Version 2 of the IASI NH3 neural network retrieval algorithm: near-real-time and reanalysed datasets

Recently, presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding Interferometer (IASI) satellite observations. In the past year, several improvements have been introduced, and the resulting new baseline version, Artificial Neura...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric measurement techniques Vol. 10; no. 12; pp. 4905 - 4914
Main Authors Martin Van Damme, Whitburn, Simon, Lieven Clarisse, Clerbaux, Cathy, Hurtmans, Daniel, Pierre-François Coheur
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 15.12.2017
European Geosciences Union
Copernicus Publications
Subjects
Online AccessGet full text
ISSN1867-1381
1867-8548
1867-8548
DOI10.5194/amt-10-4905-2017

Cover

Abstract Recently, presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding Interferometer (IASI) satellite observations. In the past year, several improvements have been introduced, and the resulting new baseline version, Artificial Neural Network for IASI (ANNI)-NH3-v2.1, is documented here. One of the main changes to the algorithm is that separate neural networks were trained for land and sea observations, resulting in a better training performance for both groups. By reducing and transforming the input parameter space, performance is now also better for observations associated with favourable sounding conditions (i.e. enhanced thermal contrasts). Other changes relate to the introduction of a bias correction over land and sea and the treatment of the satellite zenith angle. In addition to these algorithmic changes, new recommendations for post-filtering the data and for averaging data in time or space are formulated. We also introduce a second dataset (ANNI-NH3-v2.1R-I) which relies on ERA-Interim ECMWF meteorological input data, along with surface temperature retrieved from a dedicated network, rather than the operationally provided Eumetsat IASI Level 2 (L2) data used for the standard near-real-time version. The need for such a dataset emerged after a series of sharp discontinuities were identified in the NH3 time series, which could be traced back to incremental changes in the IASI L2 algorithms for temperature and clouds. The reanalysed dataset is coherent in time and can therefore be used to study trends. Furthermore, both datasets agree reasonably well in the mean on recent data, after the date when the IASI meteorological L2 version 6 became operational (30 September 2014).
AbstractList Recently, Whitburn et al.(2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding Interferometer (IASI) satellite observations. In the past year, several improvements have been introduced, and the resulting new baseline version, Artificial Neural Network for IASI (ANNI)-NH3-v2.1, is documented here. One of the main changes to the algorithm is that separate neural networks were trained for land and sea observations, resulting in a better training performance for both groups. By reducing and transforming the input parameter space, performance is now also better for observations associated with favourable sounding conditions (i.e. enhanced thermal contrasts). Other changes relate to the introduction of a bias correction over land and sea and the treatment of the satellite zenith angle. In addition to these algorithmic changes, new recommendations for post-filtering the data and for averaging data in time or space are formulated. We also introduce a second dataset (ANNI-NH3-v2.1R-I) which relies on ERA-Interim ECMWF meteorological input data, along with surface temperature retrieved from a dedicated network, rather than the operationally provided Eumetsat IASI Level 2 (L2) data used for the standard near-real-time version. The need for such a dataset emerged after a series of sharp discontinuities were identified in the NH3 time series, which could be traced back to incremental changes in the IASI L2 algorithms for temperature and clouds. The reanalysed dataset is coherent in time and can therefore be used to study trends. Furthermore, both datasets agree reasonably well in the mean on recent data, after the date when the IASI meteorological L2 version 6 became operational (30 September 2014).
Recently, presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding Interferometer (IASI) satellite observations. In the past year, several improvements have been introduced, and the resulting new baseline version, Artificial Neural Network for IASI (ANNI)-NH3-v2.1, is documented here. One of the main changes to the algorithm is that separate neural networks were trained for land and sea observations, resulting in a better training performance for both groups. By reducing and transforming the input parameter space, performance is now also better for observations associated with favourable sounding conditions (i.e. enhanced thermal contrasts). Other changes relate to the introduction of a bias correction over land and sea and the treatment of the satellite zenith angle. In addition to these algorithmic changes, new recommendations for post-filtering the data and for averaging data in time or space are formulated. We also introduce a second dataset (ANNI-NH3-v2.1R-I) which relies on ERA-Interim ECMWF meteorological input data, along with surface temperature retrieved from a dedicated network, rather than the operationally provided Eumetsat IASI Level 2 (L2) data used for the standard near-real-time version. The need for such a dataset emerged after a series of sharp discontinuities were identified in the NH3 time series, which could be traced back to incremental changes in the IASI L2 algorithms for temperature and clouds. The reanalysed dataset is coherent in time and can therefore be used to study trends. Furthermore, both datasets agree reasonably well in the mean on recent data, after the date when the IASI meteorological L2 version 6 became operational (30 September 2014).
Recently, Whitburn et al. (2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding Interferometer (IASI) satellite observations. In the past year, several improvements have been introduced, and the resulting new baseline version, Artificial Neural Network for IASI (ANNI)-NH3-v2.1, is documented here. One of the main changes to the algorithm is that separate neural networks were trained for land and sea observations, resulting in a better training performance for both groups. By reducing and transforming the input parameter space, performance is now also better for observations associated with favourable sounding conditions (i.e. enhanced thermal contrasts). Other changes relate to the introduction of a bias correction over land and sea and the treatment of the satellite zenith angle. In addition to these algorithmic changes, new recommendations for post-filtering the data and for averaging data in time or space are formulated. We also introduce a second dataset (ANNI-NH3-v2.1R-I) which relies on ERA-Interim ECMWF meteorological input data, along with surface temperature retrieved from a dedicated network, rather than the operationally provided Eumetsat IASI Level 2 (L2) data used for the standard near-real-time version. The need for such a dataset emerged after a series of sharp discontinuities were identified in the NH3 time series, which could be traced back to incremental changes in the IASI L2 algorithms for temperature and clouds. The reanalysed dataset is coherent in time and can therefore be used to study trends. Furthermore, both datasets agree reasonably well in the mean on recent data, after the date when the IASI meteorological L2 version 6 became operational (30 September 2014).
Author Whitburn, Simon
Clerbaux, Cathy
Pierre-François Coheur
Lieven Clarisse
Hurtmans, Daniel
Martin Van Damme
Author_xml – sequence: 1
  fullname: Martin Van Damme
– sequence: 2
  givenname: Simon
  surname: Whitburn
  fullname: Whitburn, Simon
– sequence: 3
  fullname: Lieven Clarisse
– sequence: 4
  givenname: Cathy
  surname: Clerbaux
  fullname: Clerbaux, Cathy
– sequence: 5
  givenname: Daniel
  surname: Hurtmans
  fullname: Hurtmans, Daniel
– sequence: 6
  fullname: Pierre-François Coheur
BackLink https://insu.hal.science/insu-01665525$$DView record in HAL
BookMark eNpVkEFvEzEQhVeoSLSFO8eVuCG5eGyv1-YWVUAiRXCg5WpNdmebDc462N5W-fd1SIXE6Y1m3rzRfFfVxRQmqqr3wG8asOoT7jMDzpTlDRMc2lfVJRjdMtMoc_FSgzTwprpKace5VtCKy6r_RTGNYapFHYY6b6leLX6u6u9LWU80R_RF8lOIv-tIOY70WDroH0Ic83b_uQwxskjoWR73VOPUFx9O6I-J-rrHjIlyelu9HtAnevei19X91y93t0u2_vFtdbtYs15akVmnNEFLgM2gFSowCKR1r63uNDfSKIEohaTBbIbNwDV05R-uuNWk5QAor6vVObcPuHOHOO4xHl3A0f1thPjgMOax8-SGrqF-I7tWWFRd21qJreYk-w1vO7K2ZME5a54OeHxC7_8FAncn5K4gP9Un5O6EvOx8PO9s0f93frlYu3FKs-OgddOI5hGK-cPZfIjhz0wpu12YY0GXnFCgtFFWGPkM0FSQkQ
ContentType Journal Article
Copyright 2017. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2017. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
1XC
VOOES
ADTOC
UNPAY
DOA
DOI 10.5194/amt-10-4905-2017
DatabaseName Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Continental Europe Database
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Collection (ProQuest)
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Physics
EISSN 1867-8548
EndPage 4914
ExternalDocumentID oai_doaj_org_article_fc5edb3c729a4c7793a760e3db07ce99
10.5194/amt-10-4905-2017
oai:HAL:insu-01665525v1
GroupedDBID 23N
5VS
7QH
7TG
7TN
7UA
8FD
8FE
8FG
8FH
8R4
8R5
AAFWJ
ABDBF
ABUWG
ACGFO
ACUHS
ADBBV
AEGXH
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
C1K
CCPQU
D1K
DWQXO
E3Z
ESX
F1W
GROUPED_DOAJ
H13
H8D
H96
HCIFZ
IAO
IEA
IPNFZ
ISR
ITC
K6-
KL.
KQ8
L.G
L7M
LK5
M7R
OK1
P2P
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
Q2X
RIG
RKB
RNS
TR2
TUS
1XC
C1A
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-d392t-c46e17e1a5f64a418a1e66d696c6083842aa323ef8bfbf061c38104096e63f1a3
IEDL.DBID BENPR
ISSN 1867-1381
1867-8548
IngestDate Fri Oct 03 12:51:38 EDT 2025
Sun Oct 26 03:46:13 EDT 2025
Tue Oct 14 20:26:53 EDT 2025
Sat Jul 26 00:05:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d392t-c46e17e1a5f64a418a1e66d696c6083842aa323ef8bfbf061c38104096e63f1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1752-0558
0000-0002-8805-2141
0000-0003-0394-7200
0000-0002-5022-8842
OpenAccessLink https://www.proquest.com/docview/2414684928?pq-origsite=%requestingapplication%&accountid=15518
PQID 2414684928
PQPubID 105742
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_fc5edb3c729a4c7793a760e3db07ce99
unpaywall_primary_10_5194_amt_10_4905_2017
hal_primary_oai_HAL_insu_01665525v1
proquest_journals_2414684928
PublicationCentury 2000
PublicationDate 2017-12-15
PublicationDateYYYYMMDD 2017-12-15
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-15
  day: 15
PublicationDecade 2010
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric measurement techniques
PublicationYear 2017
Publisher Copernicus GmbH
European Geosciences Union
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: European Geosciences Union
– name: Copernicus Publications
SSID ssj0064172
Score 2.5242584
Snippet Recently, presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding Interferometer (IASI)...
Recently, Whitburn et al. (2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding...
Recently, Whitburn et al.(2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding...
SourceID doaj
unpaywall
hal
proquest
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 4905
SubjectTerms Algorithms
Ammonia
Artificial neural networks
Atmospheric and Oceanic Physics
Atmospheric sounding
Bias
Data
Datasets
Infrared interferometers
Neural networks
Physics
Real time
Satellite observation
Satellites
Simulation
Spectrum analysis
Surface temperature
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBPEWgIEsgDkhR42dibktFtUW0F6jUmzVxbFopzVbZFMS_Z8ZJq-XEhVteGkWeL55v7Mk3jL2rbBSdVJipqjqVGmQs2xaoyty1xtTKxbx7fnJq12f6y7k532n1RTVhszzwPHAHKZjYtSogCQQdaoQT1LaKqmurOkSXf92rGnebTM1zsNUit20itTZS2RPzBiWyFX0AVxPNPdpVBiFCjcqyWD_Glgsqhdzhmfdvhmv4_Qv6fifkHD1iDxeuyFfzOz5m9-LwhBUnSHM3Y14N5-_5YX-JnDOfPWXdsvrFJd8kjtSOH6--HfPTteKkW4m2hrnqm4-5kRaijEP_YzNeThdXH_EmjCWSyL6kjvMchg6fg6xaEjtOtaTbOG2fsbOjz98P1-XSRqHskPxMZdDojzoKMMlq0KIBEa3trLPBIgFrtARQUsXUtKlNGN8DqX5h3mejVUmAes72hs0QXzCO9MS1tQwQ6kZ3GOubKINrok4gq6R0wT7RWPrrWSnDk3Z1voAe9YtH_b88WrC36Im_bKxXXz3V5nskqNYYaX6Kgu3fesovn93WIx3RttFONgX7cOe9O1OY8BAEPEKAjgkCniDw8n-89iv2gGxRqYsw-2xvGm_iayQsU_smY_MPndvmPg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIAt2B7gwhsRWpAlEAekbJP4EYfbUlFtEV0hwUpwssaO3VZkk1WSLYJfzzibrQqcEKc4jmUlmrH9jT2ZIeRlIl1aZgwtVZb7mEPmYmMgeJkXRoicFW44PT9dyPmSv_8idt6E3ehWCf2qQTvPQReHQKaDjZ4mh7xIBNrqaX4Iqz5MH6EiDhXTdelvkj0pEMcnZG-5-Dj7GgwthZNAyoZEpUNZIZ5vjyqRW_hf3Yxh-3GVOQ9OkdeI89amXsOP71BV1xaf47vE7F5763PybbrpzdT-_COi43991z1yZ0RTOtvq0n1yw9UPSHSKVN20w-Y7fUWPqgtE3OHuISnHzTaa0cZTJEl6Mvt0QhdzRkOYTOyr3jqZ03bI24VKTaE6a9qL_nz1Bh9CGyOzVnFIcE-hLrEdDEFSXEmD62rn-u4RWR6_-3w0j8esDXGJrNXHlqP4c5eC8JIDTxWkTspSFtJK5D3FMwCWMeeV8cYjTtgQZAzNTOkk8ymwx2RSN7V7QijSUGHyzILNFS8RLZTLbKEc95AlnvGIvA0C0-ttYA4dQmUPFU17pseRp70VrjTMohUB3OY4H0EuE8dKk-TWFUVEXqC4f-tjPvugw68AGnlYCpGJyzQiBzt10OMo7zTSD5eKF5mKyOsrFbnqCu2roGcaxRrKQaw6iPXpvzTeJ7fDJXjQpOKATPp2454hB_Xm-ajpvwBSh_9I
  priority: 102
  providerName: Unpaywall
Title Version 2 of the IASI NH3 neural network retrieval algorithm: near-real-time and reanalysed datasets
URI https://www.proquest.com/docview/2414684928
https://insu.hal.science/insu-01665525
https://www.atmos-meas-tech.net/10/4905/2017/amt-10-4905-2017.pdf
https://doaj.org/article/fc5edb3c729a4c7793a760e3db07ce99
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: ABDBF
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: BFMQW
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: BENPR
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: 8FG
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF_a64O-iJ8YrceC4oMQmuxuNokgci09r2KPoh7Up2WzH62QJmcuVfzvndlLan3xLZssA8nMzvxmd_IbQl4l0qWWcchUee5joZmLq0pjlXlZZVnOSxdOz0-XcrESH8-z8x2yHP-FwbLK0ScGR21bg3vkBxBphCxEyYr36x8xdo3C09WxhYYeWivYd4FibJfsMWTGmpC9w-Pl2efRN0uRhnZOyOKG7Hvp9uASUIw40Fc9-iRRJhmYDjYwCyT-EHMusUTyFv68c92s9e9fuq5vhaL5fXJvwJB0tlX6A7LjmockOgX423Zhl5y-pkf1d8CiYfSI2GFXjDLaegqQj57MvpzQ5YJT5LMEWc22Gpx2ocEWWB_V9QW8fn959RYe6i4GcFnH2Ime6sbCPB3YTJylWGO6cf3mMVnNj78eLeKhvUJsART1sRGgp9ylOvNSaJEWOnVSWllKIwGYFYJpzRl3vqh85SHuG2QDg3xQOsl9qvkTMmnaxj0lFGBLWeXMaJMXwgIGKBwzZeGE1yzxXETkEL-lWm8ZNBRyWocbbXehhiWivMmcrbgBuK-FycFx6FwmjtsqyY0ry4i8BE38I2Mx-6SwZl8BcJVZxrKfaUT2R02pYTlu1F_jicibG-3diIJECE1AgQngNZqAQhN49n9Zz8ldnIXFLWm2TyZ9d-1eAETpqynZLeYfpoP1TUOiD6PV8mz27Q-V5ubi
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKeygXxFMECljicUCKmtiOkyBVaFtaZenuCkEr9eY6ttNWyiZLNqXqn-O3MZNNSrlw6y3PUeT5MvONPZ4h5F0gXWgZh0iVx4UvNHN-nmvMMk_zKIp56rrV8-lMZsfi60l0skZ-D3thMK1ysImdoba1wTnybfA0QiYiZcnnxU8fu0bh6urQQkP3rRXsTldirN_YceiuryCEW-6Mv4C-3zN2sH-0l_l9lwHfAjdofSPgc2MX6qiQQosw0aGT0spUGgn8JBFMa864K5K8yAtwfwaLYkFYJJ3kRag5yL1HNgQXKQR_G7v7s2_fB18gRdi1j8KqcVjtL1wtlAJrEtt63qINFGkQAVSxYVrXNAB83DmmZN7iu5uX1UJfX-myvOX6Dh6SBz1npaMVyB6RNVc9Jt4U6HbddLPy9APdKy-A-3ZnT4jtZ-Eoo3VBgWLS8ejHmM4yTrF-JsiqVtnntOkaegHaqS7PYLjb8_knuKkbH8hs6bcXc0d1ZeE53VVPcZZiTuvStcun5PhOBvoZWa_qyj0nFGhSmsfMaBMnwgLnSBwzaeJEoVlQcOGRXRxLtVhV7FBYQ7u7UDdnqv8lVWEiZ3NuILzQwsRgqHQsA8dtHsTGpalH3oIm_pGRjSYK9wgoIMoyilj0K_TI1qAp1f_-S_UXrB75eKO9G1EQeCEEFEAAjxECCiHw4v-y3pDN7Gg6UZPx7PAluY9vYGJNGG2R9ba5dK-AHrX56x6DlJzeNez_AECWH1w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAL4ikCBSzxOCBFm9iOkyAhtLQsu7RdIUGl3ozjR4uUJks2pepf49cxk0cpF2695TmKPF9mvrHHM4S8jKSLLeMQqfLUh0IzFxaFxizzvEiSlOeuWz3fX8r5gfh8mBxukN_jXhhMqxxtYmeobW1wjnwCnkbITOQsm_ghLeLLzuz96meIHaRwpXVsp9FDZNedn0H4tn632AFdv2Js9vHb9jwcOgyEFnhBGxoBn5q6WCdeCi3iTMdOSitzaSRwk0wwrTnjzmeFLzy4PoMFsSAkkk5yH2sOcq-R6ylWccdd6rNPoxeQIu4aR2G9OKzzF_dLpMCXxESftGj9RB4lAFJslda1CwDvdozJmJeY7s3TaqXPz3RZXnJ6szvk9sBW6bSH112y4ap7JNgHol033Xw8fU23yx_Aeruz-8QO82-U0dpTIJd0Mf26oMs5p1g5E2RVfd45bbpWXoBzqssjGNz2-OQt3NRNCDS2DLHnPdWVhed0VzfFWYrZrGvXrh-QgysZ5odks6or94hQIEh5kTKjTZoJC2wjc8zkmRNes8hzEZAPOJZq1dfqUFg9u7tQN0dq-BmVN4mzBTcQWGhhUjBROpWR47aIUuPyPCAvQBP_yJhP9xTuDlBAkWWSsORXHJCtUVNq-PHX6i9MA_LmQnsXoiDkQggogAAeIwQUQuDx_2U9JzcA7Gpvsdx9Qm7hC5hREydbZLNtTt1T4EVt8awDICXfrxrxfwBbMRz2
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIAt2B7gwhsRWpAlEAekbJP4EYfbUlFtEV0hwUpwssaO3VZkk1WSLYJfzzibrQqcEKc4jmUlmrH9jT2ZIeRlIl1aZgwtVZb7mEPmYmMgeJkXRoicFW44PT9dyPmSv_8idt6E3ehWCf2qQTvPQReHQKaDjZ4mh7xIBNrqaX4Iqz5MH6EiDhXTdelvkj0pEMcnZG-5-Dj7GgwthZNAyoZEpUNZIZ5vjyqRW_hf3Yxh-3GVOQ9OkdeI89amXsOP71BV1xaf47vE7F5763PybbrpzdT-_COi43991z1yZ0RTOtvq0n1yw9UPSHSKVN20w-Y7fUWPqgtE3OHuISnHzTaa0cZTJEl6Mvt0QhdzRkOYTOyr3jqZ03bI24VKTaE6a9qL_nz1Bh9CGyOzVnFIcE-hLrEdDEFSXEmD62rn-u4RWR6_-3w0j8esDXGJrNXHlqP4c5eC8JIDTxWkTspSFtJK5D3FMwCWMeeV8cYjTtgQZAzNTOkk8ymwx2RSN7V7QijSUGHyzILNFS8RLZTLbKEc95AlnvGIvA0C0-ttYA4dQmUPFU17pseRp70VrjTMohUB3OY4H0EuE8dKk-TWFUVEXqC4f-tjPvugw68AGnlYCpGJyzQiBzt10OMo7zTSD5eKF5mKyOsrFbnqCu2roGcaxRrKQaw6iPXpvzTeJ7fDJXjQpOKATPp2454hB_Xm-ajpvwBSh_9I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Version+2+of+the+IASI+NH3+neural+network+retrieval+algorithm%3A+near-real-time+and+reanalysed+datasets&rft.jtitle=Atmospheric+measurement+techniques&rft.au=Martin+Van+Damme&rft.au=Whitburn%2C+Simon&rft.au=Lieven+Clarisse&rft.au=Clerbaux%2C+Cathy&rft.date=2017-12-15&rft.pub=Copernicus+GmbH&rft.issn=1867-1381&rft.eissn=1867-8548&rft.volume=10&rft.issue=12&rft.spage=4905&rft.epage=4914&rft_id=info:doi/10.5194%2Famt-10-4905-2017&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-1381&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-1381&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-1381&client=summon