Iterative thresholding algorithm based on non-convex method for modified lp-norm regularization minimization

Recently, the lp-norm regularization minimization problem (Ppλ) has attracted great attention in compressed sensing. However, the lp-norm ‖x‖pp in problem (Ppλ) is nonconvex and non-Lipschitz for all p∈(0,1), and there are not many optimization theories and methods proposed to solve this problem. In...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and applied mathematics Vol. 347; pp. 173 - 180
Main Authors Cui, Angang, Peng, Jigen, Li, Haiyang, Wen, Meng, Jia, Junxiong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2019
Subjects
Online AccessGet full text
ISSN0377-0427
1879-1778
DOI10.1016/j.cam.2018.08.021

Cover

Abstract Recently, the lp-norm regularization minimization problem (Ppλ) has attracted great attention in compressed sensing. However, the lp-norm ‖x‖pp in problem (Ppλ) is nonconvex and non-Lipschitz for all p∈(0,1), and there are not many optimization theories and methods proposed to solve this problem. In fact, it is NP-hard for all p∈(0,1) andλ>0. In this paper, we study one modified lp-norm regularization minimization problem to approximate the NP-hard problem (Ppλ). Inspired by the good performance of Half algorithm in some sparse signal recovery problems, an iterative thresholding algorithm is proposed to solve our modified lp-norm regularization minimization problem (Pp,1∕2,ϵλ). Numerical results on some sparse signal recovery problems show that our algorithm performs effectively in finding the sparse signals compared with some state-of-art methods.
AbstractList Recently, the lp-norm regularization minimization problem (Ppλ) has attracted great attention in compressed sensing. However, the lp-norm ‖x‖pp in problem (Ppλ) is nonconvex and non-Lipschitz for all p∈(0,1), and there are not many optimization theories and methods proposed to solve this problem. In fact, it is NP-hard for all p∈(0,1) andλ>0. In this paper, we study one modified lp-norm regularization minimization problem to approximate the NP-hard problem (Ppλ). Inspired by the good performance of Half algorithm in some sparse signal recovery problems, an iterative thresholding algorithm is proposed to solve our modified lp-norm regularization minimization problem (Pp,1∕2,ϵλ). Numerical results on some sparse signal recovery problems show that our algorithm performs effectively in finding the sparse signals compared with some state-of-art methods.
Author Jia, Junxiong
Cui, Angang
Li, Haiyang
Peng, Jigen
Wen, Meng
Author_xml – sequence: 1
  givenname: Angang
  surname: Cui
  fullname: Cui, Angang
  email: cuiangang@163.com
  organization: School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049, China
– sequence: 2
  givenname: Jigen
  surname: Peng
  fullname: Peng, Jigen
  email: jgpengxjtu@126.com
  organization: School of Mathematics and Information Science, Guangzhou University, Guangzhou, 510006, China
– sequence: 3
  givenname: Haiyang
  surname: Li
  fullname: Li, Haiyang
  email: fplihaiyang@126.com
  organization: School of Mathematics and Information Science, Guangzhou University, Guangzhou, 510006, China
– sequence: 4
  givenname: Meng
  surname: Wen
  fullname: Wen, Meng
  email: wen5495688@163.com
  organization: School of Science, Xi’an Polytechnic University, Xi’an, 710048, China
– sequence: 5
  givenname: Junxiong
  surname: Jia
  fullname: Jia, Junxiong
  email: jjx323@xjtu.edu.cn
  organization: School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049, China
BookMark eNotkM1qwzAQhEVJoUnaB-hNLyBXKzuWTE8l9CcQ6KU9C9laxwq2VGQ1lD59FRoYWBZ2Z5hvRRY-eCTkHngBHOqHY9GZqRAcVMGzBFyRJSjZMJBSLciSl1IyXgl5Q1bzfOSc1w1USzLuEkaT3AlpGiLOQxit8wdqxkOILg0Tbc2MlgZPcyLrgj_hD50wDcHSPkQ6Bet6ly_GL-ZDnGjEw_doovvNrvlrct5Nl-WWXPdmnPHuMtfk8-X5Y_vG9u-vu-3TniEIkVijSqzrZlO1pTWyrkE0reoRcaNUb9vGWqzQgCp5DZ2wlcQqd2klF52yQkK5Jo__vphDTg6jnjuHvkPrInZJ2-A0cH0Gp486g9NncJpnCSj_ADhcZ4c
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DOI 10.1016/j.cam.2018.08.021
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
EndPage 180
ExternalDocumentID S0377042718304989
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
NHB
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
WUQ
XPP
YQT
ZMT
ZY4
~02
~G-
ID FETCH-LOGICAL-e122t-983e66954b3da766129b8feee588fdb9dde4ea183061c2d47e4914b702c8d2713
IEDL.DBID .~1
ISSN 0377-0427
IngestDate Fri Feb 23 02:31:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 49M20
lp-norm
65K10
1∕2−ϵ algorithm
90C26
Compressed sensing
Modified lp-norm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-e122t-983e66954b3da766129b8feee588fdb9dde4ea183061c2d47e4914b702c8d2713
PageCount 8
ParticipantIDs elsevier_sciencedirect_doi_10_1016_j_cam_2018_08_021
PublicationCentury 2000
PublicationDate February 2019
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Peng, Xiu, Yu (b14) 2017; 67
Goldstein, Osher (b10) 2009; 2
Chen, Xu, Ye (b4) 2010; 32
Yin, Osher, Goldfarb, Darbon (b11) 2008; 1
Chen, Ge, Wang, Ye (b1) 2014; 143
Yang, Zhang (b12) 2011; 33
Foucart, Rauhut (b13) 2010
Chen, Niu, Yuan (b5) 2013; 23
Cao, Sun, Xu (b3) 2013; 24
Daubechies, Defrise, Mol (b8) 2004; 57
Xu, Chang, Xu, Zhang (b2) 2012; 24
W. Zuo, D. Meng, L. Zhang, X. Feng, D. Zhang, A generalized iterated shrinkage algorithm for non-convex sparse coding, in: 2013 IEEE International Conference on Computer Vision, 2013, pp. 217–224.
Blumensath, Davies (b7) 2008; 14
Donoho (b9) 1995; 41
References_xml – volume: 23
  start-page: 1528
  year: 2013
  end-page: 1552
  ident: b5
  article-title: Optimality conditions and a smoothing trust region newton method for nonlipschitz optimization
  publication-title: SIAM J. Optim.
– volume: 67
  start-page: 543
  year: 2017
  end-page: 569
  ident: b14
  article-title: S1/2 regularization methods and fixed point algorithms for affine rank minimization problems
  publication-title: Comput. Optim. Appl.
– volume: 14
  start-page: 629
  year: 2008
  end-page: 654
  ident: b7
  article-title: Iterative thresholding for sparse approximations
  publication-title: J. Fourier Anal. Appl.
– volume: 41
  start-page: 613
  year: 1995
  end-page: 627
  ident: b9
  article-title: Denoising by soft-thresholding
  publication-title: IEEE Trans. Inform. Theory
– volume: 32
  start-page: 2832
  year: 2010
  end-page: 2852
  ident: b4
  article-title: Lower bound theory of nonzero entries in solutions of
  publication-title: SIAM J. Sci. Comput.
– volume: 143
  start-page: 371
  year: 2014
  end-page: 383
  ident: b1
  article-title: Complexity of unconstrained
  publication-title: Math. Program.
– reference: W. Zuo, D. Meng, L. Zhang, X. Feng, D. Zhang, A generalized iterated shrinkage algorithm for non-convex sparse coding, in: 2013 IEEE International Conference on Computer Vision, 2013, pp. 217–224.
– volume: 57
  start-page: 1413
  year: 2004
  end-page: 1457
  ident: b8
  article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
  publication-title: Comm. Pure Appl. Math.
– volume: 1
  start-page: 143
  year: 2008
  end-page: 168
  ident: b11
  article-title: Bregman iterative algorithms for
  publication-title: SIAM J. Imaging Sci.
– volume: 33
  start-page: 250
  year: 2011
  end-page: 278
  ident: b12
  article-title: Alternating direction algorithms for
  publication-title: SIAM J. Sci. Comput.
– volume: 24
  start-page: 1013
  year: 2012
  end-page: 1027
  ident: b2
  article-title: L1/2 Regularization: A thresholding representation theory and a fast solver
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2010
  ident: b13
  article-title: A Mathematical Introduction to Compressive Sensing
– volume: 2
  start-page: 323
  year: 2009
  end-page: 343
  ident: b10
  article-title: The split Bregman method for L1-regularized problems
  publication-title: SIAM J. Imaging Sci.
– volume: 24
  start-page: 31
  year: 2013
  end-page: 41
  ident: b3
  article-title: Fast image deconvolution using closed-form thresholding formulas of
  publication-title: J. Vis. Commun. Image Represent.
SSID ssj0006914
Score 2.336997
Snippet Recently, the lp-norm regularization minimization problem (Ppλ) has attracted great attention in compressed sensing. However, the lp-norm ‖x‖pp in problem...
SourceID elsevier
SourceType Publisher
StartPage 173
SubjectTerms [formula omitted] algorithm
[formula omitted]-norm
Compressed sensing
Modified [formula omitted]-norm
Title Iterative thresholding algorithm based on non-convex method for modified lp-norm regularization minimization
URI https://dx.doi.org/10.1016/j.cam.2018.08.021
Volume 347
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20211015
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: ACRLP
  dateStart: 19950220
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20211101
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: IXB
  dateStart: 19750301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20211015
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: AIKHN
  dateStart: 19950220
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: AKRWK
  dateStart: 19750301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpn5YHVNI5dP8ZSUbVU7QBUdIsSx4GivtQGiYnfztlJCqxMkR-RrO-iu3Pu7juEbqhSKdXSkCBILOHSaBLDXYiIBFaYMdb4XxfDkeiN-cOkNamhTlUL49IqS91f6HSvrcuZZolmczWdNp8CJqXrFAEfJbi5yhXxcS5dF4Pbr580D6ELfm_YTNzuKrLpc7xM7IrRqfIsno4udGuQfhmZ7gHaL71D3C4OcIhqdnGE9oZbatXNMZr1PQ8yKCmcgxw2ZfgIx7PXJVz03-bYGaYULxcYbvbEZ5V_4qJRNAYPFc-X6TQDxxPPVmQBHite-3b067IgEzuykXk5OEHj7v1zp0fKlgnE0jDMiVbMCqFbPGFpLMH2hjpRmbW2pVSWJhqUGbexQ0xQE6ZcWg74JDIIjUoBSnaK6nA4e4YwFQnTIN-YGRcAznSWZXEaCJAetczIc8QrsKI_EotAGUdV8th7BBhHDuPItbsM6cX_XrtEuzDSRb70Farn6w97De5AnjS8vBtop90f9EbuOXh8GcBsf3L3Dbx0uos
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RRvPLCaJrHjx4gqqhbaLrRStyh-BIr6UhskJn475yQtsDImdiTrO-seubvvELoLpbShEoYEgXaECaNICrEQ4RpWqDHOFL8uen3eHrKnUTyqoea6F8aXVVa6v9Tphbau3jQqNBuL8bjxElAh_KQIuJTg5kq1hbZZHAkfgd1__dR5cFUSfMNu4revU5tFkZdJfTd6KAsaT88XurFIv6xM6wDtV-4hfihPcIhqbnaE9nobbtXVMZp0CiJk0FI4B0GsqvwRTievc4j036bYWyaL5zMMoT0pyso_cTkpGoOLiqdzO87A88STBZmBy4qXxTz6ZdWRiT3byLR6OEHD1uOg2SbVzATiwijKiZLUca5ipqlNBRjfSGmZOediKTOrFWgz5lIPGQ9NZJlwDPDRIoiMtIAlPUV1OJw7QzjkmioQcEqNzwBnKsuy1AYcxBc6asQ5Ymuwkj8iS0AbJ-vqsfcEME48xomfdxmFF__77BbttAe9btLt9J8v0S6sqLJ4-grV8-WHuwbfINc3hey_ASdcuXk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+thresholding+algorithm+based+on+non-convex+method+for+modified+lp-norm+regularization+minimization&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Cui%2C+Angang&rft.au=Peng%2C+Jigen&rft.au=Li%2C+Haiyang&rft.au=Wen%2C+Meng&rft.date=2019-02-01&rft.pub=Elsevier+B.V&rft.issn=0377-0427&rft.eissn=1879-1778&rft.volume=347&rft.spage=173&rft.epage=180&rft_id=info:doi/10.1016%2Fj.cam.2018.08.021&rft.externalDocID=S0377042718304989
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon