Iterative thresholding algorithm based on non-convex method for modified lp-norm regularization minimization
Recently, the lp-norm regularization minimization problem (Ppλ) has attracted great attention in compressed sensing. However, the lp-norm ‖x‖pp in problem (Ppλ) is nonconvex and non-Lipschitz for all p∈(0,1), and there are not many optimization theories and methods proposed to solve this problem. In...
Saved in:
| Published in | Journal of computational and applied mathematics Vol. 347; pp. 173 - 180 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.02.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0377-0427 1879-1778 |
| DOI | 10.1016/j.cam.2018.08.021 |
Cover
| Abstract | Recently, the lp-norm regularization minimization problem (Ppλ) has attracted great attention in compressed sensing. However, the lp-norm ‖x‖pp in problem (Ppλ) is nonconvex and non-Lipschitz for all p∈(0,1), and there are not many optimization theories and methods proposed to solve this problem. In fact, it is NP-hard for all p∈(0,1) andλ>0. In this paper, we study one modified lp-norm regularization minimization problem to approximate the NP-hard problem (Ppλ). Inspired by the good performance of Half algorithm in some sparse signal recovery problems, an iterative thresholding algorithm is proposed to solve our modified lp-norm regularization minimization problem (Pp,1∕2,ϵλ). Numerical results on some sparse signal recovery problems show that our algorithm performs effectively in finding the sparse signals compared with some state-of-art methods. |
|---|---|
| AbstractList | Recently, the lp-norm regularization minimization problem (Ppλ) has attracted great attention in compressed sensing. However, the lp-norm ‖x‖pp in problem (Ppλ) is nonconvex and non-Lipschitz for all p∈(0,1), and there are not many optimization theories and methods proposed to solve this problem. In fact, it is NP-hard for all p∈(0,1) andλ>0. In this paper, we study one modified lp-norm regularization minimization problem to approximate the NP-hard problem (Ppλ). Inspired by the good performance of Half algorithm in some sparse signal recovery problems, an iterative thresholding algorithm is proposed to solve our modified lp-norm regularization minimization problem (Pp,1∕2,ϵλ). Numerical results on some sparse signal recovery problems show that our algorithm performs effectively in finding the sparse signals compared with some state-of-art methods. |
| Author | Jia, Junxiong Cui, Angang Li, Haiyang Peng, Jigen Wen, Meng |
| Author_xml | – sequence: 1 givenname: Angang surname: Cui fullname: Cui, Angang email: cuiangang@163.com organization: School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049, China – sequence: 2 givenname: Jigen surname: Peng fullname: Peng, Jigen email: jgpengxjtu@126.com organization: School of Mathematics and Information Science, Guangzhou University, Guangzhou, 510006, China – sequence: 3 givenname: Haiyang surname: Li fullname: Li, Haiyang email: fplihaiyang@126.com organization: School of Mathematics and Information Science, Guangzhou University, Guangzhou, 510006, China – sequence: 4 givenname: Meng surname: Wen fullname: Wen, Meng email: wen5495688@163.com organization: School of Science, Xi’an Polytechnic University, Xi’an, 710048, China – sequence: 5 givenname: Junxiong surname: Jia fullname: Jia, Junxiong email: jjx323@xjtu.edu.cn organization: School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049, China |
| BookMark | eNotkM1qwzAQhEVJoUnaB-hNLyBXKzuWTE8l9CcQ6KU9C9laxwq2VGQ1lD59FRoYWBZ2Z5hvRRY-eCTkHngBHOqHY9GZqRAcVMGzBFyRJSjZMJBSLciSl1IyXgl5Q1bzfOSc1w1USzLuEkaT3AlpGiLOQxit8wdqxkOILg0Tbc2MlgZPcyLrgj_hD50wDcHSPkQ6Bet6ly_GL-ZDnGjEw_doovvNrvlrct5Nl-WWXPdmnPHuMtfk8-X5Y_vG9u-vu-3TniEIkVijSqzrZlO1pTWyrkE0reoRcaNUb9vGWqzQgCp5DZ2wlcQqd2klF52yQkK5Jo__vphDTg6jnjuHvkPrInZJ2-A0cH0Gp486g9NncJpnCSj_ADhcZ4c |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. |
| Copyright_xml | – notice: 2018 Elsevier B.V. |
| DOI | 10.1016/j.cam.2018.08.021 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1879-1778 |
| EndPage | 180 |
| ExternalDocumentID | S0377042718304989 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABTAH ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A NCXOZ NHB O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 UPT WUQ XPP YQT ZMT ZY4 ~02 ~G- |
| ID | FETCH-LOGICAL-e122t-983e66954b3da766129b8feee588fdb9dde4ea183061c2d47e4914b702c8d2713 |
| IEDL.DBID | .~1 |
| ISSN | 0377-0427 |
| IngestDate | Fri Feb 23 02:31:36 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | 49M20 lp-norm 65K10 1∕2−ϵ algorithm 90C26 Compressed sensing Modified lp-norm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-e122t-983e66954b3da766129b8feee588fdb9dde4ea183061c2d47e4914b702c8d2713 |
| PageCount | 8 |
| ParticipantIDs | elsevier_sciencedirect_doi_10_1016_j_cam_2018_08_021 |
| PublicationCentury | 2000 |
| PublicationDate | February 2019 |
| PublicationDateYYYYMMDD | 2019-02-01 |
| PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of computational and applied mathematics |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Peng, Xiu, Yu (b14) 2017; 67 Goldstein, Osher (b10) 2009; 2 Chen, Xu, Ye (b4) 2010; 32 Yin, Osher, Goldfarb, Darbon (b11) 2008; 1 Chen, Ge, Wang, Ye (b1) 2014; 143 Yang, Zhang (b12) 2011; 33 Foucart, Rauhut (b13) 2010 Chen, Niu, Yuan (b5) 2013; 23 Cao, Sun, Xu (b3) 2013; 24 Daubechies, Defrise, Mol (b8) 2004; 57 Xu, Chang, Xu, Zhang (b2) 2012; 24 W. Zuo, D. Meng, L. Zhang, X. Feng, D. Zhang, A generalized iterated shrinkage algorithm for non-convex sparse coding, in: 2013 IEEE International Conference on Computer Vision, 2013, pp. 217–224. Blumensath, Davies (b7) 2008; 14 Donoho (b9) 1995; 41 |
| References_xml | – volume: 23 start-page: 1528 year: 2013 end-page: 1552 ident: b5 article-title: Optimality conditions and a smoothing trust region newton method for nonlipschitz optimization publication-title: SIAM J. Optim. – volume: 67 start-page: 543 year: 2017 end-page: 569 ident: b14 article-title: S1/2 regularization methods and fixed point algorithms for affine rank minimization problems publication-title: Comput. Optim. Appl. – volume: 14 start-page: 629 year: 2008 end-page: 654 ident: b7 article-title: Iterative thresholding for sparse approximations publication-title: J. Fourier Anal. Appl. – volume: 41 start-page: 613 year: 1995 end-page: 627 ident: b9 article-title: Denoising by soft-thresholding publication-title: IEEE Trans. Inform. Theory – volume: 32 start-page: 2832 year: 2010 end-page: 2852 ident: b4 article-title: Lower bound theory of nonzero entries in solutions of publication-title: SIAM J. Sci. Comput. – volume: 143 start-page: 371 year: 2014 end-page: 383 ident: b1 article-title: Complexity of unconstrained publication-title: Math. Program. – reference: W. Zuo, D. Meng, L. Zhang, X. Feng, D. Zhang, A generalized iterated shrinkage algorithm for non-convex sparse coding, in: 2013 IEEE International Conference on Computer Vision, 2013, pp. 217–224. – volume: 57 start-page: 1413 year: 2004 end-page: 1457 ident: b8 article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint publication-title: Comm. Pure Appl. Math. – volume: 1 start-page: 143 year: 2008 end-page: 168 ident: b11 article-title: Bregman iterative algorithms for publication-title: SIAM J. Imaging Sci. – volume: 33 start-page: 250 year: 2011 end-page: 278 ident: b12 article-title: Alternating direction algorithms for publication-title: SIAM J. Sci. Comput. – volume: 24 start-page: 1013 year: 2012 end-page: 1027 ident: b2 article-title: L1/2 Regularization: A thresholding representation theory and a fast solver publication-title: IEEE Trans. Neural Netw. Learn. Syst. – year: 2010 ident: b13 article-title: A Mathematical Introduction to Compressive Sensing – volume: 2 start-page: 323 year: 2009 end-page: 343 ident: b10 article-title: The split Bregman method for L1-regularized problems publication-title: SIAM J. Imaging Sci. – volume: 24 start-page: 31 year: 2013 end-page: 41 ident: b3 article-title: Fast image deconvolution using closed-form thresholding formulas of publication-title: J. Vis. Commun. Image Represent. |
| SSID | ssj0006914 |
| Score | 2.336997 |
| Snippet | Recently, the lp-norm regularization minimization problem (Ppλ) has attracted great attention in compressed sensing. However, the lp-norm ‖x‖pp in problem... |
| SourceID | elsevier |
| SourceType | Publisher |
| StartPage | 173 |
| SubjectTerms | [formula omitted] algorithm [formula omitted]-norm Compressed sensing Modified [formula omitted]-norm |
| Title | Iterative thresholding algorithm based on non-convex method for modified lp-norm regularization minimization |
| URI | https://dx.doi.org/10.1016/j.cam.2018.08.021 |
| Volume | 347 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-1778 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-1778 dateEnd: 20211015 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: ACRLP dateStart: 19950220 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-1778 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1879-1778 dateEnd: 20211101 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: IXB dateStart: 19750301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-1778 dateEnd: 20211015 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: AIKHN dateStart: 19950220 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-1778 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: AKRWK dateStart: 19750301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpn5YHVNI5dP8ZSUbVU7QBUdIsSx4GivtQGiYnfztlJCqxMkR-RrO-iu3Pu7juEbqhSKdXSkCBILOHSaBLDXYiIBFaYMdb4XxfDkeiN-cOkNamhTlUL49IqS91f6HSvrcuZZolmczWdNp8CJqXrFAEfJbi5yhXxcS5dF4Pbr580D6ELfm_YTNzuKrLpc7xM7IrRqfIsno4udGuQfhmZ7gHaL71D3C4OcIhqdnGE9oZbatXNMZr1PQ8yKCmcgxw2ZfgIx7PXJVz03-bYGaYULxcYbvbEZ5V_4qJRNAYPFc-X6TQDxxPPVmQBHite-3b067IgEzuykXk5OEHj7v1zp0fKlgnE0jDMiVbMCqFbPGFpLMH2hjpRmbW2pVSWJhqUGbexQ0xQE6ZcWg74JDIIjUoBSnaK6nA4e4YwFQnTIN-YGRcAznSWZXEaCJAetczIc8QrsKI_EotAGUdV8th7BBhHDuPItbsM6cX_XrtEuzDSRb70Farn6w97De5AnjS8vBtop90f9EbuOXh8GcBsf3L3Dbx0uos |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RRvPLCaJrHjx4gqqhbaLrRStyh-BIr6UhskJn475yQtsDImdiTrO-seubvvELoLpbShEoYEgXaECaNICrEQ4RpWqDHOFL8uen3eHrKnUTyqoea6F8aXVVa6v9Tphbau3jQqNBuL8bjxElAh_KQIuJTg5kq1hbZZHAkfgd1__dR5cFUSfMNu4revU5tFkZdJfTd6KAsaT88XurFIv6xM6wDtV-4hfihPcIhqbnaE9nobbtXVMZp0CiJk0FI4B0GsqvwRTievc4j036bYWyaL5zMMoT0pyso_cTkpGoOLiqdzO87A88STBZmBy4qXxTz6ZdWRiT3byLR6OEHD1uOg2SbVzATiwijKiZLUca5ipqlNBRjfSGmZOediKTOrFWgz5lIPGQ9NZJlwDPDRIoiMtIAlPUV1OJw7QzjkmioQcEqNzwBnKsuy1AYcxBc6asQ5Ymuwkj8iS0AbJ-vqsfcEME48xomfdxmFF__77BbttAe9btLt9J8v0S6sqLJ4-grV8-WHuwbfINc3hey_ASdcuXk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+thresholding+algorithm+based+on+non-convex+method+for+modified+lp-norm+regularization+minimization&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Cui%2C+Angang&rft.au=Peng%2C+Jigen&rft.au=Li%2C+Haiyang&rft.au=Wen%2C+Meng&rft.date=2019-02-01&rft.pub=Elsevier+B.V&rft.issn=0377-0427&rft.eissn=1879-1778&rft.volume=347&rft.spage=173&rft.epage=180&rft_id=info:doi/10.1016%2Fj.cam.2018.08.021&rft.externalDocID=S0377042718304989 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon |