within a factor of 1-O(n/m)1/2 in expected polynomial time, for m⩾Cn.
AbstractList We apply techniques from the theory of approximation algorithms to the problem of deciding whether a random k-SAT formula is satisfiable. Let Formn,k,m denote a random k-SAT instance with n variables and m clauses. Using known approximation algorithms for MAX CUT or MIN BISECTION, we show how to certify that Formn,4,m is unsatisfiable efficiently, provided that m⩾Cn2 for a sufficiently large constant C>0. In addition, we present an algorithm based on the Lovász ϑ function that decides within polynomial expected time whether Formn,k,m is satisfiable, provided that k is even and m⩾C·4knk/2. Finally, we present an algorithm that approximates random MAX 2-SAT on input Formn,2,m within a factor of 1-O(n/m)1/2 in expected polynomial time, for m⩾Cn.
Author Coja-Oghlan, Amin
Schädlich, Frank
Goerdt, Andreas
Lanka, André
Author_xml – sequence: 1
  givenname: Amin
  surname: Coja-Oghlan
  fullname: Coja-Oghlan, Amin
  email: coja@informatik.hu-berlin.de
  organization: Humboldt-Universität zu Berlin, Institut für Informatik,Unter den Linden 6, 10099 Berlin, Germany
– sequence: 2
  givenname: Andreas
  surname: Goerdt
  fullname: Goerdt, Andreas
  email: goerdt@informatik.tu-chemnitz.de
  organization: Technische Universität Chemnitz, Fakultät für Informatik, Straße der Nationen 62, 09107 Chemnitz, Germany
– sequence: 3
  givenname: André
  surname: Lanka
  fullname: Lanka, André
  email: lanka@informatik.tu-chemnitz.de
  organization: Technische Universität Chemnitz, Fakultät für Informatik, Straße der Nationen 62, 09107 Chemnitz, Germany
– sequence: 4
  givenname: Frank
  surname: Schädlich
  fullname: Schädlich, Frank
  email: frs@informatik.tu-chemnitz.de
  organization: Technische Universität Chemnitz, Fakultät für Informatik, Straße der Nationen 62, 09107 Chemnitz, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16327843$$DView record in Pascal Francis
BookMark eNpNkEtPwzAQhC1UJNrCD-CWC8cEv2LH4lRVvKRKHChny_GDuiRxsAOi_x5X5cBeVtodjWa-BZgNYbAAXCNYIYjY7b6adKowhLSCvIKIn4E5argoMRZ0BuaQQFoSwesLsEhpD_PUnM2B3lq9G_znl02Fi6EvdOhbP6gpRK-6Qo1jDD--V5MPQ6G693yedn0qDt52prDOee3tMP1_uRCLqAaTzfBH-braXoJzp7pkr_72Erw93G_XT-Xm5fF5vdqUFhM-lazVzjREMSt0a3ldI2G4qVvjGIOQO2GQoJgRhLBxmAqnUd2Y2mBCjaMOkiW4OfmOKmnVuRxC-yTHmPPHg0SMYN5QknV3J53NYb69jTIdS2hrfLR6kiZ4iaA8cpV7mbnKI1cJucxcyS_AiXDN
CODEN TCSCDI
ContentType Journal Article
Copyright 2004 Elsevier B.V.
2005 INIST-CNRS
Copyright_xml – notice: 2004 Elsevier B.V.
– notice: 2005 INIST-CNRS
DBID 6I.
AAFTH
IQODW
DOI 10.1016/j.tcs.2004.07.017
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Pascal-Francis
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
Applied Sciences
EISSN 1879-2294
EndPage 45
ExternalDocumentID 16327843
S0304397504004396
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
WH7
YNT
ZMT
~G-
AAQXK
AATTM
AAXKI
AAYWO
ABDPE
ABEFU
ABFNM
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEBSH
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
EFKBS
FGOYB
G-2
GBLVA
IQODW
P-8
R2-
SEW
SSH
TAE
WUQ
XJT
ZY4
ID FETCH-LOGICAL-e237t-6bcfd83a6e9cbe75519d7d5bdf66007f9d194263112df249fc158d5d234df4f03
IEDL.DBID AIKHN
ISSN 0304-3975
IngestDate Mon Jul 21 09:12:22 EDT 2025
Fri Feb 23 02:33:38 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-3
Keywords Random k-SAT
Random MAX 2-SAT
Hypergraph discrepancy
Probabilistic analysis
Hypergraph
Algorithm theory
Random MAX 2 SAT
Computer theory
Random k SAT
Combinatorial algorithm
Approximation algorithm
Polynomial time
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-e237t-6bcfd83a6e9cbe75519d7d5bdf66007f9d194263112df249fc158d5d234df4f03
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0304397504004396
PageCount 45
ParticipantIDs pascalfrancis_primary_16327843
elsevier_sciencedirect_doi_10_1016_j_tcs_2004_07_017
PublicationCentury 2000
PublicationDate 2004-12-13
PublicationDateYYYYMMDD 2004-12-13
PublicationDate_xml – month: 12
  year: 2004
  text: 2004-12-13
  day: 13
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Theoretical computer science
PublicationYear 2004
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Hofri (bib31) 1987
Håstad (bib29) 2001; 48
A. Coja-Oghlan, C. Moore, V. Sanwalani, MAX
U. Feige, E. Ofek, Easily refutable subformulas of large random 3CNF formulas, Proc. 31st ICALP, 2004, to appear (Already published as Report MCS03-17, Weizmann Institute of Science, Rehovot, Israel, 2003).
D. Coppersmith, D. Gamarnik, M. Hajiaghayi, G.B. Sorkin, Random MAX SAT, random MAX CUT, and their phase transitions, Random Struc. Algorithms 24 (2004) 502–545.
SAT threshold, Proc. 43rd FOCS, 2002, pp. 779–788.
CUT and approximating the chromatic number of random graphs, Proc. 30th ICALP, 2003, pp. 200–211.
Papadimitriou (bib37) 1995
ln 2 -
Krivelevich, Sudakov (bib35) 2003; 12
W. Fernandez de la Vega, On random 2-SAT, Manuscript, 1992.
D. Achlioptas, A. Naor, Y. Peres, The fraction of satisfiable clauses in a typical formula, Proc. 44th FOCS, 2003, pp. 362–370.
Krivelevich, Vu (bib36) 2002; 6
J. Friedman, A. Goerdt, M. Krivelevich, Recognizing more unsatisfiable random k-SAT instances efficiently, Preprint (2003) Preliminary versions have appeared in Proc. 18th STACS, 2001, pp. 294–304 and Proc. 28th ICALP, 2001, pp. 310–321.
D. Achlioptas, C. Moore, The asymptotic order of the
SAT is 2
Coja-Oghlan, Taraz (bib12) 2004; 24
Chung (bib7) 1997
Goemans, Williamson (bib23) 1995; 42
Goerdt, Jurdzinski (bib25) 2003; 12
C. Helmberg, Semidefinite programming for combinatorial optimization, Habilitationsschrift, ZIB report 00-34 (2000) (available from
SAT, Proc. 8th RANDOM, 2004, pp. 310–321.
U. Feige, Relations between average case complexity and approximation complexity, Proc. 24th STOC, 2002, pp. 534–543.
Strang (bib38) 1988
Alon, Kahale (bib4) 1997; 26
Kirousis, Kranakis, Krizanc, Stamatiou (bib34) 1998; 12
Friegut (bib21) 1999; 12
Goerdt, Lanka (bib26) 2003; 16
M.T. Hajiaghayi, G.B. Sorkin, The satisfiability threshold of random 3-SAT is at least 3.52, IBM Research Report RC22942, 2003.
D. Achlioptas, Y. Peres, The threshold for random
Goerdt (bib24) 1996; 53
Janson, Łuczak, Ruciński (bib32) 2000
U. Feige, E. Ofek, Spectral techniques applied to sparse random graphs, Report MCS03-01, Weizmann Institute of Science, Rehovot, Israel, 2003.
.
number of random graphs, A preliminary version has appeared in Proc. 7th RANDOM, 2003, pp. 228–239 (To appear in Combinatorics, Probability and Computing).
A. Coja-Oghlan, A. Goerdt, A. Lanka, Strong refutation heuristics for random
Ausiello, Crescenzi, Gambosi, Kann, Marchetti-Spaccamela, Protasi (bib5) 1999
Grötschel, Lovász, Schrijver (bib27) 1988
O. Dubois, Y. Boufkhad, J. Mandler, Typical random 3-SAT formulae and the satisfiability threshold, Proc. 11th SODA, 2000, pp. 126–127.
A. Coja-Oghlan, The Lovász
Feige, Krauthgamer (bib16) 2002; 31
Kaporis, Kirousis, Lalas (bib33) 2003; 16
Proc. 35th STOC, 2003, pp. 223–231.
V. Chvátal, B. Reed, Mick gets some (the odds are on his side), Proc. 33rd FOCS, 1992, pp. 620–627.
E. Ben-Sasson, Expansion in proof complexity, Ph.D. Thesis, Hebrew University, Jerusalem, Israel, 2001.
Füredi, Komloś (bib22) 1981; 1
References_xml – reference: D. Achlioptas, A. Naor, Y. Peres, The fraction of satisfiable clauses in a typical formula, Proc. 44th FOCS, 2003, pp. 362–370.
– volume: 24
  start-page: 259
  year: 2004
  end-page: 278
  ident: bib12
  article-title: Exact and approximative algorithms for coloring
  publication-title: Random Struct. Algorithms
– volume: 12
  start-page: 61
  year: 2003
  end-page: 72
  ident: bib35
  article-title: The largest eigenvalue of sparse random graphs
  publication-title: Combin. Probab. Comput.
– reference: -CUT and approximating the chromatic number of random graphs, Proc. 30th ICALP, 2003, pp. 200–211.
– volume: 12
  start-page: 253
  year: 1998
  end-page: 269
  ident: bib34
  article-title: Approximating the unsatisfiability threshold of random formulas
  publication-title: Random Struct. Algorithms
– volume: 12
  start-page: 245
  year: 2003
  end-page: 267
  ident: bib25
  article-title: Some results on random unsatisfiable 3-SAT instances and approximation algorithms applied to random structures
  publication-title: Combin. Probab. Comput.
– reference: U. Feige, E. Ofek, Easily refutable subformulas of large random 3CNF formulas, Proc. 31st ICALP, 2004, to appear (Already published as Report MCS03-17, Weizmann Institute of Science, Rehovot, Israel, 2003).
– reference: ).
– volume: 12
  start-page: 1017
  year: 1999
  end-page: 1054
  ident: bib21
  article-title: Necessary and sufficient conditions for sharp thresholds of graph properties and the
  publication-title: J. Amer. Math. Soc.
– reference: , Proc. 35th STOC, 2003, pp. 223–231.
– volume: 6
  start-page: 143
  year: 2002
  end-page: 155
  ident: bib36
  article-title: Approximating the independence number and the chromatic number in expected polynomial time
  publication-title: J. Combin. Optimization
– volume: 16
  year: 2003
  ident: bib33
  article-title: Selecting complementary pairs of literals
  publication-title: Electron. Notes in Discrete Math.
– year: 1988
  ident: bib27
  article-title: Geometric algorithms and combinatorial optimization
– volume: 26
  start-page: 1733
  year: 1997
  end-page: 1748
  ident: bib4
  article-title: A spectral technique for coloring random 3-colorable graphs
  publication-title: SIAM J. Comput.
– reference: J. Friedman, A. Goerdt, M. Krivelevich, Recognizing more unsatisfiable random k-SAT instances efficiently, Preprint (2003) Preliminary versions have appeared in Proc. 18th STACS, 2001, pp. 294–304 and Proc. 28th ICALP, 2001, pp. 310–321.
– reference: V. Chvátal, B. Reed, Mick gets some (the odds are on his side), Proc. 33rd FOCS, 1992, pp. 620–627.
– reference: ln 2 -
– reference: D. Coppersmith, D. Gamarnik, M. Hajiaghayi, G.B. Sorkin, Random MAX SAT, random MAX CUT, and their phase transitions, Random Struc. Algorithms 24 (2004) 502–545.
– volume: 48
  start-page: 798
  year: 2001
  end-page: 859
  ident: bib29
  article-title: Some optimal inapproximability results
  publication-title: J. ACM
– reference: U. Feige, E. Ofek, Spectral techniques applied to sparse random graphs, Report MCS03-01, Weizmann Institute of Science, Rehovot, Israel, 2003.
– volume: 31
  start-page: 1090
  year: 2002
  end-page: 1118
  ident: bib16
  article-title: A polylogarithmic approximation of the minimum bisection
  publication-title: SIAM J. Comput.
– reference: E. Ben-Sasson, Expansion in proof complexity, Ph.D. Thesis, Hebrew University, Jerusalem, Israel, 2001.
– reference: A. Coja-Oghlan, C. Moore, V. Sanwalani, MAX
– reference: U. Feige, Relations between average case complexity and approximation complexity, Proc. 24th STOC, 2002, pp. 534–543.
– reference: D. Achlioptas, Y. Peres, The threshold for random
– year: 2000
  ident: bib32
  article-title: Random Graphs
– volume: 53
  start-page: 469
  year: 1996
  end-page: 486
  ident: bib24
  article-title: A threshold for unsatisfiability
  publication-title: J. Comput. Syst. Sci.
– year: 1987
  ident: bib31
  article-title: Probabilistic Analysis of Algorithms
– year: 1988
  ident: bib38
  article-title: Linear Algebra and its Applications
– reference: D. Achlioptas, C. Moore, The asymptotic order of the
– volume: 16
  year: 2003
  ident: bib26
  article-title: Recognizing more random unsatisfiable 3-SAT instances efficiently
  publication-title: Electron. Notes Discrete Math.
– reference: O. Dubois, Y. Boufkhad, J. Mandler, Typical random 3-SAT formulae and the satisfiability threshold, Proc. 11th SODA, 2000, pp. 126–127.
– year: 1997
  ident: bib7
  article-title: Spectral Graph Theory
– volume: 42
  start-page: 1115
  year: 1995
  end-page: 1145
  ident: bib23
  article-title: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
  publication-title: J. ACM
– reference: -SAT is 2
– reference: number of random graphs, A preliminary version has appeared in Proc. 7th RANDOM, 2003, pp. 228–239 (To appear in Combinatorics, Probability and Computing).
– reference: A. Coja-Oghlan, A. Goerdt, A. Lanka, Strong refutation heuristics for random
– year: 1995
  ident: bib37
  article-title: Computational Complexity
– reference: M.T. Hajiaghayi, G.B. Sorkin, The satisfiability threshold of random 3-SAT is at least 3.52, IBM Research Report RC22942, 2003.
– reference: C. Helmberg, Semidefinite programming for combinatorial optimization, Habilitationsschrift, ZIB report 00-34 (2000) (available from
– reference: A. Coja-Oghlan, The Lovász
– volume: 1
  start-page: 233
  year: 1981
  end-page: 241
  ident: bib22
  article-title: The eigenvalues of random symmetric matrices
  publication-title: Combinatorica
– reference: -SAT threshold, Proc. 43rd FOCS, 2002, pp. 779–788.
– reference: W. Fernandez de la Vega, On random 2-SAT, Manuscript, 1992.
– year: 1999
  ident: bib5
  article-title: Complexity and approximation—combinatorial optimization problems and their approximability properties
– reference: -SAT, Proc. 8th RANDOM, 2004, pp. 310–321.
SSID ssj0000576
Score 1.8240455
Snippet We apply techniques from the theory of approximation algorithms to the problem of deciding whether a random k-SAT formula is satisfiable. Let Formn,k,m denote...
SourceID pascalfrancis
elsevier
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Algorithmics. Computability. Computer arithmetics
Applied sciences
Combinatorics
Combinatorics. Ordered structures
Computer science; control theory; systems
Exact sciences and technology
Graph theory
Hypergraph discrepancy
Mathematics
Probabilistic analysis
Random k-SAT
Random MAX 2-SAT
Sciences and techniques of general use
Theoretical computing
Title Techniques from combinatorial approximation algorithms yield efficient algorithms for random 2k-SAT
URI https://dx.doi.org/10.1016/j.tcs.2004.07.017
Volume 329
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 20211012
  omitProxy: true
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: ACRLP
  dateStart: 19950109
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 20211012
  omitProxy: true
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AIKHN
  dateStart: 19950109
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Free & Delayed Access Titles
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 20211102
  omitProxy: true
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: IXB
  dateStart: 19750601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2294
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AKRWK
  dateStart: 19750601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ7wuGiMD9SID7IHrxXabh97RCIBDVyAhFuz3YfiA4mtiV787c72IXD12G262U6nM99kZr4BuI657QmmY6vDlbSoCLTFFeqyzV1FmWH41qY5eTT2BzN6P_fmFeiVvTCmrLKw_blNz6x1sdIupNleLRbtiUnqoTf1MjV0mV-FOvqfMKxBvTt8GIzXBtkL8pSlSQLgA2VyMyvzSkVG2k0zCs9sbNnaJ-2teIKS0vmIiw2_0z-E_QIwkm5-piOoqGUDDsphDKT4NxuwO_ojYE2OQUxLbtaEmA4Sgu-HMbCJsFHhSMYk_rXI2xYJf33E5fTpLSHfpqCNqIxXAt3R5i1EtwSPKHEz58WadKcnMOvfTXsDq5inYCnHDVLLj4WWoct9xUSsAsRKTAbSi6X2DUu9ZtJmhr8dIZjUGJZpYXuh9KTjUqmp7rinUFu-L9UZEAeRgwhDzgWPKeMs1qHhhpMh1Sai8ppASzFGW58zQksdlZVlzxFK3wzCpFEniFD6TWhtiTxa5ZQbEaJGkyF1z_-37wXslASNtnsJtfTjU10hmEjjFlRvfuxWoTJ4NZzf_gJPiMz4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYGHAAhHgPEc-TAtWxt00eO08Q0YNuFIXGL0jxgPMbEigQXfjtO2jJ25ZpWUeq49mfZ_gxwngk_ksxkXkto5VGZGE9o1GVfhJoyy_BtbHPyYBj37uj1fXRfg07VC2PLKkvbX9h0Z63LlWYpzeZ0PG7e2qQeetPIqWHI4iVYoVGQ2Ajs4nte54GApEhY2hQAvl6lNl2RVy4dZTd1BJ5uaNncI21MxQzlZIoBF3-8TncbNku4SNrFiXagpid12KpGMZDyz6zD-uCXfnW2C3JUMbPOiO0fIfh1GAHb-BrVjTge8c9x0bRIxMsDLuePrzPyZcvZiHasEuiM_j5CbEvwiAo3C5692_ZoD-66l6NOzyunKXg6CJPcizNpVBqKWDOZ6QSRElOJijJlYstRb5jymWVvRwCmDAZlRvpRqiIVhFQZalrhPixP3ib6AEiAuEGmqRBSZJQJlpnUMsOplBobT0WHQCsx8oXL5GineVVX9sRR-nYMJuWthKP0D6GxIHI-LQg3OGJGmx8Nj_637xms9kaDPu9fDW-OYa2iavTDE1jO3z_0KcKKPGs4tfkBNgzMvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Techniques+from+combinatorial+approximation+algorithms+yield+efficient+algorithms+for+random+2k-SAT&rft.jtitle=Theoretical+computer+science&rft.au=Coja-Oghlan%2C+Amin&rft.au=Goerdt%2C+Andreas&rft.au=Lanka%2C+Andr%C3%A9&rft.au=Sch%C3%A4dlich%2C+Frank&rft.date=2004-12-13&rft.pub=Elsevier+B.V&rft.issn=0304-3975&rft.eissn=1879-2294&rft.volume=329&rft.issue=1-3&rft.spage=1&rft.epage=45&rft_id=info:doi/10.1016%2Fj.tcs.2004.07.017&rft.externalDocID=S0304397504004396
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon