CsPbBr3 Nanocrystal Induced Bilateral Interface Modification for Efficient Planar Perovskite Solar Cells
Organic‐inorganic halide perovskite solar cells (PSCs) have drawn tremendous attention owing to their remarkable photovoltaic performance and simple preparation process. However, conventional wet‐chemical synthesis methods inevitably create defects both in the bulk and at the interfaces of perovskit...
Saved in:
Published in | Advanced science Vol. 8; no. 21; pp. e2102648 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.11.2021
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2198-3844 2198-3844 |
DOI | 10.1002/advs.202102648 |
Cover
Abstract | Organic‐inorganic halide perovskite solar cells (PSCs) have drawn tremendous attention owing to their remarkable photovoltaic performance and simple preparation process. However, conventional wet‐chemical synthesis methods inevitably create defects both in the bulk and at the interfaces of perovskites, leading to recombination of charge carriers and reduced stability. Herein, a bilateral interface modification to perovskites by doping room‐temperature synthesized CsPbBr3 nanocrystals (CN) is reported. The ultrafast transient absorption measurement reveals that CN effectively suppresses the defect at the SnO2/perovskite interface and boosts the interfacial electron transport. Meanwhile, the in situ Kelvin probe force microscopy and contact potential difference characterizations verify that the CN within the upper part of the perovskites enhances the built‐in electric field, facilitating oriented migration of the carriers within the perovskite. Combining the superiorities of CN modifiers on both sides, the bilaterally modified CH3NH3PbI3‐based planar PSCs exhibit optimal power conversion efficiency exceeding 20% and improved device stability.
Room‐temperature synthesized CsPbBr3 nanocrystal (CN) is exploited as the bilateral interface modifier in perovskite layer for efficient planar perovskite solar cells (PSCs). Owing to the CN induced bilateral interfacial passivation and boosted built‐in electric field, the charge separation and transfer are significantly ameliorated, which contribute to the superior power conversion efficiency exceeding 20% in CH3NH3PbI3‐based planar PSCs. |
---|---|
AbstractList | Organic-inorganic halide perovskite solar cells (PSCs) have drawn tremendous attention owing to their remarkable photovoltaic performance and simple preparation process. However, conventional wet-chemical synthesis methods inevitably create defects both in the bulk and at the interfaces of perovskites, leading to recombination of charge carriers and reduced stability. Herein, a bilateral interface modification to perovskites by doping room-temperature synthesized CsPbBr3 nanocrystals (CN) is reported. The ultrafast transient absorption measurement reveals that CN effectively suppresses the defect at the SnO2 /perovskite interface and boosts the interfacial electron transport. Meanwhile, the in situ Kelvin probe force microscopy and contact potential difference characterizations verify that the CN within the upper part of the perovskites enhances the built-in electric field, facilitating oriented migration of the carriers within the perovskite. Combining the superiorities of CN modifiers on both sides, the bilaterally modified CH3 NH3 PbI3 -based planar PSCs exhibit optimal power conversion efficiency exceeding 20% and improved device stability.Organic-inorganic halide perovskite solar cells (PSCs) have drawn tremendous attention owing to their remarkable photovoltaic performance and simple preparation process. However, conventional wet-chemical synthesis methods inevitably create defects both in the bulk and at the interfaces of perovskites, leading to recombination of charge carriers and reduced stability. Herein, a bilateral interface modification to perovskites by doping room-temperature synthesized CsPbBr3 nanocrystals (CN) is reported. The ultrafast transient absorption measurement reveals that CN effectively suppresses the defect at the SnO2 /perovskite interface and boosts the interfacial electron transport. Meanwhile, the in situ Kelvin probe force microscopy and contact potential difference characterizations verify that the CN within the upper part of the perovskites enhances the built-in electric field, facilitating oriented migration of the carriers within the perovskite. Combining the superiorities of CN modifiers on both sides, the bilaterally modified CH3 NH3 PbI3 -based planar PSCs exhibit optimal power conversion efficiency exceeding 20% and improved device stability. Organic‐inorganic halide perovskite solar cells (PSCs) have drawn tremendous attention owing to their remarkable photovoltaic performance and simple preparation process. However, conventional wet‐chemical synthesis methods inevitably create defects both in the bulk and at the interfaces of perovskites, leading to recombination of charge carriers and reduced stability. Herein, a bilateral interface modification to perovskites by doping room‐temperature synthesized CsPbBr3 nanocrystals (CN) is reported. The ultrafast transient absorption measurement reveals that CN effectively suppresses the defect at the SnO2/perovskite interface and boosts the interfacial electron transport. Meanwhile, the in situ Kelvin probe force microscopy and contact potential difference characterizations verify that the CN within the upper part of the perovskites enhances the built‐in electric field, facilitating oriented migration of the carriers within the perovskite. Combining the superiorities of CN modifiers on both sides, the bilaterally modified CH3NH3PbI3‐based planar PSCs exhibit optimal power conversion efficiency exceeding 20% and improved device stability. Organic‐inorganic halide perovskite solar cells (PSCs) have drawn tremendous attention owing to their remarkable photovoltaic performance and simple preparation process. However, conventional wet‐chemical synthesis methods inevitably create defects both in the bulk and at the interfaces of perovskites, leading to recombination of charge carriers and reduced stability. Herein, a bilateral interface modification to perovskites by doping room‐temperature synthesized CsPbBr 3 nanocrystals (CN) is reported. The ultrafast transient absorption measurement reveals that CN effectively suppresses the defect at the SnO 2 /perovskite interface and boosts the interfacial electron transport. Meanwhile, the in situ Kelvin probe force microscopy and contact potential difference characterizations verify that the CN within the upper part of the perovskites enhances the built‐in electric field, facilitating oriented migration of the carriers within the perovskite. Combining the superiorities of CN modifiers on both sides, the bilaterally modified CH 3 NH 3 PbI 3 ‐based planar PSCs exhibit optimal power conversion efficiency exceeding 20% and improved device stability. Room‐temperature synthesized CsPbBr 3 nanocrystal (CN) is exploited as the bilateral interface modifier in perovskite layer for efficient planar perovskite solar cells (PSCs). Owing to the CN induced bilateral interfacial passivation and boosted built‐in electric field, the charge separation and transfer are significantly ameliorated, which contribute to the superior power conversion efficiency exceeding 20% in CH 3 NH 3 PbI 3 ‐based planar PSCs. Abstract Organic‐inorganic halide perovskite solar cells (PSCs) have drawn tremendous attention owing to their remarkable photovoltaic performance and simple preparation process. However, conventional wet‐chemical synthesis methods inevitably create defects both in the bulk and at the interfaces of perovskites, leading to recombination of charge carriers and reduced stability. Herein, a bilateral interface modification to perovskites by doping room‐temperature synthesized CsPbBr3 nanocrystals (CN) is reported. The ultrafast transient absorption measurement reveals that CN effectively suppresses the defect at the SnO2/perovskite interface and boosts the interfacial electron transport. Meanwhile, the in situ Kelvin probe force microscopy and contact potential difference characterizations verify that the CN within the upper part of the perovskites enhances the built‐in electric field, facilitating oriented migration of the carriers within the perovskite. Combining the superiorities of CN modifiers on both sides, the bilaterally modified CH3NH3PbI3‐based planar PSCs exhibit optimal power conversion efficiency exceeding 20% and improved device stability. Organic‐inorganic halide perovskite solar cells (PSCs) have drawn tremendous attention owing to their remarkable photovoltaic performance and simple preparation process. However, conventional wet‐chemical synthesis methods inevitably create defects both in the bulk and at the interfaces of perovskites, leading to recombination of charge carriers and reduced stability. Herein, a bilateral interface modification to perovskites by doping room‐temperature synthesized CsPbBr3 nanocrystals (CN) is reported. The ultrafast transient absorption measurement reveals that CN effectively suppresses the defect at the SnO2/perovskite interface and boosts the interfacial electron transport. Meanwhile, the in situ Kelvin probe force microscopy and contact potential difference characterizations verify that the CN within the upper part of the perovskites enhances the built‐in electric field, facilitating oriented migration of the carriers within the perovskite. Combining the superiorities of CN modifiers on both sides, the bilaterally modified CH3NH3PbI3‐based planar PSCs exhibit optimal power conversion efficiency exceeding 20% and improved device stability. Room‐temperature synthesized CsPbBr3 nanocrystal (CN) is exploited as the bilateral interface modifier in perovskite layer for efficient planar perovskite solar cells (PSCs). Owing to the CN induced bilateral interfacial passivation and boosted built‐in electric field, the charge separation and transfer are significantly ameliorated, which contribute to the superior power conversion efficiency exceeding 20% in CH3NH3PbI3‐based planar PSCs. |
Author | Wang, Linxi Jiang, Chenhui Cheng, Bei Chen, Tao Yu, Jiaguo Zhang, Jianjun |
AuthorAffiliation | 3 Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering School of Chemistry and Materials Science University of Science and Technology of China Hefei 230026 P. R. China 1 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China 2 Laboratory of Solar Fuel Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 P. R. China |
AuthorAffiliation_xml | – name: 1 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China – name: 2 Laboratory of Solar Fuel Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 P. R. China – name: 3 Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering School of Chemistry and Materials Science University of Science and Technology of China Hefei 230026 P. R. China |
Author_xml | – sequence: 1 givenname: Jianjun surname: Zhang fullname: Zhang, Jianjun organization: China University of Geosciences – sequence: 2 givenname: Linxi surname: Wang fullname: Wang, Linxi organization: China University of Geosciences – sequence: 3 givenname: Chenhui surname: Jiang fullname: Jiang, Chenhui organization: University of Science and Technology of China – sequence: 4 givenname: Bei surname: Cheng fullname: Cheng, Bei organization: Wuhan University of Technology – sequence: 5 givenname: Tao surname: Chen fullname: Chen, Tao email: tchenmse@ustc.edu.cn organization: University of Science and Technology of China – sequence: 6 givenname: Jiaguo orcidid: 0000-0002-0612-8633 surname: Yu fullname: Yu, Jiaguo email: yujiaguo93@whut.edu.cn organization: Wuhan University of Technology |
BookMark | eNpdkstvVCEYxYmpsQ-7dU3ixs1U3nA3Ju1YdZKqk1TdEi6PlvEOVLh3zPz3ZTpNY119cDj5BQ7nGByknDwAbzA6wwiR98Zt6hlBBCMimHoBjgju1Iwqxg7-WR-C01pXCCHMqWRYvQKHlHHMGeqOwO28LvuLQuE3k7It2zqaAS6Sm6x38CIOZvTlQWkzGOvh1-xiiNaMMScYcoGXoW2jTyNcDiaZApe-5E39HUcPr_PQhLkfhvoavAxmqP70cZ6An58uf8y_zK6-f17Mz69mjhHCZ9haxTm2zpuAg8dYIYIktZw6Ka3CNKhAe2yFFYR3vQmUWt8h2wshSK8cPQGLPddls9J3Ja5N2epson4QcrnRpozRDl43TidlJ6SkiBEmDQvMBuEtxaFzvG-sD3vW3dSvvbPtkS2MZ9DnJyne6pu80YoLxgRtgHePgJL_TL6Oeh2rbXGY5PNUNeGSEMwRR8369j_rKk8ltaiaqyMIMSZZc7G9628c_PbpJhjpXSH0rhD6qRD6_OOva7r79nu_Hqtn |
ContentType | Journal Article |
Copyright | 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. |
DBID | 24P 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202102648 |
DatabaseName | Wiley Online Library Open Access ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_3b19779677304247a4f4cf6ec31f9d5b PMC8564463 ADVS3015 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51961135303; 51932007; U1905215; 21871217; 52073223; U1705251 – fundername: National Key Research and Development Program of China funderid: 2018YFB1502001 – fundername: China Postdoctoral Science Foundation funderid: 2021TQ0311 – fundername: ; grantid: 51961135303; 51932007; U1905215; 21871217; 52073223; U1705251 – fundername: ; grantid: 2021TQ0311 – fundername: ; grantid: 2018YFB1502001 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN 3V. 7XB 8FK AAMMB ADMLS AEFGJ AFPKN AGXDD AIDQK AIDYY IGS MBDVC PHGZM PHGZT PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-d4225-1cc8551cdeaf1fe11802073c53d77c813f8f3b1c6c6259baf33ce90cb6662b8d3 |
IEDL.DBID | DOA |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:29:21 EDT 2025 Thu Aug 21 13:59:08 EDT 2025 Thu Sep 04 20:08:27 EDT 2025 Fri Jul 25 23:42:16 EDT 2025 Wed Jan 22 16:28:21 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | Attribution This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-d4225-1cc8551cdeaf1fe11802073c53d77c813f8f3b1c6c6259baf33ce90cb6662b8d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0612-8633 |
OpenAccessLink | https://doaj.org/article/3b19779677304247a4f4cf6ec31f9d5b |
PMID | 34515409 |
PQID | 2592004474 |
PQPubID | 4365299 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3b19779677304247a4f4cf6ec31f9d5b pubmedcentral_primary_oai_pubmedcentral_nih_gov_8564463 proquest_miscellaneous_2572215050 proquest_journals_2592004474 wiley_primary_10_1002_advs_202102648_ADVS3015 |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2017; 5 2017; 2 2015; 347 2019; 11 2019; 13 2017; 46 2020; 369 2020; 16 2020; 59 2019; 366 2020; 13 2020; 10 2020 2020; 59 63 2013; 5 2014; 136 2018; 6 2020; 7 2018; 8 2018; 3 2020; 4 2018; 2 2019; 62 2018; 5 2013; 13 2018; 376 2020 2020 2021; 16 4 564 2016; 49 2019 2020 2020; 48 4 63 2007; 17 2020 2020; 142 11 2019; 7 2019; 9 2018; 462 2015; 6 2019; 3 2019; 6 2019; 31 2020 2020; 142 4 2013; 342 2020; 36 2020; 32 2015; 8 2018; 430 2018; 18 2012; 2 2016; 1 2021; 12 2019 2019; 15 3 2020; 75 2020; 30 2020; 153 2019; 48 2019 2019; 487 31 2016; 138 2021; 61 2018; 11 2016; 9 2020 2021; 4 64 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 48 4 63 start-page: 3842 2477 year: 2019 2020 2020 publication-title: Chem. Soc. Rev. Sol. RRL . – volume: 5 start-page: 2935 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 7269 year: 2015 publication-title: Nat. Commun. – volume: 430 start-page: 531 year: 2018 publication-title: Appl. Surf. Sci. – volume: 15 3 year: 2019 2019 publication-title: Small Adv. Sustainable Syst. – volume: 347 start-page: 519 year: 2015 publication-title: Science – volume: 3 start-page: 847 year: 2018 publication-title: Nat. Energy – volume: 59 start-page: 4099 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 366 start-page: 1509 year: 2019 publication-title: Science – volume: 12 start-page: 336 year: 2021 publication-title: Nat. Commun. – volume: 61 start-page: 213 year: 2021 publication-title: J. Mater. Sci. Technol. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 17 start-page: 2167 year: 2007 publication-title: Adv. Funct. Mater. – volume: 18 start-page: 6941 year: 2018 publication-title: Nano Lett. – volume: 75 year: 2020 publication-title: Nano Energy – volume: 11 start-page: 3941 year: 2018 publication-title: ChemSusChem – volume: 3 start-page: 30 year: 2018 publication-title: ACS Energy Lett. – volume: 16 year: 2020 publication-title: Small – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 342 start-page: 344 year: 2013 publication-title: Science – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 138 start-page: 8581 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 142 11 start-page: 2956 4613 year: 2020 2020 publication-title: J. Am. Chem. Soc. Nat. Commun. – volume: 49 start-page: 294 year: 2016 publication-title: Acc. Chem. Res. – volume: 48 start-page: 310 year: 2019 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 3700 year: 2015 publication-title: Energy Environ. Sci. – volume: 13 start-page: 4049 year: 2019 publication-title: ACS Nano – volume: 46 start-page: 5714 year: 2017 publication-title: Chem. Soc. Rev. – volume: 7 year: 2020 publication-title: Adv. Mater. Interfaces – volume: 487 31 start-page: 32 year: 2019 2019 publication-title: Appl. Surf. Sci. Adv. Mater. – volume: 430 start-page: 625 year: 2018 publication-title: Appl. Surf. Sci. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 62 start-page: 800 year: 2019 publication-title: Sci. China Mater. – volume: 16 4 564 year: 2020 2020 2021 publication-title: Small Adv. Sustainable Syst. Appl. Surf. Sci. – volume: 376 start-page: 46 year: 2018 publication-title: J. Power Sources – volume: 3 start-page: 1963 year: 2019 publication-title: Joule – volume: 6 start-page: 8631 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 9 start-page: 2686 year: 2016 publication-title: ChemSusChem – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 59 start-page: 195 year: 2020 publication-title: J. Mater. Sci. Technol. – volume: 32 start-page: 204 year: 2020 publication-title: Mater. Today – volume: 136 start-page: 3760 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 36 year: 2020 publication-title: Acta Phys. Chim. Sin. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 4 year: 2020 publication-title: Sol. RRL – volume: 462 start-page: 598 year: 2018 publication-title: Appl. Surf. Sci. – volume: 5 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 142 4 start-page: 3989 year: 2020 2020 publication-title: J. Am. Chem. Soc. Sol. RRL – volume: 369 start-page: 1615 year: 2020 publication-title: Science – volume: 59 63 start-page: 2487 year: 2020 2020 publication-title: Angew. Chem., Int. Ed. Sci. China Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 13 start-page: 1377 year: 2020 publication-title: Energy Environ. Sci. – volume: 2 start-page: 591 year: 2012 publication-title: Sci. Rep. – volume: 7 start-page: 3487 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 153 year: 2020 publication-title: J. Chem. Phys. – volume: 13 start-page: 2722 year: 2013 publication-title: Cryst. Growth Des. – volume: 3 year: 2019 publication-title: Sol. RRL – volume: 11 start-page: 2626 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 4 64 start-page: 789 year: 2020 2021 publication-title: Sol. RRL Sci. China Mater. – volume: 2 start-page: 879 year: 2018 publication-title: Joule |
SSID | ssj0001537418 |
Score | 2.5380707 |
Snippet | Organic‐inorganic halide perovskite solar cells (PSCs) have drawn tremendous attention owing to their remarkable photovoltaic performance and simple... Organic-inorganic halide perovskite solar cells (PSCs) have drawn tremendous attention owing to their remarkable photovoltaic performance and simple... Abstract Organic‐inorganic halide perovskite solar cells (PSCs) have drawn tremendous attention owing to their remarkable photovoltaic performance and simple... |
SourceID | doaj pubmedcentral proquest wiley |
SourceType | Open Website Open Access Repository Aggregation Database Publisher |
StartPage | e2102648 |
SubjectTerms | built‐in electric field CsPbBr3 nanocrystals defect passivation Efficiency gradational incorporation interface modification Interfaces Morphology Nanocrystals Quantum dots |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SzaWX0vRB3aZFhR7ag4m9kmzrUEp32RAKWZamgdyEXm4Ci53aSSD_PjNae9PtoVfJwkLz0DeS5huATwhhgxKI3IhKJRUBLd046VMprVEI5nCXp9zh02Vxci5-XMiLPViOuTD0rHL0idFR-9bRGfkRwnQSqCjFt-s_KVWNotvVsYSGGUor-K-RYuwJ7KNLltkE9meL5ern46mL5ETXMrI3ZtMj4--ItZsin4KKAEXm_h24-e9jyb9BbNyFjp_DswE-su8beR_AXmhewMFgoD37PLBIf3kJl_N-ZWcdZ-g_W9fdIwpcMyrU4YJns6u1odRjaqE61cYFdtp6ejYUJcUQyrJFZJfA-TCqbGQ6tgpde9fTcS87o4iYzcN63b-C8-PFr_lJOpRVSL1A601z5ypcJOeDqfM6RA44NHQnuS9LV-W8rmpuc1c4io2sqTl3QWXOYqQztZXnr2HStE14A8zmBD9y5XKvRMDQow5cZZZIx4L0Kk9gRsuprzfMGZq4rGND2_3Wg2lo_BeCUFWUJR2tiNKIWri6CI7ntfLSJnA4CkMPBtbrR3VI4OO2G02D7jtME9pb-qacIqLJZJZAuSPEnQnt9jRXl5Fku5KIFAueQBrFvR2xoXmeatIbvdUbjSDiDH2lfPv_yb6DpzRmk8x4CJOb7ja8R1RzYz8MqvoAfMH3XQ priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUoXLhUpRQ1La1ciQM9RMSxncTH7gqEKlGtBEjcLH8WpFWCEkDqv--MExbSW692PqyMn_1m4nlDyBFQ2KAEMDeUUslFAKQbJ30upTUKyBzs8pg7fPGrOr8WP2_kzass_lEfYhNwQ2Sk9RoBbuxw8iIaavwTym2jy1KJ5g3ZAWbPcY6XYvUSZZEc5Vmwwhx41zlvhHhWbizKk_kjJtX-GdX896DkawKbdqCzd-TtRB3pj9HWe2QrtO_J3gTOgR5PCtLf98ntcljZRc8prJ2d6_8AA1xTLNLhgqeLu7XBtGNswRrVxgV60Xk8MpSsRIHG0tOkLAHjoVjVyPR0FfruacBQL71Eb5guw3o9fCDXZ6dXy_N8KqmQewHIzZlzDXAk54OJLIak_wYgd5L7unYN47GJ3DJXOfSLrImcu6AKZ8HLKW3j-QHZbrs2fCTUMqQeTDnmlQjgdsTAVWFRcCxIr1hGFvg59f2omqFRxzo1dP1vPcFCw7uAgKqqrjGsImojonCxCo6zqLy0GTl8NoaewDVoGBliW9QiI9823QAL_Ndh2tA94jV1CWymkEVG6pkRZwOa97R3t0lgu5HAEiuekTyZe3PHKPFcapw3ejNvNBCIS1gn5af_vP4z2cXGMbPxkGw_9I_hC1CcB_s1zeK_zEX1Uw priority: 102 providerName: Wiley-Blackwell |
Title | CsPbBr3 Nanocrystal Induced Bilateral Interface Modification for Efficient Planar Perovskite Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202102648 https://www.proquest.com/docview/2592004474 https://www.proquest.com/docview/2572215050 https://pubmed.ncbi.nlm.nih.gov/PMC8564463 https://doaj.org/article/3b19779677304247a4f4cf6ec31f9d5b |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZteumlNH1Q57Eo0EN7MLEtybaO2e2GELph6TaQm9CTBBY72Emg_z4zsrPs9tJLTwbJNmN9GvkbW_MNIV-BwnrJgbmhlErKPXi6tsKlQhgtgczBWx5zhxdX5cU1v7wRN1ulvnBP2CAPPAzcKTM5UBRZVhUG3rzSPHAbSm9ZHqQTBlffTGZbwdSQH8xQluVFpTErTrV7QnVujHBKLPYTFfp3aOXfmyK3yWp825y_J-9GmkjPBvP2ySvffCD7oyP29NuoFv39I7md9Usz7RiFdbK13R9ge2uKBTmsd3R6t9aYYowtWI9aW08XrcPtQRERCpSVzqOKBNhDsYKR7ujSd-1Tj5916QojXzrz63X_iVyfz3_PLtKxfELqOHhpmltbAx-yzuuQBx-13sChrWCuqmyds1AHGF1bWoyBjA6MWS8zayCiKUzt2Gey17SN_0KoyZFm5NLmTnIPIUbwTGYGxcW8cDJPyBSHU90PChkKNatjAyCpRiTVv5BMyNELGGp0pF6BZejHvOIJOdl0gwvgfw3d-PYRz6kKYC6ZyBJS7YC4Y9BuT3N3G8W0awGMsGQJSSPcmysGOedC4bxRm3mjgCysYE0UB__jiQ_JW7zzkNp4RPYeukd_DBznwUzI64IvJ-TN2Y_FzxUcp_Or5a9JnOTPaDT81w |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuiPIQgQJGAgkOUZPYzuNQIXbZaku7qxVtpd6CYzu00iopSVvUP8dvY8abbFkO3HpN4sTyPPLN2PMNwDuEsDYTiNyISsUXFi1daWl8KQuVIZjDvzzVDk9n8eREfD2Vpxvwu6-FoWOVvU90jtrUmnLkOwjTSaAiEZ8ufvrUNYp2V_sWGqprrWB2HcVYV9hxYG9-YQjX7u5_QXm_j6K98fFo4nddBnwjUJn9UOsUx2hjVRmW1lGiod5ryU2S6DTkZVryItSxplChUCXn2maBLhD4R0VqOL73HmwKSqAMYHM4ns2_3WZ5JCd6mJ4tMoh2lLkmlnCKtGJqOuQ6BazB238PZ_4Nmt1fb-8RPOzgKvu81K8t2LDVY9jqHELLPnSs1R-fwNmonRfDhjP017VubhB1Lhg1BtHWsOH5QlGpM12hvthKWzatDR1TcprBEDqzsWOzwPkw6qSkGja3TX3dUnqZHVEEzkZ2sWifwsmdLPAzGFR1ZZ8DK0KCO2GmQ5MJi6FOaXkWFERyZqXJQg-GtJz5xZKpIyfubHehbn7knSnm-C0EvVmcJJTKEYkSpdBlbDUPy8zIwoPtXhh5Z9Btfqt-Hrxd3UZTpP0VVdn6ip5JIkRQgQw8SNaEuDah9TvV-Zkj9U4lItOYe-A7ca9GLGmlo5z0Jl_pTY6g5Qh9s3zx_8m-gfuT4-lhfrg_O3gJD2j8spByGwaXzZV9hYjqsnjdqS2D73dtKX8ANdo0SQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVkJcUMtDBAoYCSQ4RJvEdh6HCrHbXbWUrlaUSr0Fx3baSqukJH2of5FfxUzW2bIcuPWarLNW5uFvHM_3AbxHCGszgciNqFR8YTHSlZbGl7JQGYI5XOWpd_hwGu8di68n8mQNfve9MHSsss-JXaI2taY98gHCdDKoSMSgdMciZruTzxe_fFKQoi-tvZyGcjILZqejG3NNHgf29gbLuXZnfxdt_yGKJuMfoz3fKQ74RqBj-6HWKY7RxqoyLG1Hj4YxoCU3SaLTkJdpyYtQx5rKhkKVnGubBbrAIiAqUsPxuQ9gI8FVH6NtYziezr7f7fhITlQxPXNkEA2UuSbGcKq6YhIg6lQDVqDuvwc1_wbQ3Qo42YTHDrqyLwtf24I1Wz2BLZccWvbRMVh_egpno3ZWDBvOMHfXurlFBDpnJBKirWHD87mitme6QhrZSlt2WBs6stR5CUMYzcYdswXOh5GqkmrYzDb1dUtbzeyIqnE2svN5-wyO7-UFP4f1qq7sC2BFSNAnzHRoMmGx7Cktz4KCCM-sNFnowZBeZ36xYO3IiUe7u1A3p7kLyxz_CwFwFicJbeuIRIlS6DK2modlZmThwXZvjNwFd5vfuaIH75a3MSzpW4uqbH1Fv0kiRFOBDDxIVoy4MqHVO9X5WUfwnUpEqTH3wO_MvRyxoJiOcvKbfOk3OQKYI8zT8uX_J_sWHmLE5N_2pwev4BENX_RUbsP6ZXNlXyO4uizeOK9l8PO-A-UPkGQ4jA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CsPbBr3+Nanocrystal+Induced+Bilateral+Interface+Modification+for+Efficient+Planar+Perovskite+Solar+Cells&rft.jtitle=Advanced+science&rft.au=Jianjun+Zhang&rft.au=Linxi+Wang&rft.au=Chenhui+Jiang&rft.au=Bei+Cheng&rft.date=2021-11-01&rft.pub=Wiley&rft.eissn=2198-3844&rft.volume=8&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202102648&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3b19779677304247a4f4cf6ec31f9d5b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |