Fuzzy Cellular Neural Networks and Their Applications to Image Processing

This chapter discusses the theory of fuzzy cellular neural networks (FCNN) and their applications to image processing. The concepts of FCNN are reasonable extensions of CNN from classical set to fuzzy set. The principles of FCNN are based on uncertainties in human cognitive processes and in modeling...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Imaging and Electron Physics Vol. 109; pp. 265 - 446
Main Author Yang, Tao
Format Book Chapter
LanguageEnglish
Published Elsevier Science & Technology 1999
Online AccessGet full text
ISBN9780120147519
0120147513
ISSN1076-5670
DOI10.1016/S1076-5670(08)70199-X

Cover

Abstract This chapter discusses the theory of fuzzy cellular neural networks (FCNN) and their applications to image processing. The concepts of FCNN are reasonable extensions of CNN from classical set to fuzzy set. The principles of FCNN are based on uncertainties in human cognitive processes and in modeling neural systems. The chapter focuses on some simple cases in which only fuzzy logical OR and fuzzy logical AND are integrated. On the other hand, MAX and MIN are the simplest fuzzy union and intersection operations that can be implemented by using VLSI technologies. The structure of FCNN is a tradeoff between very large-scale integration (VLSI) implementation and general function. For the purpose of VLSI implementation, the FCNN proposed integrates the fuzzifier, the defuzzifier, and the fuzzy inference engine into a planar structure. The nonlinear dynamics of the conventional CNN are kept in FCNN structure. The chapter provides structures of type-I and type-I1 FCNNs. In a type-I FCNN, there exist fuzzy synaptic weights. The relation between a fuzzy feedback synaptic weight and an output is defined by the membership function. The relation between a fuzzy feedforward synaptic weight and an input is defined by the membership function. The inputs and outputs are crisp variables in a type-I FCNN. In a type-I1 FCNN, all synaptic weights are crisp. Inputs and outputs are supposed to be fuzzy.
AbstractList This chapter discusses the theory of fuzzy cellular neural networks (FCNN) and their applications to image processing. The concepts of FCNN are reasonable extensions of CNN from classical set to fuzzy set. The principles of FCNN are based on uncertainties in human cognitive processes and in modeling neural systems. The chapter focuses on some simple cases in which only fuzzy logical OR and fuzzy logical AND are integrated. On the other hand, MAX and MIN are the simplest fuzzy union and intersection operations that can be implemented by using VLSI technologies. The structure of FCNN is a tradeoff between very large-scale integration (VLSI) implementation and general function. For the purpose of VLSI implementation, the FCNN proposed integrates the fuzzifier, the defuzzifier, and the fuzzy inference engine into a planar structure. The nonlinear dynamics of the conventional CNN are kept in FCNN structure. The chapter provides structures of type-I and type-I1 FCNNs. In a type-I FCNN, there exist fuzzy synaptic weights. The relation between a fuzzy feedback synaptic weight and an output is defined by the membership function. The relation between a fuzzy feedforward synaptic weight and an input is defined by the membership function. The inputs and outputs are crisp variables in a type-I FCNN. In a type-I1 FCNN, all synaptic weights are crisp. Inputs and outputs are supposed to be fuzzy.
Author Yang, Tao
Author_xml – sequence: 1
  givenname: Tao
  surname: Yang
  fullname: Yang, Tao
  organization: Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA 94720. USA
BookMark eNo9kMFKAzEQhgNWsNY-gpCjHlaT3e4kOUkpVgtFBSv0FmazszW67pZkq9int63if_kO_zDDfKes17QNMXYuxZUUEq6fpVCQ5KDEhdCXSkhjkuURGxqlhUyFHKlcmh7r_4-dsGGMb2Ifo5XI-2w23Wy333xCdb2pMfAH2gSsd-i-2vAeOTYlX7ySD3y8XtfeYefbJvKu5bMPXBF_Cq2jGH2zOmPHFdaRhn8csJfp7WJyn8wf72aT8TwhmUKXpIUpFBQGoII0y1KCYkQaslxjJRF2HeYV5RJM6bBEhRrBoSPCalSR1tmA3fzupd2RT0_BRuepcVT6QK6zZeutFHYvyB4E2f3nVmh7EGSX2Q_Y-lxu
ContentType Book Chapter
Copyright 1999 Academic Press
Copyright_xml – notice: 1999 Academic Press
DOI 10.1016/S1076-5670(08)70199-X
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EndPage 446
ExternalDocumentID S107656700870199X
GroupedDBID -~X
.GJ
0R~
23M
5GY
8NE
8NF
AAXUO
AAYSV
ABGWT
ABLXK
ABMAC
ABQQC
ACGFS
ACXMD
ADOJD
AFFNX
AFTJW
AGAMA
AI.
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
FDB
G8K
HZ~
MVM
NEJ
O9-
SDK
SES
UDS
UPT
VH1
WH7
XOL
~1A
ID FETCH-LOGICAL-e126t-2b9b76b966f62332e6b4e86358af1a6b76a5fe5169dcada7a8a6caceeaf4fe883
IEDL.DBID HGY
ISBN 9780120147519
0120147513
ISSN 1076-5670
IngestDate Fri Feb 23 02:32:54 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-e126t-2b9b76b966f62332e6b4e86358af1a6b76a5fe5169dcada7a8a6caceeaf4fe883
PageCount 182
ParticipantIDs elsevier_sciencedirect_doi_10_1016_S1076_5670_08_70199_X
PublicationCentury 1900
PublicationDate 1999
PublicationDateYYYYMMDD 1999-01-01
PublicationDate_xml – year: 1999
  text: 1999
PublicationDecade 1990
PublicationTitle Advances in Imaging and Electron Physics
PublicationYear 1999
Publisher Elsevier Science & Technology
Publisher_xml – name: Elsevier Science & Technology
SSID ssj0000098705
ssj0055068
Score 1.2424028
Snippet This chapter discusses the theory of fuzzy cellular neural networks (FCNN) and their applications to image processing. The concepts of FCNN are reasonable...
SourceID elsevier
SourceType Publisher
StartPage 265
Title Fuzzy Cellular Neural Networks and Their Applications to Image Processing
URI https://dx.doi.org/10.1016/S1076-5670(08)70199-X
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jIKgXnYq_ycGDHsLWNk3SowznJujFDeqpvGQpDGY3XHdwf70vaTfr1VPpj9fA1_Lel7z3vhByZ7i2GGgsA5VIxo0KWCJ1zkCEEGltbKWz_fomhhP-ksZpi_S3vTCurLL2_ZVP9966vtKt0ewuZ7PuO05ckIxIJ6qGPCVJ0Q9HPPLFfc8fu3UWJ5gpeztKjIS8bo-TgjlrL7ODUZBLvwmhV-TZnie_LT_VcN7ivqce_IgsbUSwRlQaHJFD16lAXQsBonNMWrbokIOGwmCH7PkKT7M6IaPBerP5pn07n7vKU-pUOWCOB18GvqJQTOnYZQ3oYyOnTcsFHX2iz6F1RwG-9ZRMBk_j_pDV-ygwG4SiZKFOtBQaJzY5kp0otEJzq5BpKMgDEHgP4ty6hNnUwBQkKBAGMHpCznOrVHRG2sWisOeECiNVrIQSggsOIT4VW6MiCy67KgJ7QdQWkOzPZ8zQQ2e7ijKHZeawzHoq81hm6eX_Ta_IfqWm4FZGrkm7_FrbG-QKpb71P8MPnS6zzA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKEeKxQAHxxgMDDFabxLGdEVWUFNoutFKYLDt1pEolRTQd6K_n7KSlrExRYl8sXaK7s---7xC6S6k24GgMUSLihKbCIxHXGVHMV4HWqSl5tvsDFo_oSxImNdReYWFsWWVl-0ub7qx19aRZabP5OZk032DjAsEIt6RqEKdEyRbathBd28Ygfn5fH7RYxkzeWsfEMKPCx3FGrLjj2QE3SLnrQugoeVb30S_mp1zPSdy3xINbkiQbLmzDLXUO0YGFKmCLIQD1HKGayRtof4NisIF2XIlnOj9G3c5iufzGbTOd2tJTbGk51BQurg58jlU-xkObNsCPG0ltXMxw9wOMDq4gBfDWEzTqPA3bMakaKRDj-awgvo40Zxp2NhlEO4FvmKZGQKghVOYpBmMqzIzNmI1TNVZcCcVSBe5TZTQzQgSnqJ7PcnOGMEu5CAUTjFFGlQ-zQpOKwCibXmWeOUdipRD55ztKMNFyXVJmdSmtLmVLSKdLmVz8X_QW7cbDfk_2uoPXS7RXUivYY5IrVC--FuYaAodC37gf4we9_7bq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Imaging+and+Electron+Physics&rft.au=Yang%2C+Tao&rft.atitle=Fuzzy+Cellular+Neural+Networks+and+Their+Applications+to+Image+Processing&rft.date=1999-01-01&rft.pub=Elsevier+Science+%26+Technology&rft.isbn=9780120147519&rft.issn=1076-5670&rft.volume=109&rft.spage=265&rft.epage=446&rft_id=info:doi/10.1016%2FS1076-5670%2808%2970199-X&rft.externalDocID=S107656700870199X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-5670&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-5670&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-5670&client=summon