Automatic identification of mineral in petrographic thin sections based on images using a deep learning method
The identification of minerals in petrographic thin sections is essentially required in petrological research, and is a prerequisite for further understanding of rock classification, petrogenesis, material flow and evolution history.Traditional methods rely on manual identification with optical micr...
Saved in:
Published in | Zhejiang da xue xue bao. Journal of Zhejiang University. Sciences edition. Li xue ban Vol. 49; no. 6; pp. 743 - 752 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Chinese |
Published |
Hangzhou
Zhejiang University
01.11.2022
Zhejiang University Press |
Subjects | |
Online Access | Get full text |
ISSN | 1008-9497 |
DOI | 10.3785/j.issn.1008-9497.2022.06.013 |
Cover
Abstract | The identification of minerals in petrographic thin sections is essentially required in petrological research, and is a prerequisite for further understanding of rock classification, petrogenesis, material flow and evolution history.Traditional methods rely on manual identification with optical microscope, which is costly, time-consuming, and subject to expert judgment and personal experience. Following the development of deep learning technology, it is possible for computer to automatically extract more accurate semantic information from images of petrographic thin sections. This paper proposes a deep learning-based method on petrographic thin section images for automatic mineral identification, which not only utilizes the deep convolutional neural network to extract different mineral features in the images for semantic segmentation and recognition, but also takes into account the plane polarized light images and cross polarized light images for comprehensive automatic identification. Our paper used the phot |
---|---|
AbstractList | The identification of minerals in petrographic thin sections is essentially required in petrological research, and is a prerequisite for further understanding of rock classification, petrogenesis, material flow and evolution history.Traditional methods rely on manual identification with optical microscope, which is costly, time-consuming, and subject to expert judgment and personal experience. Following the development of deep learning technology, it is possible for computer to automatically extract more accurate semantic information from images of petrographic thin sections. This paper proposes a deep learning-based method on petrographic thin section images for automatic mineral identification, which not only utilizes the deep convolutional neural network to extract different mineral features in the images for semantic segmentation and recognition, but also takes into account the plane polarized light images and cross polarized light images for comprehensive automatic identification. Our paper used the phot 岩石薄片矿物识别是岩石学研究工作的基础,亦是进一步认识岩石种类、成因机理、物质运移和演化历史的基础。传统的矿物识别主要依靠光学显微镜进行人工鉴定,经济成本和时间成本较高、效率较低,且受制于专家个人经验与主观判断。随着深度学习技术的发展,计算机能从图像中自动提取更准确的语义信息,从而为岩石薄片图像的智能分析提供有效途径。提出了一种基于深度学习的岩石薄片矿物自动识别方法,利用深度卷积神经网络自动提取岩石薄片图像中不同矿物的有效特征,并对其进行语义分割与识别,综合利用单偏光与正交偏光2种光性图像实现了对矿物的自动识别。对南京大学岩石教学薄片显微图像数据集进行了矿物识别测试,结果表明,总体精度为86.7%,Kappa系数为0.818,识别结果较传统图像分类方法更准确。 |
Author | Zhang, Xiaocan Zhu, Kongyang Su, Cheng Xu, Shengjia |
Author_xml | – sequence: 1 givenname: Shengjia surname: Xu fullname: Xu, Shengjia – sequence: 2 givenname: Cheng surname: Su fullname: Su, Cheng – sequence: 3 givenname: Kongyang surname: Zhu fullname: Zhu, Kongyang – sequence: 4 givenname: Xiaocan surname: Zhang fullname: Zhang, Xiaocan |
BookMark | eNo9j0tvwjAQhH2gUinlP1hqr6R-JLF9RKgPJKReuEfGXgcjsFM7OfTf15Sqp9WMZr-dfUCzEAMg9ExJxYVsXk6VzzlUlBC5UrUSFSOMVaStCOUzNP_379EyZ38ghJKGMiXnKKynMV706A32FsLonTdFxYCjwxcfIOkz9gEPMKbYJz0cS3I8FieDueYyPugMFpcNf9E9ZDxlH3qssQUY8Bl0Cld9gfEY7SO6c_qcYfk3F2j_9rrffKx2n-_bzXq3sqqWK-6IE6bRrXPOSOUI1JoqB3WrjJRNXTMOWklrCYBhpm0cs0Y0RhJZYs7wBdresDbqUzek0ix9d1H77teIqe90Kj-foaNWC1Erzoh05YpTQoAoMEetZOLAC-vpxhpS_Jogj90pTimU9h0TXNWCUSX5D5UzedU |
ContentType | Journal Article |
Copyright | Copyright Zhejiang University 2022 |
Copyright_xml | – notice: Copyright Zhejiang University 2022 |
DBID | 7SC 7SP 7TB 7U5 8FD FR3 JQ2 KR7 L7M L~C L~D DOA |
DOI | 10.3785/j.issn.1008-9497.2022.06.013 |
DatabaseName | Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EndPage | 752 |
ExternalDocumentID | oai_doaj_org_article_1da77493208f4a1f977e7c75f1d827b3 |
GroupedDBID | 7SC 7SP 7TB 7U5 8FD ALMA_UNASSIGNED_HOLDINGS FR3 GROUPED_DOAJ JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-d948-3f0f7c5a6fffc89f0e4a19fe469c8854423ea98dd0eec2c65f2dc75c80819ffc3 |
IEDL.DBID | DOA |
ISSN | 1008-9497 |
IngestDate | Wed Aug 27 01:19:53 EDT 2025 Sun Jun 29 16:06:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | Chinese |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-d948-3f0f7c5a6fffc89f0e4a19fe469c8854423ea98dd0eec2c65f2dc75c80819ffc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3540-0309 0000-0002-8873-2809 |
OpenAccessLink | https://doaj.org/article/1da77493208f4a1f977e7c75f1d827b3 |
PQID | 2739472198 |
PQPubID | 2047852 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1da77493208f4a1f977e7c75f1d827b3 proquest_journals_2739472198 |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hangzhou |
PublicationPlace_xml | – name: Hangzhou |
PublicationTitle | Zhejiang da xue xue bao. Journal of Zhejiang University. Sciences edition. Li xue ban |
PublicationYear | 2022 |
Publisher | Zhejiang University Zhejiang University Press |
Publisher_xml | – name: Zhejiang University – name: Zhejiang University Press |
SSID | ssib001051298 ssib051373732 ssib002258177 ssib004369313 ssib008679801 ssib002476865 ssib023167501 ssib059160192 ssib000948450 ssib002040240 ssib001104615 ssib000969734 ssib008143637 ssib006704891 ssj0002507526 |
Score | 2.3351262 |
Snippet | The identification of minerals in petrographic thin sections is essentially required in petrological research, and is a prerequisite for further understanding... ... |
SourceID | doaj proquest |
SourceType | Open Website Aggregation Database |
StartPage | 743 |
SubjectTerms | Artificial neural networks Automatic identification Deep learning Feature extraction Image classification Image segmentation Machine learning Object recognition Optical microscopes Petrogenesis Petrology Photomicrographs Polarized light Semantic segmentation Semantics 岩石薄片图像 深度学习 矿物识别 语义分割 |
Title | Automatic identification of mineral in petrographic thin sections based on images using a deep learning method |
URI | https://www.proquest.com/docview/2739472198 https://doaj.org/article/1da77493208f4a1f977e7c75f1d827b3 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV2_b9QwFLZQkRALAgGitFQeOsAQmh_-OV4LVYWAhSJ1i5LYbg-pd1XvujBXlDJ0aweWY6o4EELQAfUW_pnmcn8Gz044LDGwoEyx40SyP_t9L37-HkKLJo4yuPIAfGQZEKqzQOpIB0okJEmUiVTuoi2es7WX5MkG3fBSfdmYsFoeuO64pUhlwFCAZYTCkCwywFc0LziFt4iY507nM5Sh50zVxIEI4u_XSSa5L4QWWkPn7RfZrU7PMMaA7Zj4J0SpiLjv2ABN9_cHEyYTzzAyDjPDU6ERQEuYRwSszJ0Ip_WxPY9O_9zTKOFwTYkHBRJnudj07xEQF05dLjkrzhNIIvkVtGhdcC7o0iu3gDycVoEbHMdOptRmcXC5Cf4yPc6erl5H1xoijFv1ANxAl15v3UTD1l6_60RkcVs1cUwOOrhr8HbbKWTjdgcD1d-ttbbhyf4WlPRcSFmnh61ZVhhatLdhqexhG9i_iTOstN7BTY6MTVwnzr5fDkYXo6Pxj2_l6LT8cnpx_qF6v19-H1aDs8nJfnV4UA1-VofDycGn8t3Hydc35dvP45Pz8dnxg1toffXx-spa0CSTCBRgIUhMaHhBM2aMKYQ0oQYwSaMJk4UQlACr1JkUSoVaF3HBqIkVoKywiUkkNEluo5lOt6PvIEyE0TLPiGQ5JzqBWSC40kB8SS5h3NgsWrY9nO7UciGpFfB2BQDrtIF1-i9Yz6L53-OTNqtKLwWqKQm47FLc_R_fmENXLTDqk5XzaKa_u6fvAcXq5wvocuvRs6cvFtys-gU5JiI7 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+identification+of+mineral+in+petrographic+thin+sections+based+on+images+using+a+deep+learning+method&rft.jtitle=Zhejiang+da+xue+xue+bao.+Journal+of+Zhejiang+University.+Sciences+edition.+Li+xue+ban&rft.au=Xu%2C+Shengjia&rft.au=Su%2C+Cheng&rft.au=Zhu%2C+Kongyang&rft.au=Zhang%2C+Xiaocan&rft.date=2022-11-01&rft.pub=Zhejiang+University&rft.issn=1008-9497&rft.volume=49&rft.issue=6&rft.spage=743&rft_id=info:doi/10.3785%2Fj.issn.1008-9497.2022.06.013&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1008-9497&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1008-9497&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1008-9497&client=summon |