Data-driven prognostics for Lithium-ion battery health monitoring
Li-ion batteries are a popular choice of rechargeable battery for use in many applications like portable electronics, automobiles as well as stationary applications for providing uninterruptable power supply. State of Charge (SoC) and State of Health (SoH) are important metrics of a Li-ion battery t...
Saved in:
| Published in | Computer Aided Chemical Engineering Vol. 50; pp. 487 - 492 |
|---|---|
| Main Authors | , , |
| Format | Book Chapter |
| Language | English |
| Published |
2021
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 0323885063 9780323885065 |
| ISSN | 1570-7946 |
| DOI | 10.1016/B978-0-323-88506-5.50077-2 |
Cover
| Abstract | Li-ion batteries are a popular choice of rechargeable battery for use in many applications like portable electronics, automobiles as well as stationary applications for providing uninterruptable power supply. State of Charge (SoC) and State of Health (SoH) are important metrics of a Li-ion battery that can help in both battery prognostics and diagnostics for ensuring high reliability and prolonged lifetime. The ML algorithms available in the literature for SoC and SoH prediction involves use of various derived features rather than directly measurable features making it difficult for industrial applications. In this work, we use battery data obtained from different batteries to develop supervised models that can be used for the on-line estimation of SoC and SoH. This work involves two parts: a) developing a classifier based on SoH b) dynamic prediction of battery SoC given the past operational data of current, voltage, and temperature of the battery which are easily measurable. Random forest algorithm is used for battery site classification based on the SoH data available from the manufacturer. The battery SoC estimation is performed using a random forest algorithm and Neural network-based NARX model. |
|---|---|
| AbstractList | Li-ion batteries are a popular choice of rechargeable battery for use in many applications like portable electronics, automobiles as well as stationary applications for providing uninterruptable power supply. State of Charge (SoC) and State of Health (SoH) are important metrics of a Li-ion battery that can help in both battery prognostics and diagnostics for ensuring high reliability and prolonged lifetime. The ML algorithms available in the literature for SoC and SoH prediction involves use of various derived features rather than directly measurable features making it difficult for industrial applications. In this work, we use battery data obtained from different batteries to develop supervised models that can be used for the on-line estimation of SoC and SoH. This work involves two parts: a) developing a classifier based on SoH b) dynamic prediction of battery SoC given the past operational data of current, voltage, and temperature of the battery which are easily measurable. Random forest algorithm is used for battery site classification based on the SoH data available from the manufacturer. The battery SoC estimation is performed using a random forest algorithm and Neural network-based NARX model. |
| Author | Rengaswamy, Raghunathan Suresh, Resmi Sukanya, G. |
| Author_xml | – sequence: 1 givenname: G. surname: Sukanya fullname: Sukanya, G. organization: Dept. of Chemical Engineering, IIT Madras, 600036, India – sequence: 2 givenname: Resmi surname: Suresh fullname: Suresh, Resmi email: resmis@iitg.ac.in organization: Dept. of Chemical Engineering, IITGuwahati, 781039, India – sequence: 3 givenname: Raghunathan surname: Rengaswamy fullname: Rengaswamy, Raghunathan email: raghur@iitm.ac.in organization: Dept. of Chemical Engineering, IIT Madras, 600036, India |
| BookMark | eNotkE1LAzEQhgNWsK39D4v31Jkk-3WsrVZhwYueQ3aTtIE2kWws-O9NVy8z8BzeeedZkJkP3hDygLBGwOrxqa0bCpQzTpumhIqW6xKgrim7IQvIeKJ8RuZY1kDrVlR3ZDWOrgdsK2ybFuZks1NJUR3dxfjiK4aDD2Nyw1jYEIvOpaP7PlMXfNGrlEz8KY5GndKxOAfvUojOH-7JrVWn0az-95J8vjx_bF9p975_2246apBjopYz2-tcGbEHxbWCxgqBFgde2tzPcGQW82NaVFxkCoqJwTYVCpEn40uy-8s1-cjFmSjHwRk_GO2iGZLUwUkEeVUjr2okyOxAThJkKSc1kvFfvLZZqw |
| ContentType | Book Chapter |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DOI | 10.1016/B978-0-323-88506-5.50077-2 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| EndPage | 492 |
| ExternalDocumentID | B9780323885065500772 |
| GroupedDBID | AABBV ALMA_UNASSIGNED_HOLDINGS BBABE |
| ID | FETCH-LOGICAL-e131t-f32fbd97811b0a3da08f441f1c35f570e312f1101d46341c30a24cf86144f8623 |
| IEDL.DBID | HGY |
| ISBN | 0323885063 9780323885065 |
| ISSN | 1570-7946 |
| IngestDate | Sat Sep 20 17:13:44 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Keywords | Random forest SoH NARX SoC Li-ion battery prognostics |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-e131t-f32fbd97811b0a3da08f441f1c35f570e312f1101d46341c30a24cf86144f8623 |
| PageCount | 6 |
| ParticipantIDs | elsevier_sciencedirect_doi_10_1016_B978_0_323_88506_5_50077_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2021 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Computer Aided Chemical Engineering |
| PublicationYear | 2021 |
| SSID | ssib019619890 ssib056837919 ssib045041620 ssib045323371 ssib044949081 |
| Score | 1.6259037 |
| Snippet | Li-ion batteries are a popular choice of rechargeable battery for use in many applications like portable electronics, automobiles as well as stationary... |
| SourceID | elsevier |
| SourceType | Publisher |
| StartPage | 487 |
| SubjectTerms | Li-ion battery prognostics NARX Random forest SoC SoH |
| Title | Data-driven prognostics for Lithium-ion battery health monitoring |
| URI | https://dx.doi.org/10.1016/B978-0-323-88506-5.50077-2 |
| Volume | 50 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqTogFBIi3PLCa-p1kYOBVKgRMVCqT5cS2yNAUVenAv-fsJrTMLBkSJbHPp---c-6-IHRVcYhbuWUkz0tIUIrKEVsFSjLlpXas5FTFbuTXNz2ZyueZmg3QuO-FiWWVHfavMT2hdXdm1Flz9FXXo7uonSMg4kTNNeDZFHgiQLGQItX3PX30bgU-FguDft1SRkEWumm3lIoCK9mwJqngqVsqcUpDElekX4QwlcE0CqnTd9_u3aLT8fkdS69tynQaZBSw5YKka0Rdp5ESvhX8tgLaeA_txiYHHLsPwLD7aOCbA3T7YFtL3DICII6FW80iqThjILb4pW4_69WcwDriMolyfuN1EyWeJ1yIG4SHaDp-fL-fkO4XC8QzwVoSBA-li7pXrKRWOEvzAAQpsEqoAJP1gvEADIE5qSHeVYJaLquQxzQSjlwcoWGzaPwxwkVe-SxYmTlBZSmFpcC8vCu8LDTkdfoE3fQTNn9W2AB4m77YLBrMUAMGM8lgRplkMMNP_3n_GdrhsR4lbZ-co2G7XPkLIBRteZnc5QcAjLbZ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGUAsIEC8ycBq6meaDAy8SoG2UyuVyXISW3Roi6p04N9z5yalzCwZEiWxL6e775z7PhNykwvIW4nlNEkyKFDSvKA294y2tVNxwTPBNLKR-4O4O1JvYz1ukE7NhcG2yir2r2J6iNbVmVZlzdbXZNJ6QO0cCRkHNdcAZzPAiVtkG1m6uJNB9-Wj9itwMuwMWvulQkUW9su3VJoBLPmFTUrDYzdk4nQMVVwa9gjhug3zSFUcfvxWL5eVkM96MLW4KY_DKFHBVkgarlF9G4ZKxUb228honX2yhyyHCOkHYNkD0nCzQ3L_ZEtLiwVGwAg7t2bzIOMcAbKNepPyc7KcUviQURZUOb-jFYsymobAgCuER2TUeR4-dmm1xwJ1XPKSeil8VqDwFc-YlYVliQeE5HkutYfJOsmFB4jACxVDwssls0LlPsE6Eo5CHpPmbD5zJyRKk9y1vVXtQjKVKWkZQC9XpE6lMRR28Sm5qyds_nxiA9Hb1N1maDDDDBjMBIMZbYLBjDj75_3XZKc77PdM73Xwfk52BTanhLWUC9IsF0t3CeiizK6C6_wATem59w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computer+Aided+Chemical+Engineering&rft.au=Sukanya%2C+G.&rft.au=Suresh%2C+Resmi&rft.au=Rengaswamy%2C+Raghunathan&rft.atitle=Data-driven+prognostics+for+Lithium-ion+battery+health+monitoring&rft.date=2021-01-01&rft.isbn=9780323885065&rft.issn=1570-7946&rft.volume=50&rft.spage=487&rft.epage=492&rft_id=info:doi/10.1016%2FB978-0-323-88506-5.50077-2&rft.externalDocID=B9780323885065500772 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-7946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-7946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-7946&client=summon |