CsPbBr3 Nanocrystal Induced Bilateral Interface Modification for Efficient Planar Perovskite Solar Cells

Organic‐inorganic halide perovskite solar cells (PSCs) have drawn tremendous attention owing to their remarkable photovoltaic performance and simple preparation process. However, conventional wet‐chemical synthesis methods inevitably create defects both in the bulk and at the interfaces of perovskit...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 8; no. 21; pp. e2102648 - n/a
Main Authors Zhang, Jianjun, Wang, Linxi, Jiang, Chenhui, Cheng, Bei, Chen, Tao, Yu, Jiaguo
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.11.2021
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text
ISSN2198-3844
2198-3844
DOI10.1002/advs.202102648

Cover

Abstract Organic‐inorganic halide perovskite solar cells (PSCs) have drawn tremendous attention owing to their remarkable photovoltaic performance and simple preparation process. However, conventional wet‐chemical synthesis methods inevitably create defects both in the bulk and at the interfaces of perovskites, leading to recombination of charge carriers and reduced stability. Herein, a bilateral interface modification to perovskites by doping room‐temperature synthesized CsPbBr3 nanocrystals (CN) is reported. The ultrafast transient absorption measurement reveals that CN effectively suppresses the defect at the SnO2/perovskite interface and boosts the interfacial electron transport. Meanwhile, the in situ Kelvin probe force microscopy and contact potential difference characterizations verify that the CN within the upper part of the perovskites enhances the built‐in electric field, facilitating oriented migration of the carriers within the perovskite. Combining the superiorities of CN modifiers on both sides, the bilaterally modified CH3NH3PbI3‐based planar PSCs exhibit optimal power conversion efficiency exceeding 20% and improved device stability. Room‐temperature synthesized CsPbBr3 nanocrystal (CN) is exploited as the bilateral interface modifier in perovskite layer for efficient planar perovskite solar cells (PSCs). Owing to the CN induced bilateral interfacial passivation and boosted built‐in electric field, the charge separation and transfer are significantly ameliorated, which contribute to the superior power conversion efficiency exceeding 20% in CH3NH3PbI3‐based planar PSCs.
AbstractList Organic-inorganic halide perovskite solar cells (PSCs) have drawn tremendous attention owing to their remarkable photovoltaic performance and simple preparation process. However, conventional wet-chemical synthesis methods inevitably create defects both in the bulk and at the interfaces of perovskites, leading to recombination of charge carriers and reduced stability. Herein, a bilateral interface modification to perovskites by doping room-temperature synthesized CsPbBr3 nanocrystals (CN) is reported. The ultrafast transient absorption measurement reveals that CN effectively suppresses the defect at the SnO2 /perovskite interface and boosts the interfacial electron transport. Meanwhile, the in situ Kelvin probe force microscopy and contact potential difference characterizations verify that the CN within the upper part of the perovskites enhances the built-in electric field, facilitating oriented migration of the carriers within the perovskite. Combining the superiorities of CN modifiers on both sides, the bilaterally modified CH3 NH3 PbI3 -based planar PSCs exhibit optimal power conversion efficiency exceeding 20% and improved device stability.Organic-inorganic halide perovskite solar cells (PSCs) have drawn tremendous attention owing to their remarkable photovoltaic performance and simple preparation process. However, conventional wet-chemical synthesis methods inevitably create defects both in the bulk and at the interfaces of perovskites, leading to recombination of charge carriers and reduced stability. Herein, a bilateral interface modification to perovskites by doping room-temperature synthesized CsPbBr3 nanocrystals (CN) is reported. The ultrafast transient absorption measurement reveals that CN effectively suppresses the defect at the SnO2 /perovskite interface and boosts the interfacial electron transport. Meanwhile, the in situ Kelvin probe force microscopy and contact potential difference characterizations verify that the CN within the upper part of the perovskites enhances the built-in electric field, facilitating oriented migration of the carriers within the perovskite. Combining the superiorities of CN modifiers on both sides, the bilaterally modified CH3 NH3 PbI3 -based planar PSCs exhibit optimal power conversion efficiency exceeding 20% and improved device stability.
Organic‐inorganic halide perovskite solar cells (PSCs) have drawn tremendous attention owing to their remarkable photovoltaic performance and simple preparation process. However, conventional wet‐chemical synthesis methods inevitably create defects both in the bulk and at the interfaces of perovskites, leading to recombination of charge carriers and reduced stability. Herein, a bilateral interface modification to perovskites by doping room‐temperature synthesized CsPbBr3 nanocrystals (CN) is reported. The ultrafast transient absorption measurement reveals that CN effectively suppresses the defect at the SnO2/perovskite interface and boosts the interfacial electron transport. Meanwhile, the in situ Kelvin probe force microscopy and contact potential difference characterizations verify that the CN within the upper part of the perovskites enhances the built‐in electric field, facilitating oriented migration of the carriers within the perovskite. Combining the superiorities of CN modifiers on both sides, the bilaterally modified CH3NH3PbI3‐based planar PSCs exhibit optimal power conversion efficiency exceeding 20% and improved device stability.
Organic‐inorganic halide perovskite solar cells (PSCs) have drawn tremendous attention owing to their remarkable photovoltaic performance and simple preparation process. However, conventional wet‐chemical synthesis methods inevitably create defects both in the bulk and at the interfaces of perovskites, leading to recombination of charge carriers and reduced stability. Herein, a bilateral interface modification to perovskites by doping room‐temperature synthesized CsPbBr 3 nanocrystals (CN) is reported. The ultrafast transient absorption measurement reveals that CN effectively suppresses the defect at the SnO 2 /perovskite interface and boosts the interfacial electron transport. Meanwhile, the in situ Kelvin probe force microscopy and contact potential difference characterizations verify that the CN within the upper part of the perovskites enhances the built‐in electric field, facilitating oriented migration of the carriers within the perovskite. Combining the superiorities of CN modifiers on both sides, the bilaterally modified CH 3 NH 3 PbI 3 ‐based planar PSCs exhibit optimal power conversion efficiency exceeding 20% and improved device stability. Room‐temperature synthesized CsPbBr 3 nanocrystal (CN) is exploited as the bilateral interface modifier in perovskite layer for efficient planar perovskite solar cells (PSCs). Owing to the CN induced bilateral interfacial passivation and boosted built‐in electric field, the charge separation and transfer are significantly ameliorated, which contribute to the superior power conversion efficiency exceeding 20% in CH 3 NH 3 PbI 3 ‐based planar PSCs.
Abstract Organic‐inorganic halide perovskite solar cells (PSCs) have drawn tremendous attention owing to their remarkable photovoltaic performance and simple preparation process. However, conventional wet‐chemical synthesis methods inevitably create defects both in the bulk and at the interfaces of perovskites, leading to recombination of charge carriers and reduced stability. Herein, a bilateral interface modification to perovskites by doping room‐temperature synthesized CsPbBr3 nanocrystals (CN) is reported. The ultrafast transient absorption measurement reveals that CN effectively suppresses the defect at the SnO2/perovskite interface and boosts the interfacial electron transport. Meanwhile, the in situ Kelvin probe force microscopy and contact potential difference characterizations verify that the CN within the upper part of the perovskites enhances the built‐in electric field, facilitating oriented migration of the carriers within the perovskite. Combining the superiorities of CN modifiers on both sides, the bilaterally modified CH3NH3PbI3‐based planar PSCs exhibit optimal power conversion efficiency exceeding 20% and improved device stability.
Organic‐inorganic halide perovskite solar cells (PSCs) have drawn tremendous attention owing to their remarkable photovoltaic performance and simple preparation process. However, conventional wet‐chemical synthesis methods inevitably create defects both in the bulk and at the interfaces of perovskites, leading to recombination of charge carriers and reduced stability. Herein, a bilateral interface modification to perovskites by doping room‐temperature synthesized CsPbBr3 nanocrystals (CN) is reported. The ultrafast transient absorption measurement reveals that CN effectively suppresses the defect at the SnO2/perovskite interface and boosts the interfacial electron transport. Meanwhile, the in situ Kelvin probe force microscopy and contact potential difference characterizations verify that the CN within the upper part of the perovskites enhances the built‐in electric field, facilitating oriented migration of the carriers within the perovskite. Combining the superiorities of CN modifiers on both sides, the bilaterally modified CH3NH3PbI3‐based planar PSCs exhibit optimal power conversion efficiency exceeding 20% and improved device stability. Room‐temperature synthesized CsPbBr3 nanocrystal (CN) is exploited as the bilateral interface modifier in perovskite layer for efficient planar perovskite solar cells (PSCs). Owing to the CN induced bilateral interfacial passivation and boosted built‐in electric field, the charge separation and transfer are significantly ameliorated, which contribute to the superior power conversion efficiency exceeding 20% in CH3NH3PbI3‐based planar PSCs.
Author Wang, Linxi
Jiang, Chenhui
Cheng, Bei
Chen, Tao
Yu, Jiaguo
Zhang, Jianjun
AuthorAffiliation 3 Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering School of Chemistry and Materials Science University of Science and Technology of China Hefei 230026 P. R. China
1 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
2 Laboratory of Solar Fuel Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 P. R. China
AuthorAffiliation_xml – name: 1 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
– name: 2 Laboratory of Solar Fuel Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 P. R. China
– name: 3 Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering School of Chemistry and Materials Science University of Science and Technology of China Hefei 230026 P. R. China
Author_xml – sequence: 1
  givenname: Jianjun
  surname: Zhang
  fullname: Zhang, Jianjun
  organization: China University of Geosciences
– sequence: 2
  givenname: Linxi
  surname: Wang
  fullname: Wang, Linxi
  organization: China University of Geosciences
– sequence: 3
  givenname: Chenhui
  surname: Jiang
  fullname: Jiang, Chenhui
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Bei
  surname: Cheng
  fullname: Cheng, Bei
  organization: Wuhan University of Technology
– sequence: 5
  givenname: Tao
  surname: Chen
  fullname: Chen, Tao
  email: tchenmse@ustc.edu.cn
  organization: University of Science and Technology of China
– sequence: 6
  givenname: Jiaguo
  orcidid: 0000-0002-0612-8633
  surname: Yu
  fullname: Yu, Jiaguo
  email: yujiaguo93@whut.edu.cn
  organization: Wuhan University of Technology
BookMark eNpdkstvVCEYxYmpsQ-7dU3ixs1U3nA3Ju1YdZKqk1TdEi6PlvEOVLh3zPz3ZTpNY119cDj5BQ7nGByknDwAbzA6wwiR98Zt6hlBBCMimHoBjgju1Iwqxg7-WR-C01pXCCHMqWRYvQKHlHHMGeqOwO28LvuLQuE3k7It2zqaAS6Sm6x38CIOZvTlQWkzGOvh1-xiiNaMMScYcoGXoW2jTyNcDiaZApe-5E39HUcPr_PQhLkfhvoavAxmqP70cZ6An58uf8y_zK6-f17Mz69mjhHCZ9haxTm2zpuAg8dYIYIktZw6Ka3CNKhAe2yFFYR3vQmUWt8h2wshSK8cPQGLPddls9J3Ja5N2epson4QcrnRpozRDl43TidlJ6SkiBEmDQvMBuEtxaFzvG-sD3vW3dSvvbPtkS2MZ9DnJyne6pu80YoLxgRtgHePgJL_TL6Oeh2rbXGY5PNUNeGSEMwRR8369j_rKk8ltaiaqyMIMSZZc7G9628c_PbpJhjpXSH0rhD6qRD6_OOva7r79nu_Hqtn
ContentType Journal Article
Copyright 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
Copyright_xml – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
DBID 24P
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202102648
DatabaseName Wiley Online Library Open Access
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_3b19779677304247a4f4cf6ec31f9d5b
PMC8564463
ADVS3015
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51961135303; 51932007; U1905215; 21871217; 52073223; U1705251
– fundername: National Key Research and Development Program of China
  funderid: 2018YFB1502001
– fundername: China Postdoctoral Science Foundation
  funderid: 2021TQ0311
– fundername: ;
  grantid: 51961135303; 51932007; U1905215; 21871217; 52073223; U1705251
– fundername: ;
  grantid: 2021TQ0311
– fundername: ;
  grantid: 2018YFB1502001
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
3V.
7XB
8FK
AAMMB
ADMLS
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
IGS
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-d4225-1cc8551cdeaf1fe11802073c53d77c813f8f3b1c6c6259baf33ce90cb6662b8d3
IEDL.DBID DOA
ISSN 2198-3844
IngestDate Wed Aug 27 01:29:21 EDT 2025
Thu Aug 21 13:59:08 EDT 2025
Thu Sep 04 20:08:27 EDT 2025
Fri Jul 25 23:42:16 EDT 2025
Wed Jan 22 16:28:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License Attribution
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d4225-1cc8551cdeaf1fe11802073c53d77c813f8f3b1c6c6259baf33ce90cb6662b8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0612-8633
OpenAccessLink https://doaj.org/article/3b19779677304247a4f4cf6ec31f9d5b
PMID 34515409
PQID 2592004474
PQPubID 4365299
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_3b19779677304247a4f4cf6ec31f9d5b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8564463
proquest_miscellaneous_2572215050
proquest_journals_2592004474
wiley_primary_10_1002_advs_202102648_ADVS3015
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationYear 2021
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2017; 5
2017; 2
2015; 347
2019; 11
2019; 13
2017; 46
2020; 369
2020; 16
2020; 59
2019; 366
2020; 13
2020; 10
2020 2020; 59 63
2013; 5
2014; 136
2018; 6
2020; 7
2018; 8
2018; 3
2020; 4
2018; 2
2019; 62
2018; 5
2013; 13
2018; 376
2020 2020 2021; 16 4 564
2016; 49
2019 2020 2020; 48 4 63
2007; 17
2020 2020; 142 11
2019; 7
2019; 9
2018; 462
2015; 6
2019; 3
2019; 6
2019; 31
2020 2020; 142 4
2013; 342
2020; 36
2020; 32
2015; 8
2018; 430
2018; 18
2012; 2
2016; 1
2021; 12
2019 2019; 15 3
2020; 75
2020; 30
2020; 153
2019; 48
2019 2019; 487 31
2016; 138
2021; 61
2018; 11
2016; 9
2020 2021; 4 64
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 48 4 63
  start-page: 3842 2477
  year: 2019 2020 2020
  publication-title: Chem. Soc. Rev. Sol. RRL .
– volume: 5
  start-page: 2935
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 7269
  year: 2015
  publication-title: Nat. Commun.
– volume: 430
  start-page: 531
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 15 3
  year: 2019 2019
  publication-title: Small Adv. Sustainable Syst.
– volume: 347
  start-page: 519
  year: 2015
  publication-title: Science
– volume: 3
  start-page: 847
  year: 2018
  publication-title: Nat. Energy
– volume: 59
  start-page: 4099
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 366
  start-page: 1509
  year: 2019
  publication-title: Science
– volume: 12
  start-page: 336
  year: 2021
  publication-title: Nat. Commun.
– volume: 61
  start-page: 213
  year: 2021
  publication-title: J. Mater. Sci. Technol.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 17
  start-page: 2167
  year: 2007
  publication-title: Adv. Funct. Mater.
– volume: 18
  start-page: 6941
  year: 2018
  publication-title: Nano Lett.
– volume: 75
  year: 2020
  publication-title: Nano Energy
– volume: 11
  start-page: 3941
  year: 2018
  publication-title: ChemSusChem
– volume: 3
  start-page: 30
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 342
  start-page: 344
  year: 2013
  publication-title: Science
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 138
  start-page: 8581
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 142 11
  start-page: 2956 4613
  year: 2020 2020
  publication-title: J. Am. Chem. Soc. Nat. Commun.
– volume: 49
  start-page: 294
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 48
  start-page: 310
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 3700
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 4049
  year: 2019
  publication-title: ACS Nano
– volume: 46
  start-page: 5714
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 7
  year: 2020
  publication-title: Adv. Mater. Interfaces
– volume: 487 31
  start-page: 32
  year: 2019 2019
  publication-title: Appl. Surf. Sci. Adv. Mater.
– volume: 430
  start-page: 625
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 62
  start-page: 800
  year: 2019
  publication-title: Sci. China Mater.
– volume: 16 4 564
  year: 2020 2020 2021
  publication-title: Small Adv. Sustainable Syst. Appl. Surf. Sci.
– volume: 376
  start-page: 46
  year: 2018
  publication-title: J. Power Sources
– volume: 3
  start-page: 1963
  year: 2019
  publication-title: Joule
– volume: 6
  start-page: 8631
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 9
  start-page: 2686
  year: 2016
  publication-title: ChemSusChem
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 59
  start-page: 195
  year: 2020
  publication-title: J. Mater. Sci. Technol.
– volume: 32
  start-page: 204
  year: 2020
  publication-title: Mater. Today
– volume: 136
  start-page: 3760
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 36
  year: 2020
  publication-title: Acta Phys. Chim. Sin.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  year: 2020
  publication-title: Sol. RRL
– volume: 462
  start-page: 598
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 5
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 142 4
  start-page: 3989
  year: 2020 2020
  publication-title: J. Am. Chem. Soc. Sol. RRL
– volume: 369
  start-page: 1615
  year: 2020
  publication-title: Science
– volume: 59 63
  start-page: 2487
  year: 2020 2020
  publication-title: Angew. Chem., Int. Ed. Sci. China Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 13
  start-page: 1377
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 591
  year: 2012
  publication-title: Sci. Rep.
– volume: 7
  start-page: 3487
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 153
  year: 2020
  publication-title: J. Chem. Phys.
– volume: 13
  start-page: 2722
  year: 2013
  publication-title: Cryst. Growth Des.
– volume: 3
  year: 2019
  publication-title: Sol. RRL
– volume: 11
  start-page: 2626
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4 64
  start-page: 789
  year: 2020 2021
  publication-title: Sol. RRL Sci. China Mater.
– volume: 2
  start-page: 879
  year: 2018
  publication-title: Joule
SSID ssj0001537418
Score 2.5380707
Snippet Organic‐inorganic halide perovskite solar cells (PSCs) have drawn tremendous attention owing to their remarkable photovoltaic performance and simple...
Organic-inorganic halide perovskite solar cells (PSCs) have drawn tremendous attention owing to their remarkable photovoltaic performance and simple...
Abstract Organic‐inorganic halide perovskite solar cells (PSCs) have drawn tremendous attention owing to their remarkable photovoltaic performance and simple...
SourceID doaj
pubmedcentral
proquest
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
StartPage e2102648
SubjectTerms built‐in electric field
CsPbBr3 nanocrystals
defect passivation
Efficiency
gradational incorporation
interface modification
Interfaces
Morphology
Nanocrystals
Quantum dots
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SzaWX0vRB3aZFhR7ag4m9kmzrUEp32RAKWZamgdyEXm4Ci53aSSD_PjNae9PtoVfJwkLz0DeS5huATwhhgxKI3IhKJRUBLd046VMprVEI5nCXp9zh02Vxci5-XMiLPViOuTD0rHL0idFR-9bRGfkRwnQSqCjFt-s_KVWNotvVsYSGGUor-K-RYuwJ7KNLltkE9meL5ern46mL5ETXMrI3ZtMj4--ItZsin4KKAEXm_h24-e9jyb9BbNyFjp_DswE-su8beR_AXmhewMFgoD37PLBIf3kJl_N-ZWcdZ-g_W9fdIwpcMyrU4YJns6u1odRjaqE61cYFdtp6ejYUJcUQyrJFZJfA-TCqbGQ6tgpde9fTcS87o4iYzcN63b-C8-PFr_lJOpRVSL1A601z5ypcJOeDqfM6RA44NHQnuS9LV-W8rmpuc1c4io2sqTl3QWXOYqQztZXnr2HStE14A8zmBD9y5XKvRMDQow5cZZZIx4L0Kk9gRsuprzfMGZq4rGND2_3Wg2lo_BeCUFWUJR2tiNKIWri6CI7ntfLSJnA4CkMPBtbrR3VI4OO2G02D7jtME9pb-qacIqLJZJZAuSPEnQnt9jRXl5Fku5KIFAueQBrFvR2xoXmeatIbvdUbjSDiDH2lfPv_yb6DpzRmk8x4CJOb7ja8R1RzYz8MqvoAfMH3XQ
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUoXLhUpRQ1La1ciQM9RMSxncTH7gqEKlGtBEjcLH8WpFWCEkDqv--MExbSW692PqyMn_1m4nlDyBFQ2KAEMDeUUslFAKQbJ30upTUKyBzs8pg7fPGrOr8WP2_kzass_lEfYhNwQ2Sk9RoBbuxw8iIaavwTym2jy1KJ5g3ZAWbPcY6XYvUSZZEc5Vmwwhx41zlvhHhWbizKk_kjJtX-GdX896DkawKbdqCzd-TtRB3pj9HWe2QrtO_J3gTOgR5PCtLf98ntcljZRc8prJ2d6_8AA1xTLNLhgqeLu7XBtGNswRrVxgV60Xk8MpSsRIHG0tOkLAHjoVjVyPR0FfruacBQL71Eb5guw3o9fCDXZ6dXy_N8KqmQewHIzZlzDXAk54OJLIak_wYgd5L7unYN47GJ3DJXOfSLrImcu6AKZ8HLKW3j-QHZbrs2fCTUMqQeTDnmlQjgdsTAVWFRcCxIr1hGFvg59f2omqFRxzo1dP1vPcFCw7uAgKqqrjGsImojonCxCo6zqLy0GTl8NoaewDVoGBliW9QiI9823QAL_Ndh2tA94jV1CWymkEVG6pkRZwOa97R3t0lgu5HAEiuekTyZe3PHKPFcapw3ejNvNBCIS1gn5af_vP4z2cXGMbPxkGw_9I_hC1CcB_s1zeK_zEX1Uw
  priority: 102
  providerName: Wiley-Blackwell
Title CsPbBr3 Nanocrystal Induced Bilateral Interface Modification for Efficient Planar Perovskite Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202102648
https://www.proquest.com/docview/2592004474
https://www.proquest.com/docview/2572215050
https://pubmed.ncbi.nlm.nih.gov/PMC8564463
https://doaj.org/article/3b19779677304247a4f4cf6ec31f9d5b
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZteumlNH1Q57Eo0EN7MLEtybaO2e2GELph6TaQm9CTBBY72Emg_z4zsrPs9tJLTwbJNmN9GvkbW_MNIV-BwnrJgbmhlErKPXi6tsKlQhgtgczBWx5zhxdX5cU1v7wRN1ulvnBP2CAPPAzcKTM5UBRZVhUG3rzSPHAbSm9ZHqQTBlffTGZbwdSQH8xQluVFpTErTrV7QnVujHBKLPYTFfp3aOXfmyK3yWp825y_J-9GmkjPBvP2ySvffCD7oyP29NuoFv39I7md9Usz7RiFdbK13R9ge2uKBTmsd3R6t9aYYowtWI9aW08XrcPtQRERCpSVzqOKBNhDsYKR7ujSd-1Tj5916QojXzrz63X_iVyfz3_PLtKxfELqOHhpmltbAx-yzuuQBx-13sChrWCuqmyds1AHGF1bWoyBjA6MWS8zayCiKUzt2Gey17SN_0KoyZFm5NLmTnIPIUbwTGYGxcW8cDJPyBSHU90PChkKNatjAyCpRiTVv5BMyNELGGp0pF6BZejHvOIJOdl0gwvgfw3d-PYRz6kKYC6ZyBJS7YC4Y9BuT3N3G8W0awGMsGQJSSPcmysGOedC4bxRm3mjgCysYE0UB__jiQ_JW7zzkNp4RPYeukd_DBznwUzI64IvJ-TN2Y_FzxUcp_Or5a9JnOTPaDT81w
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuiPIQgQJGAgkOUZPYzuNQIXbZaku7qxVtpd6CYzu00iopSVvUP8dvY8abbFkO3HpN4sTyPPLN2PMNwDuEsDYTiNyISsUXFi1daWl8KQuVIZjDvzzVDk9n8eREfD2Vpxvwu6-FoWOVvU90jtrUmnLkOwjTSaAiEZ8ufvrUNYp2V_sWGqprrWB2HcVYV9hxYG9-YQjX7u5_QXm_j6K98fFo4nddBnwjUJn9UOsUx2hjVRmW1lGiod5ryU2S6DTkZVryItSxplChUCXn2maBLhD4R0VqOL73HmwKSqAMYHM4ns2_3WZ5JCd6mJ4tMoh2lLkmlnCKtGJqOuQ6BazB238PZ_4Nmt1fb-8RPOzgKvu81K8t2LDVY9jqHELLPnSs1R-fwNmonRfDhjP017VubhB1Lhg1BtHWsOH5QlGpM12hvthKWzatDR1TcprBEDqzsWOzwPkw6qSkGja3TX3dUnqZHVEEzkZ2sWifwsmdLPAzGFR1ZZ8DK0KCO2GmQ5MJi6FOaXkWFERyZqXJQg-GtJz5xZKpIyfubHehbn7knSnm-C0EvVmcJJTKEYkSpdBlbDUPy8zIwoPtXhh5Z9Btfqt-Hrxd3UZTpP0VVdn6ip5JIkRQgQw8SNaEuDah9TvV-Zkj9U4lItOYe-A7ca9GLGmlo5z0Jl_pTY6g5Qh9s3zx_8m-gfuT4-lhfrg_O3gJD2j8spByGwaXzZV9hYjqsnjdqS2D73dtKX8ANdo0SQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVkJcUMtDBAoYCSQ4RJvEdh6HCrHbXbWUrlaUSr0Fx3baSqukJH2of5FfxUzW2bIcuPWarLNW5uFvHM_3AbxHCGszgciNqFR8YTHSlZbGl7JQGYI5XOWpd_hwGu8di68n8mQNfve9MHSsss-JXaI2taY98gHCdDKoSMSgdMciZruTzxe_fFKQoi-tvZyGcjILZqejG3NNHgf29gbLuXZnfxdt_yGKJuMfoz3fKQ74RqBj-6HWKY7RxqoyLG1Hj4YxoCU3SaLTkJdpyYtQx5rKhkKVnGubBbrAIiAqUsPxuQ9gI8FVH6NtYziezr7f7fhITlQxPXNkEA2UuSbGcKq6YhIg6lQDVqDuvwc1_wbQ3Qo42YTHDrqyLwtf24I1Wz2BLZccWvbRMVh_egpno3ZWDBvOMHfXurlFBDpnJBKirWHD87mitme6QhrZSlt2WBs6stR5CUMYzcYdswXOh5GqkmrYzDb1dUtbzeyIqnE2svN5-wyO7-UFP4f1qq7sC2BFSNAnzHRoMmGx7Cktz4KCCM-sNFnowZBeZ36xYO3IiUe7u1A3p7kLyxz_CwFwFicJbeuIRIlS6DK2modlZmThwXZvjNwFd5vfuaIH75a3MSzpW4uqbH1Fv0kiRFOBDDxIVoy4MqHVO9X5WUfwnUpEqTH3wO_MvRyxoJiOcvKbfOk3OQKYI8zT8uX_J_sWHmLE5N_2pwev4BENX_RUbsP6ZXNlXyO4uizeOK9l8PO-A-UPkGQ4jA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CsPbBr3+Nanocrystal+Induced+Bilateral+Interface+Modification+for+Efficient+Planar+Perovskite+Solar+Cells&rft.jtitle=Advanced+science&rft.au=Jianjun+Zhang&rft.au=Linxi+Wang&rft.au=Chenhui+Jiang&rft.au=Bei+Cheng&rft.date=2021-11-01&rft.pub=Wiley&rft.eissn=2198-3844&rft.volume=8&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202102648&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3b19779677304247a4f4cf6ec31f9d5b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon