Data-driven prognostics for Lithium-ion battery health monitoring

Li-ion batteries are a popular choice of rechargeable battery for use in many applications like portable electronics, automobiles as well as stationary applications for providing uninterruptable power supply. State of Charge (SoC) and State of Health (SoH) are important metrics of a Li-ion battery t...

Full description

Saved in:
Bibliographic Details
Published inComputer Aided Chemical Engineering Vol. 50; pp. 487 - 492
Main Authors Sukanya, G., Suresh, Resmi, Rengaswamy, Raghunathan
Format Book Chapter
LanguageEnglish
Published 2021
Subjects
Online AccessGet full text
ISBN0323885063
9780323885065
ISSN1570-7946
DOI10.1016/B978-0-323-88506-5.50077-2

Cover

Abstract Li-ion batteries are a popular choice of rechargeable battery for use in many applications like portable electronics, automobiles as well as stationary applications for providing uninterruptable power supply. State of Charge (SoC) and State of Health (SoH) are important metrics of a Li-ion battery that can help in both battery prognostics and diagnostics for ensuring high reliability and prolonged lifetime. The ML algorithms available in the literature for SoC and SoH prediction involves use of various derived features rather than directly measurable features making it difficult for industrial applications. In this work, we use battery data obtained from different batteries to develop supervised models that can be used for the on-line estimation of SoC and SoH. This work involves two parts: a) developing a classifier based on SoH b) dynamic prediction of battery SoC given the past operational data of current, voltage, and temperature of the battery which are easily measurable. Random forest algorithm is used for battery site classification based on the SoH data available from the manufacturer. The battery SoC estimation is performed using a random forest algorithm and Neural network-based NARX model.
AbstractList Li-ion batteries are a popular choice of rechargeable battery for use in many applications like portable electronics, automobiles as well as stationary applications for providing uninterruptable power supply. State of Charge (SoC) and State of Health (SoH) are important metrics of a Li-ion battery that can help in both battery prognostics and diagnostics for ensuring high reliability and prolonged lifetime. The ML algorithms available in the literature for SoC and SoH prediction involves use of various derived features rather than directly measurable features making it difficult for industrial applications. In this work, we use battery data obtained from different batteries to develop supervised models that can be used for the on-line estimation of SoC and SoH. This work involves two parts: a) developing a classifier based on SoH b) dynamic prediction of battery SoC given the past operational data of current, voltage, and temperature of the battery which are easily measurable. Random forest algorithm is used for battery site classification based on the SoH data available from the manufacturer. The battery SoC estimation is performed using a random forest algorithm and Neural network-based NARX model.
Author Rengaswamy, Raghunathan
Suresh, Resmi
Sukanya, G.
Author_xml – sequence: 1
  givenname: G.
  surname: Sukanya
  fullname: Sukanya, G.
  organization: Dept. of Chemical Engineering, IIT Madras, 600036, India
– sequence: 2
  givenname: Resmi
  surname: Suresh
  fullname: Suresh, Resmi
  email: resmis@iitg.ac.in
  organization: Dept. of Chemical Engineering, IITGuwahati, 781039, India
– sequence: 3
  givenname: Raghunathan
  surname: Rengaswamy
  fullname: Rengaswamy, Raghunathan
  email: raghur@iitm.ac.in
  organization: Dept. of Chemical Engineering, IIT Madras, 600036, India
BookMark eNotkE1LAzEQhgNWsK39D4v31Jkk-3WsrVZhwYueQ3aTtIE2kWws-O9NVy8z8BzeeedZkJkP3hDygLBGwOrxqa0bCpQzTpumhIqW6xKgrim7IQvIeKJ8RuZY1kDrVlR3ZDWOrgdsK2ybFuZks1NJUR3dxfjiK4aDD2Nyw1jYEIvOpaP7PlMXfNGrlEz8KY5GndKxOAfvUojOH-7JrVWn0az-95J8vjx_bF9p975_2246apBjopYz2-tcGbEHxbWCxgqBFgde2tzPcGQW82NaVFxkCoqJwTYVCpEn40uy-8s1-cjFmSjHwRk_GO2iGZLUwUkEeVUjr2okyOxAThJkKSc1kvFfvLZZqw
ContentType Book Chapter
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DOI 10.1016/B978-0-323-88506-5.50077-2
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EndPage 492
ExternalDocumentID B9780323885065500772
GroupedDBID AABBV
ALMA_UNASSIGNED_HOLDINGS
BBABE
ID FETCH-LOGICAL-e131t-f32fbd97811b0a3da08f441f1c35f570e312f1101d46341c30a24cf86144f8623
IEDL.DBID HGY
ISBN 0323885063
9780323885065
ISSN 1570-7946
IngestDate Sat Sep 20 17:13:44 EDT 2025
IsPeerReviewed false
IsScholarly false
Keywords Random forest
SoH
NARX
SoC
Li-ion battery prognostics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-e131t-f32fbd97811b0a3da08f441f1c35f570e312f1101d46341c30a24cf86144f8623
PageCount 6
ParticipantIDs elsevier_sciencedirect_doi_10_1016_B978_0_323_88506_5_50077_2
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationTitle Computer Aided Chemical Engineering
PublicationYear 2021
SSID ssib019619890
ssib056837919
ssib045041620
ssib045323371
ssib044949081
Score 1.6259037
Snippet Li-ion batteries are a popular choice of rechargeable battery for use in many applications like portable electronics, automobiles as well as stationary...
SourceID elsevier
SourceType Publisher
StartPage 487
SubjectTerms Li-ion battery prognostics
NARX
Random forest
SoC
SoH
Title Data-driven prognostics for Lithium-ion battery health monitoring
URI https://dx.doi.org/10.1016/B978-0-323-88506-5.50077-2
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqTogFBIi3PLCa-p1kYOBVKgRMVCqT5cS2yNAUVenAv-fsJrTMLBkSJbHPp---c-6-IHRVcYhbuWUkz0tIUIrKEVsFSjLlpXas5FTFbuTXNz2ZyueZmg3QuO-FiWWVHfavMT2hdXdm1Flz9FXXo7uonSMg4kTNNeDZFHgiQLGQItX3PX30bgU-FguDft1SRkEWumm3lIoCK9mwJqngqVsqcUpDElekX4QwlcE0CqnTd9_u3aLT8fkdS69tynQaZBSw5YKka0Rdp5ESvhX8tgLaeA_txiYHHLsPwLD7aOCbA3T7YFtL3DICII6FW80iqThjILb4pW4_69WcwDriMolyfuN1EyWeJ1yIG4SHaDp-fL-fkO4XC8QzwVoSBA-li7pXrKRWOEvzAAQpsEqoAJP1gvEADIE5qSHeVYJaLquQxzQSjlwcoWGzaPwxwkVe-SxYmTlBZSmFpcC8vCu8LDTkdfoE3fQTNn9W2AB4m77YLBrMUAMGM8lgRplkMMNP_3n_GdrhsR4lbZ-co2G7XPkLIBRteZnc5QcAjLbZ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGUAsIEC8ycBq6meaDAy8SoG2UyuVyXISW3Roi6p04N9z5yalzCwZEiWxL6e775z7PhNykwvIW4nlNEkyKFDSvKA294y2tVNxwTPBNLKR-4O4O1JvYz1ukE7NhcG2yir2r2J6iNbVmVZlzdbXZNJ6QO0cCRkHNdcAZzPAiVtkG1m6uJNB9-Wj9itwMuwMWvulQkUW9su3VJoBLPmFTUrDYzdk4nQMVVwa9gjhug3zSFUcfvxWL5eVkM96MLW4KY_DKFHBVkgarlF9G4ZKxUb228honX2yhyyHCOkHYNkD0nCzQ3L_ZEtLiwVGwAg7t2bzIOMcAbKNepPyc7KcUviQURZUOb-jFYsymobAgCuER2TUeR4-dmm1xwJ1XPKSeil8VqDwFc-YlYVliQeE5HkutYfJOsmFB4jACxVDwssls0LlPsE6Eo5CHpPmbD5zJyRKk9y1vVXtQjKVKWkZQC9XpE6lMRR28Sm5qyds_nxiA9Hb1N1maDDDDBjMBIMZbYLBjDj75_3XZKc77PdM73Xwfk52BTanhLWUC9IsF0t3CeiizK6C6_wATem59w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computer+Aided+Chemical+Engineering&rft.au=Sukanya%2C+G.&rft.au=Suresh%2C+Resmi&rft.au=Rengaswamy%2C+Raghunathan&rft.atitle=Data-driven+prognostics+for+Lithium-ion+battery+health+monitoring&rft.date=2021-01-01&rft.isbn=9780323885065&rft.issn=1570-7946&rft.volume=50&rft.spage=487&rft.epage=492&rft_id=info:doi/10.1016%2FB978-0-323-88506-5.50077-2&rft.externalDocID=B9780323885065500772
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-7946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-7946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-7946&client=summon