Detecting novel fault conditions with hidden Markov models and neural networks

This chapter presents the detection of novel fault conditions with hidden Markov models and neural. Fault detection and isolation for the antennas is often a complicated and lengthy process because of the fact that it can be difficult to establish the root cause of a problem in the communications ch...

Full description

Saved in:
Bibliographic Details
Published inMachine Intelligence and Pattern Recognition Vol. 16; pp. 525 - 536
Main Author Smyth, Padhraic
Format Book Chapter
LanguageEnglish
Published 1994
Online AccessGet full text
ISBN9780444818928
0444818928
ISSN0923-0459
DOI10.1016/B978-0-444-81892-8.50050-X

Cover

Abstract This chapter presents the detection of novel fault conditions with hidden Markov models and neural. Fault detection and isolation for the antennas is often a complicated and lengthy process because of the fact that it can be difficult to establish the root cause of a problem in the communications chain. Loss of a spacecraft signal during a planetary encounter can result in the irretrievable loss of scientific data. Hence, there is considerable motivation to be able to quickly detect and isolate anomalous conditions. Similar scenarios occur in other applications, such as industrial plant process monitoring, biomedical health monitoring, and on-board vehicle fault diagnosis. A key point in the Markov monitoring approach is that the transition probabilities are not estimated from the data but rather are chosen a priori based on the long-term temporal characteristics of the system and prior knowledge concerning the system failure modes. In speech modelling, estimation algorithms are used to estimate the probabilities through maximum likelihood methods directly from data.
AbstractList This chapter presents the detection of novel fault conditions with hidden Markov models and neural. Fault detection and isolation for the antennas is often a complicated and lengthy process because of the fact that it can be difficult to establish the root cause of a problem in the communications chain. Loss of a spacecraft signal during a planetary encounter can result in the irretrievable loss of scientific data. Hence, there is considerable motivation to be able to quickly detect and isolate anomalous conditions. Similar scenarios occur in other applications, such as industrial plant process monitoring, biomedical health monitoring, and on-board vehicle fault diagnosis. A key point in the Markov monitoring approach is that the transition probabilities are not estimated from the data but rather are chosen a priori based on the long-term temporal characteristics of the system and prior knowledge concerning the system failure modes. In speech modelling, estimation algorithms are used to estimate the probabilities through maximum likelihood methods directly from data.
Author Smyth, Padhraic
Author_xml – sequence: 1
  givenname: Padhraic
  surname: Smyth
  fullname: Smyth, Padhraic
  organization: Jet Propulsion Laboratory 238-420, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
BookMark eNotkMtOwzAURC0BEqX0Hyz2LtdO7NhLaHlJBTZddGc58Q01DbaUuO3vkxZWszjSaObckMuYIhJyx2HOgav7R1NpBqwsS6a5NoLpuQSQwDYXZDYyGMkZ6EsyASMKBqU012Q2DN8AwIWquBET8rHEjE0O8YvGdMCOtm7fZdqk6EMOKQ70GPKWboP3GOm763fpQH-Sx26gLnoacd-7box8TP1uuCVXresGnP3nlKyfn9aLV7b6fHlbPKwYcmEy41hXlStqBU41CrkrWyF0K7lEqdDXRVHLtiwbaSqloW3RcwlaGN8UqGpTTMnyr3acgYeAvR2agLFBH_rxjfUpWA72ZMqeTFmwow97FmK1PZuym-IXD9dgCQ
ContentType Book Chapter
Copyright 1994 Elsevier B.V.
Copyright_xml – notice: 1994 Elsevier B.V.
DOI 10.1016/B978-0-444-81892-8.50050-X
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 536
ExternalDocumentID B978044481892850050X
GroupedDBID 0R~
5GY
71M
AAXUO
AAZNM
ABGWT
ABLXK
ABMAC
ABQQC
ACGFS
ACHHS
ACXMD
AFTJW
AGAMA
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AVWMD
AZFZN
CS3
FDB
HZ~
INJ
IOW
O9-
SDK
SES
ID FETCH-LOGICAL-e129t-1eb77a3b60a6c6e1a4f228f515e56edb33b5f44c597680ffed150829dc3e6b93
IEDL.DBID HGY
ISBN 9780444818928
0444818928
ISSN 0923-0459
IngestDate Fri Feb 23 02:39:08 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-e129t-1eb77a3b60a6c6e1a4f228f515e56edb33b5f44c597680ffed150829dc3e6b93
PageCount 12
ParticipantIDs elsevier_sciencedirect_doi_10_1016_B978_0_444_81892_8_50050_X
PublicationCentury 1900
PublicationDate 1994
PublicationDateYYYYMMDD 1994-01-01
PublicationDate_xml – year: 1994
  text: 1994
PublicationDecade 1990
PublicationTitle Machine Intelligence and Pattern Recognition
PublicationYear 1994
SSID ssj0001267192
ssj0058917
Score 1.2089368
Snippet This chapter presents the detection of novel fault conditions with hidden Markov models and neural. Fault detection and isolation for the antennas is often a...
SourceID elsevier
SourceType Publisher
StartPage 525
Title Detecting novel fault conditions with hidden Markov models and neural networks
URI https://dx.doi.org/10.1016/B978-0-444-81892-8.50050-X
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b4MwELaiTlWHvtW3PHR1A9j4MXTpI40qNVMq0ckycFYjRaRqSH5_zw5U6VwWBBZY-oC783Hfd4TccgPgvQsNTZRiwoBk2knOuBQet8wpE8jJbxM5fhevRV4MyKjnwoSyys72b2x6tNbdmWGH5vBrNhs-RO0cXF2k2mQ6D0ImBZpiLnis73v52Eq1SJWaX1Wp0EcvsqgxtmEY0ZhIVO9v1Ivy9Me9UGkq44wsYTjE4hjTd3FaVmx5si3vNDoge4GxQAOVAFE6JANojsh-36-Bdp_vMZk8QfhlgM6KNos1zKl3q3lLcUVcbwq3aMjK0s-gKtLQwOJZrGlslbOkrqlp0L50c9zFyvHlCZmOnqePY9b1U2CAXr1lKZRKOV7KxMlKQuqEzzLtMaKBXEJdcl7mXogK1xhSJ95DHcTiM1NXHGRp-CnZaRYNnBGqPWAcU7q8lqWotdIVGMXzqoYUROL4Obnv8bB_nqZFQ237wrKAp00s4mkjnlbbiKctLv55_SXZ3Wgeh1TJFdlpv1dwjcFDW97EV-MH7su4yQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGUAMvMUbD6ymSZw49sDCoxRoOxUpTJaTnEWlKkX08fvxuQkqM1mixEosfUnuzpf7viPkhisAaw02NElTFisQTBrBGRexdVtkUoXk5MFQ9N7j1yzJWqTbcGGwrLK2_Sub7q11faZTo9n5Go879147x60uQqkimaCQSbZBNpGli50Mes8fa7kWkYbqV1YKG-l5GrULbpgLaZRnqjd3alR5muNGqTQUfkoWMDfE_BiTt35elq25sjX31N0jO0hZoMglcDDtkxZUB2S3adhA6-_3kAwfAf8ZOG9Fq-kSJtSaxWRO3ZK4XFVuUUzL0k-UFako0nimS-p75cyoqUqK4pdm4na-dHx2REbdp9FDj9UNFRg4tz5nIeRpanguAiMKAaGJbRRJ60IaSASUOed5YuO4cIsMIQNroUS1-EiVBQeRK35M2tW0ghNCpQUXyOQmKUUelzKVBaiUJ0UJIcSB4afkrsFD_3mc2llq3VSWIZ460A5P7fHUUns8dXb2z-uvyVZvNOjr_svw7ZxsrwSQMW9yQdrz7wVcukhinl_51-QHTw275w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Intelligence+and+Pattern+Recognition&rft.au=Smyth%2C+Padhraic&rft.atitle=Detecting+novel+fault+conditions+with+hidden+Markov+models+and+neural+networks&rft.date=1994-01-01&rft.isbn=9780444818928&rft.issn=0923-0459&rft.volume=16&rft.spage=525&rft.epage=536&rft_id=info:doi/10.1016%2FB978-0-444-81892-8.50050-X&rft.externalDocID=B978044481892850050X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0923-0459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0923-0459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0923-0459&client=summon