Automatic identification of mineral in petrographic thin sections based on images using a deep learning method

The identification of minerals in petrographic thin sections is essentially required in petrological research, and is a prerequisite for further understanding of rock classification, petrogenesis, material flow and evolution history.Traditional methods rely on manual identification with optical micr...

Full description

Saved in:
Bibliographic Details
Published inZhejiang da xue xue bao. Journal of Zhejiang University. Sciences edition. Li xue ban Vol. 49; no. 6; pp. 743 - 752
Main Authors Xu, Shengjia, Su, Cheng, Zhu, Kongyang, Zhang, Xiaocan
Format Journal Article
LanguageChinese
Published Hangzhou Zhejiang University 01.11.2022
Zhejiang University Press
Subjects
Online AccessGet full text
ISSN1008-9497
DOI10.3785/j.issn.1008-9497.2022.06.013

Cover

Abstract The identification of minerals in petrographic thin sections is essentially required in petrological research, and is a prerequisite for further understanding of rock classification, petrogenesis, material flow and evolution history.Traditional methods rely on manual identification with optical microscope, which is costly, time-consuming, and subject to expert judgment and personal experience. Following the development of deep learning technology, it is possible for computer to automatically extract more accurate semantic information from images of petrographic thin sections. This paper proposes a deep learning-based method on petrographic thin section images for automatic mineral identification, which not only utilizes the deep convolutional neural network to extract different mineral features in the images for semantic segmentation and recognition, but also takes into account the plane polarized light images and cross polarized light images for comprehensive automatic identification. Our paper used the phot
AbstractList The identification of minerals in petrographic thin sections is essentially required in petrological research, and is a prerequisite for further understanding of rock classification, petrogenesis, material flow and evolution history.Traditional methods rely on manual identification with optical microscope, which is costly, time-consuming, and subject to expert judgment and personal experience. Following the development of deep learning technology, it is possible for computer to automatically extract more accurate semantic information from images of petrographic thin sections. This paper proposes a deep learning-based method on petrographic thin section images for automatic mineral identification, which not only utilizes the deep convolutional neural network to extract different mineral features in the images for semantic segmentation and recognition, but also takes into account the plane polarized light images and cross polarized light images for comprehensive automatic identification. Our paper used the phot
岩石薄片矿物识别是岩石学研究工作的基础,亦是进一步认识岩石种类、成因机理、物质运移和演化历史的基础。传统的矿物识别主要依靠光学显微镜进行人工鉴定,经济成本和时间成本较高、效率较低,且受制于专家个人经验与主观判断。随着深度学习技术的发展,计算机能从图像中自动提取更准确的语义信息,从而为岩石薄片图像的智能分析提供有效途径。提出了一种基于深度学习的岩石薄片矿物自动识别方法,利用深度卷积神经网络自动提取岩石薄片图像中不同矿物的有效特征,并对其进行语义分割与识别,综合利用单偏光与正交偏光2种光性图像实现了对矿物的自动识别。对南京大学岩石教学薄片显微图像数据集进行了矿物识别测试,结果表明,总体精度为86.7%,Kappa系数为0.818,识别结果较传统图像分类方法更准确。
Author Zhang, Xiaocan
Zhu, Kongyang
Su, Cheng
Xu, Shengjia
Author_xml – sequence: 1
  givenname: Shengjia
  surname: Xu
  fullname: Xu, Shengjia
– sequence: 2
  givenname: Cheng
  surname: Su
  fullname: Su, Cheng
– sequence: 3
  givenname: Kongyang
  surname: Zhu
  fullname: Zhu, Kongyang
– sequence: 4
  givenname: Xiaocan
  surname: Zhang
  fullname: Zhang, Xiaocan
BookMark eNo9j0tvwjAQhH2gUinlP1hqr6R-JLF9RKgPJKReuEfGXgcjsFM7OfTf15Sqp9WMZr-dfUCzEAMg9ExJxYVsXk6VzzlUlBC5UrUSFSOMVaStCOUzNP_379EyZ38ghJKGMiXnKKynMV706A32FsLonTdFxYCjwxcfIOkz9gEPMKbYJz0cS3I8FieDueYyPugMFpcNf9E9ZDxlH3qssQUY8Bl0Cld9gfEY7SO6c_qcYfk3F2j_9rrffKx2n-_bzXq3sqqWK-6IE6bRrXPOSOUI1JoqB3WrjJRNXTMOWklrCYBhpm0cs0Y0RhJZYs7wBdresDbqUzek0ix9d1H77teIqe90Kj-foaNWC1Erzoh05YpTQoAoMEetZOLAC-vpxhpS_Jogj90pTimU9h0TXNWCUSX5D5UzedU
ContentType Journal Article
Copyright Copyright Zhejiang University 2022
Copyright_xml – notice: Copyright Zhejiang University 2022
DBID 7SC
7SP
7TB
7U5
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOA
DOI 10.3785/j.issn.1008-9497.2022.06.013
DatabaseName Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EndPage 752
ExternalDocumentID oai_doaj_org_article_1da77493208f4a1f977e7c75f1d827b3
GroupedDBID 7SC
7SP
7TB
7U5
8FD
ALMA_UNASSIGNED_HOLDINGS
FR3
GROUPED_DOAJ
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-d948-3f0f7c5a6fffc89f0e4a19fe469c8854423ea98dd0eec2c65f2dc75c80819ffc3
IEDL.DBID DOA
ISSN 1008-9497
IngestDate Wed Aug 27 01:19:53 EDT 2025
Sun Jun 29 16:06:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language Chinese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d948-3f0f7c5a6fffc89f0e4a19fe469c8854423ea98dd0eec2c65f2dc75c80819ffc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3540-0309
0000-0002-8873-2809
OpenAccessLink https://doaj.org/article/1da77493208f4a1f977e7c75f1d827b3
PQID 2739472198
PQPubID 2047852
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_1da77493208f4a1f977e7c75f1d827b3
proquest_journals_2739472198
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Hangzhou
PublicationPlace_xml – name: Hangzhou
PublicationTitle Zhejiang da xue xue bao. Journal of Zhejiang University. Sciences edition. Li xue ban
PublicationYear 2022
Publisher Zhejiang University
Zhejiang University Press
Publisher_xml – name: Zhejiang University
– name: Zhejiang University Press
SSID ssib001051298
ssib051373732
ssib002258177
ssib004369313
ssib008679801
ssib002476865
ssib023167501
ssib059160192
ssib000948450
ssib002040240
ssib001104615
ssib000969734
ssib008143637
ssib006704891
ssj0002507526
Score 2.3351262
Snippet The identification of minerals in petrographic thin sections is essentially required in petrological research, and is a prerequisite for further understanding...
...
SourceID doaj
proquest
SourceType Open Website
Aggregation Database
StartPage 743
SubjectTerms Artificial neural networks
Automatic identification
Deep learning
Feature extraction
Image classification
Image segmentation
Machine learning
Object recognition
Optical microscopes
Petrogenesis
Petrology
Photomicrographs
Polarized light
Semantic segmentation
Semantics
岩石薄片图像
深度学习
矿物识别
语义分割
Title Automatic identification of mineral in petrographic thin sections based on images using a deep learning method
URI https://www.proquest.com/docview/2739472198
https://doaj.org/article/1da77493208f4a1f977e7c75f1d827b3
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV2_b9QwFLZQkRALAgGitFQeOsAQmh_-OV4LVYWAhSJ1i5LYbg-pd1XvujBXlDJ0aweWY6o4EELQAfUW_pnmcn8Gz044LDGwoEyx40SyP_t9L37-HkKLJo4yuPIAfGQZEKqzQOpIB0okJEmUiVTuoi2es7WX5MkG3fBSfdmYsFoeuO64pUhlwFCAZYTCkCwywFc0LziFt4iY507nM5Sh50zVxIEI4u_XSSa5L4QWWkPn7RfZrU7PMMaA7Zj4J0SpiLjv2ABN9_cHEyYTzzAyDjPDU6ERQEuYRwSszJ0Ip_WxPY9O_9zTKOFwTYkHBRJnudj07xEQF05dLjkrzhNIIvkVtGhdcC7o0iu3gDycVoEbHMdOptRmcXC5Cf4yPc6erl5H1xoijFv1ANxAl15v3UTD1l6_60RkcVs1cUwOOrhr8HbbKWTjdgcD1d-ttbbhyf4WlPRcSFmnh61ZVhhatLdhqexhG9i_iTOstN7BTY6MTVwnzr5fDkYXo6Pxj2_l6LT8cnpx_qF6v19-H1aDs8nJfnV4UA1-VofDycGn8t3Hydc35dvP45Pz8dnxg1toffXx-spa0CSTCBRgIUhMaHhBM2aMKYQ0oQYwSaMJk4UQlACr1JkUSoVaF3HBqIkVoKywiUkkNEluo5lOt6PvIEyE0TLPiGQ5JzqBWSC40kB8SS5h3NgsWrY9nO7UciGpFfB2BQDrtIF1-i9Yz6L53-OTNqtKLwWqKQm47FLc_R_fmENXLTDqk5XzaKa_u6fvAcXq5wvocuvRs6cvFtys-gU5JiI7
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+identification+of+mineral+in+petrographic+thin+sections+based+on+images+using+a+deep+learning+method&rft.jtitle=Zhejiang+da+xue+xue+bao.+Journal+of+Zhejiang+University.+Sciences+edition.+Li+xue+ban&rft.au=Xu%2C+Shengjia&rft.au=Su%2C+Cheng&rft.au=Zhu%2C+Kongyang&rft.au=Zhang%2C+Xiaocan&rft.date=2022-11-01&rft.pub=Zhejiang+University&rft.issn=1008-9497&rft.volume=49&rft.issue=6&rft.spage=743&rft_id=info:doi/10.3785%2Fj.issn.1008-9497.2022.06.013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1008-9497&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1008-9497&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1008-9497&client=summon