Key factors influencing clinical pregnancy rates in frozen-thawed single euploid embryo transfers: an artificial intelligence-based approach

AbstractResearch questionCan artificial intelligence (AI) models accurately predict variables that affect clinical pregnancy rates in single-euploid embryo transfer cycles? DesignThis retrospective cohort study was conducted at Sisli Memorial Hospital, Assisted Reproductive Technology (ART), and Rep...

Full description

Saved in:
Bibliographic Details
Published inReproductive biomedicine online p. 104860
Main Authors Ozer, Gonul, Duzguner, Ipek, Ozmen, Sevinc, Akca, Aysu, Bakir, Lale, Ozkara, Gulcin, Yelke, Hakan, Colakoglu, Yesim Kumtepe, Aygun, Tutku Melis, Cetinkaya, Murat, Deniz, Eylem, Pehlivanli, Ayca Cakmak, Kahraman, Semra
Format Journal Article
LanguageEnglish
Published 2025
Subjects
Online AccessGet full text
ISSN1472-6483
DOI10.1016/j.rbmo.2025.104860

Cover

Abstract AbstractResearch questionCan artificial intelligence (AI) models accurately predict variables that affect clinical pregnancy rates in single-euploid embryo transfer cycles? DesignThis retrospective cohort study was conducted at Sisli Memorial Hospital, Assisted Reproductive Technology (ART), and Reproductive Genetics Centre between October 2011 and February 2023. It involved 4300 frozen-thawed single euploid embryo transfer cycles. Twenty-six variables, including clinical, demographic, and embryological characteristics, were investigated, which may affect clinical pregnancy outcomes in single euploid embryo transfers. This dataset was evaluated using various machine learning (ML) methods, including AdaBoost, Random Forest, XGBoost, LightGBM, and ExtraTree. Model performance and comparative effectiveness were assessed using 5-fold cross-validation, F1-score, recall, and the area under the receiver operating characteristic curve (AUROC). Furthermore, the SHapley Additive exPlanations (SHAP) values were used to analyse the direction and magnitude of the factors influencing clinical pregnancy. ResultsUsing various ML algorithms, seven key factors influencing clinical pregnancy rates were identified based on their level of importance. These factors included the number of previous cycles, anti-Müllerian hormone (AMH) levels, endometrial thickness, post-thaw embryo grade, maternal age, number of frozen embryos, and endometrial preparation method. XGBoost demonstrated promising performance in predicting clinical pregnancy, achieving a sensitivity of approximately 0.74 and a specificity of 0.70. Additionally, the AUROC value of 0.78 further highlighted the superiority of the XGBoost algorithm compared to the other methods ConclusionML algorithms have successfully identified factors influencing clinical pregnancy in euploid embryo transfer cycles. Understanding these factors could potentially assist physicians in optimising in vitro fertilisation (IVF) treatments and customising patient treatment regimens.
AbstractList AbstractResearch questionCan artificial intelligence (AI) models accurately predict variables that affect clinical pregnancy rates in single-euploid embryo transfer cycles? DesignThis retrospective cohort study was conducted at Sisli Memorial Hospital, Assisted Reproductive Technology (ART), and Reproductive Genetics Centre between October 2011 and February 2023. It involved 4300 frozen-thawed single euploid embryo transfer cycles. Twenty-six variables, including clinical, demographic, and embryological characteristics, were investigated, which may affect clinical pregnancy outcomes in single euploid embryo transfers. This dataset was evaluated using various machine learning (ML) methods, including AdaBoost, Random Forest, XGBoost, LightGBM, and ExtraTree. Model performance and comparative effectiveness were assessed using 5-fold cross-validation, F1-score, recall, and the area under the receiver operating characteristic curve (AUROC). Furthermore, the SHapley Additive exPlanations (SHAP) values were used to analyse the direction and magnitude of the factors influencing clinical pregnancy. ResultsUsing various ML algorithms, seven key factors influencing clinical pregnancy rates were identified based on their level of importance. These factors included the number of previous cycles, anti-Müllerian hormone (AMH) levels, endometrial thickness, post-thaw embryo grade, maternal age, number of frozen embryos, and endometrial preparation method. XGBoost demonstrated promising performance in predicting clinical pregnancy, achieving a sensitivity of approximately 0.74 and a specificity of 0.70. Additionally, the AUROC value of 0.78 further highlighted the superiority of the XGBoost algorithm compared to the other methods ConclusionML algorithms have successfully identified factors influencing clinical pregnancy in euploid embryo transfer cycles. Understanding these factors could potentially assist physicians in optimising in vitro fertilisation (IVF) treatments and customising patient treatment regimens.
Author Deniz, Eylem
Ozmen, Sevinc
Colakoglu, Yesim Kumtepe
Yelke, Hakan
Duzguner, Ipek
Kahraman, Semra
Aygun, Tutku Melis
Cetinkaya, Murat
Ozer, Gonul
Bakir, Lale
Ozkara, Gulcin
Akca, Aysu
Pehlivanli, Ayca Cakmak
Author_xml – sequence: 1
  fullname: Ozer, Gonul
– sequence: 2
  fullname: Duzguner, Ipek
– sequence: 3
  fullname: Ozmen, Sevinc
– sequence: 4
  fullname: Akca, Aysu
– sequence: 5
  fullname: Bakir, Lale
– sequence: 6
  fullname: Ozkara, Gulcin
– sequence: 7
  fullname: Yelke, Hakan
– sequence: 8
  fullname: Colakoglu, Yesim Kumtepe
– sequence: 9
  fullname: Aygun, Tutku Melis
– sequence: 10
  fullname: Cetinkaya, Murat
– sequence: 11
  fullname: Deniz, Eylem
– sequence: 12
  fullname: Pehlivanli, Ayca Cakmak
– sequence: 13
  fullname: Kahraman, Semra
BookMark eNo1kE1OwzAQhb0oEm3hAqx8gRTbiR2HBRKq-BOVWADraOKMWxfXiewUVM7AoUkFrEZ6evo-zZuRSegCEnLB2YIzri63i9jsuoVgQo5BoRWbkCkvSpGpQuenZJbSljGumc6n5PsJD9SCGbqYqAvW7zEYF9bUeBecAU_7iOsAwRxohAGPJWpj94UhGzbwiS1NY90jxX3vO9dS3DXx0NEhQkgWY7qiECjEwVln3MhzYUDv3Xr0YNZAGgnQ97EDszkjJxZ8wvO_Oydvd7evy4ds9Xz_uLxZZciZZpm02Eiuq1xZIyBHLdtKc6tba7VtG15Wti0rKYVSWkhgIBUUpYXCGuDGqHxOrn-5OEo-HMb6_9t3PGDadvsYRn_N6yRqVr8cxztuJyRjTJVl_gP0b3M2
ContentType Journal Article
DOI 10.1016/j.rbmo.2025.104860
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EndPage 104860
ExternalDocumentID 1_s2_0_S1472648325000677
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1P~
1~.
1~5
29P
36B
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABBQC
ABDBF
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACRPL
ACUHS
ADBBV
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEVXI
AFCTW
AFJKZ
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJRQY
AJUYK
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
B0M
BKOJK
BLXMC
BNPGV
DU5
EAP
EBS
EFJIC
EJD
EMB
EMK
EMOBN
ESX
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
KOM
M41
ML~
MO0
O-L
O9-
OAUVE
OQ.
OZT
P-8
P-9
P2P
PC.
PH~
Q38
R2-
ROL
SDF
SEL
SES
SJN
SPCBC
SSH
SSZ
SV3
T5K
TUS
XH2
Z5R
~8M
~G-
ID FETCH-LOGICAL-e1080-5feb518936fc2a3e85d981f8dff8fdb179fd7955266825a0a56a47fa4fca1cc63
ISSN 1472-6483
IngestDate Fri Mar 14 01:52:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Euploid embryo
Clinic pregnancy rate
Artificial intelligence
Machine Learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-e1080-5feb518936fc2a3e85d981f8dff8fdb179fd7955266825a0a56a47fa4fca1cc63
OpenAccessLink https://www.clinicalkey.es/playcontent/1-s2.0-S1472648325000677
PageCount 1
ParticipantIDs elsevier_clinicalkeyesjournals_1_s2_0_S1472648325000677
PublicationCentury 2000
PublicationDate 2025
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle Reproductive biomedicine online
PublicationYear 2025
SSID ssj0018083
Score 2.4291635
Snippet AbstractResearch questionCan artificial intelligence (AI) models accurately predict variables that affect clinical pregnancy rates in single-euploid embryo...
SourceID elsevier
SourceType Publisher
StartPage 104860
SubjectTerms Obstetrics and Gynecology
Title Key factors influencing clinical pregnancy rates in frozen-thawed single euploid embryo transfers: an artificial intelligence-based approach
URI https://www.clinicalkey.es/playcontent/1-s2.0-S1472648325000677
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 1472-6483
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0018083
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 1472-6483
  databaseCode: ACRLP
  dateStart: 20150101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0018083
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 1472-6483
  databaseCode: AIKHN
  dateStart: 20150101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0018083
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 1472-6483
  databaseCode: .~1
  dateStart: 20000101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0018083
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1472-6483
  databaseCode: AKRWK
  dateStart: 20000101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0018083
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiEuCFoQb-0BcYnW8mu9Tm9VKRSqcmkr9Wat7d2StrEjx1aVHPgF_BB-JrMPO1sCEvRiRavxI57PM5_H80DoHaNShDLyCaUlJzH4AJImVBBBOVC5ooxK3Uj7-GtyeBZ_Oafno9FPJ2upa3OvWP2xruQuWoU10Kuqkv0PzQ4HhQX4DfqFLWgYtv-k4yN4oPuBOVM7bUQX0fbljvNGXKiOGsux6gihU19lU69ERdpv_Aa4pooUXIux6ObX9bQci1neLGs1NwLYrJoGoUqhK9UIaWo7TUydFp5EucByaEvu8lzg9aaVrE6O1yX--hP-2HTmGEK7K4OYT3W1TlD80K0uOluH83kurtbCM2MjT8CZ2_RNBdWrwsSGl2aGSx_DMJXO1uDGLCRJnEaOEQ30ZCzHJa8XNgy-iT1cek0-U6WcIfXcvd3u2gf7RwFZhJ5PTtRJ1TlDqr01uy1s3o2yRZj52YboPXQ_VJEfsJze9yGZKEh93fB1-De2PMtkEv5-bQ7vcbjM6WP0yL6E4D2DqCdoJKpttLNX8baeLfF7rNOC9feWbfTg2KpuB_0AvGGLN-zgDfd4wwPesMYbCOFbeMMGb9jiDRu84QFvu5hXeI02vIk23KPtKTr7eHC6f0jsNA8iVB4rAaOQ0wDocSKLkEcipeUkDWRaSpnKMgfHIEs2oRQYYxpS7nOa8JhJHsuCB0WRRM_QVlVX4jnCESuKKChylk5AhHPg2AGFIwSRYDxM2QvE-huc9XcAXKJY2Gd3kf1NvS_vvOcr9FCp2ETnXqOttunEG-Crbf5WQ-UXV_SbAg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Key+factors+influencing+clinical+pregnancy+rates+in+frozen-thawed+single+euploid+embryo+transfers%3A+an+artificial+intelligence-based+approach&rft.jtitle=Reproductive+biomedicine+online&rft.au=Ozer%2C+Gonul&rft.au=Duzguner%2C+Ipek&rft.au=Ozmen%2C+Sevinc&rft.au=Akca%2C+Aysu&rft.date=2025&rft.issn=1472-6483&rft.spage=104860&rft.epage=104860&rft_id=info:doi/10.1016%2Fj.rbmo.2025.104860&rft.externalDBID=ECK1-s2.0-S1472648325000677&rft.externalDocID=1_s2_0_S1472648325000677
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-6483&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-6483&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-6483&client=summon