Version 2 of the IASI NH3 neural network retrieval algorithm: near-real-time and reanalysed datasets
Recently, presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding Interferometer (IASI) satellite observations. In the past year, several improvements have been introduced, and the resulting new baseline version, Artificial Neura...
Saved in:
| Published in | Atmospheric measurement techniques Vol. 10; no. 12; pp. 4905 - 4914 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Katlenburg-Lindau
Copernicus GmbH
15.12.2017
European Geosciences Union Copernicus Publications |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1867-1381 1867-8548 1867-8548 |
| DOI | 10.5194/amt-10-4905-2017 |
Cover
| Abstract | Recently, presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding Interferometer (IASI) satellite observations. In the past year, several improvements have been introduced, and the resulting new baseline version, Artificial Neural Network for IASI (ANNI)-NH3-v2.1, is documented here. One of the main changes to the algorithm is that separate neural networks were trained for land and sea observations, resulting in a better training performance for both groups. By reducing and transforming the input parameter space, performance is now also better for observations associated with favourable sounding conditions (i.e. enhanced thermal contrasts). Other changes relate to the introduction of a bias correction over land and sea and the treatment of the satellite zenith angle. In addition to these algorithmic changes, new recommendations for post-filtering the data and for averaging data in time or space are formulated. We also introduce a second dataset (ANNI-NH3-v2.1R-I) which relies on ERA-Interim ECMWF meteorological input data, along with surface temperature retrieved from a dedicated network, rather than the operationally provided Eumetsat IASI Level 2 (L2) data used for the standard near-real-time version. The need for such a dataset emerged after a series of sharp discontinuities were identified in the NH3 time series, which could be traced back to incremental changes in the IASI L2 algorithms for temperature and clouds. The reanalysed dataset is coherent in time and can therefore be used to study trends. Furthermore, both datasets agree reasonably well in the mean on recent data, after the date when the IASI meteorological L2 version 6 became operational (30 September 2014). |
|---|---|
| AbstractList | Recently, Whitburn et al.(2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding Interferometer (IASI) satellite observations. In the past year, several improvements have been introduced, and the resulting new baseline version, Artificial Neural Network for IASI (ANNI)-NH3-v2.1, is documented here. One of the main changes to the algorithm is that separate neural networks were trained for land and sea observations, resulting in a better training performance for both groups. By reducing and transforming the input parameter space, performance is now also better for observations associated with favourable sounding conditions (i.e. enhanced thermal contrasts). Other changes relate to the introduction of a bias correction over land and sea and the treatment of the satellite zenith angle. In addition to these algorithmic changes, new recommendations for post-filtering the data and for averaging data in time or space are formulated. We also introduce a second dataset (ANNI-NH3-v2.1R-I) which relies on ERA-Interim ECMWF meteorological input data, along with surface temperature retrieved from a dedicated network, rather than the operationally provided Eumetsat IASI Level 2 (L2) data used for the standard near-real-time version. The need for such a dataset emerged after a series of sharp discontinuities were identified in the NH3 time series, which could be traced back to incremental changes in the IASI L2 algorithms for temperature and clouds. The reanalysed dataset is coherent in time and can therefore be used to study trends. Furthermore, both datasets agree reasonably well in the mean on recent data, after the date when the IASI meteorological L2 version 6 became operational (30 September 2014). Recently, presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding Interferometer (IASI) satellite observations. In the past year, several improvements have been introduced, and the resulting new baseline version, Artificial Neural Network for IASI (ANNI)-NH3-v2.1, is documented here. One of the main changes to the algorithm is that separate neural networks were trained for land and sea observations, resulting in a better training performance for both groups. By reducing and transforming the input parameter space, performance is now also better for observations associated with favourable sounding conditions (i.e. enhanced thermal contrasts). Other changes relate to the introduction of a bias correction over land and sea and the treatment of the satellite zenith angle. In addition to these algorithmic changes, new recommendations for post-filtering the data and for averaging data in time or space are formulated. We also introduce a second dataset (ANNI-NH3-v2.1R-I) which relies on ERA-Interim ECMWF meteorological input data, along with surface temperature retrieved from a dedicated network, rather than the operationally provided Eumetsat IASI Level 2 (L2) data used for the standard near-real-time version. The need for such a dataset emerged after a series of sharp discontinuities were identified in the NH3 time series, which could be traced back to incremental changes in the IASI L2 algorithms for temperature and clouds. The reanalysed dataset is coherent in time and can therefore be used to study trends. Furthermore, both datasets agree reasonably well in the mean on recent data, after the date when the IASI meteorological L2 version 6 became operational (30 September 2014). Recently, Whitburn et al. (2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding Interferometer (IASI) satellite observations. In the past year, several improvements have been introduced, and the resulting new baseline version, Artificial Neural Network for IASI (ANNI)-NH3-v2.1, is documented here. One of the main changes to the algorithm is that separate neural networks were trained for land and sea observations, resulting in a better training performance for both groups. By reducing and transforming the input parameter space, performance is now also better for observations associated with favourable sounding conditions (i.e. enhanced thermal contrasts). Other changes relate to the introduction of a bias correction over land and sea and the treatment of the satellite zenith angle. In addition to these algorithmic changes, new recommendations for post-filtering the data and for averaging data in time or space are formulated. We also introduce a second dataset (ANNI-NH3-v2.1R-I) which relies on ERA-Interim ECMWF meteorological input data, along with surface temperature retrieved from a dedicated network, rather than the operationally provided Eumetsat IASI Level 2 (L2) data used for the standard near-real-time version. The need for such a dataset emerged after a series of sharp discontinuities were identified in the NH3 time series, which could be traced back to incremental changes in the IASI L2 algorithms for temperature and clouds. The reanalysed dataset is coherent in time and can therefore be used to study trends. Furthermore, both datasets agree reasonably well in the mean on recent data, after the date when the IASI meteorological L2 version 6 became operational (30 September 2014). |
| Author | Whitburn, Simon Clerbaux, Cathy Pierre-François Coheur Lieven Clarisse Hurtmans, Daniel Martin Van Damme |
| Author_xml | – sequence: 1 fullname: Martin Van Damme – sequence: 2 givenname: Simon surname: Whitburn fullname: Whitburn, Simon – sequence: 3 fullname: Lieven Clarisse – sequence: 4 givenname: Cathy surname: Clerbaux fullname: Clerbaux, Cathy – sequence: 5 givenname: Daniel surname: Hurtmans fullname: Hurtmans, Daniel – sequence: 6 fullname: Pierre-François Coheur |
| BackLink | https://insu.hal.science/insu-01665525$$DView record in HAL |
| BookMark | eNpVkEFvEzEQhVeoSLSFO8eVuCG5eGyv1-YWVUAiRXCg5WpNdmebDc462N5W-fd1SIXE6Y1m3rzRfFfVxRQmqqr3wG8asOoT7jMDzpTlDRMc2lfVJRjdMtMoc_FSgzTwprpKace5VtCKy6r_RTGNYapFHYY6b6leLX6u6u9LWU80R_RF8lOIv-tIOY70WDroH0Ic83b_uQwxskjoWR73VOPUFx9O6I-J-rrHjIlyelu9HtAnevei19X91y93t0u2_vFtdbtYs15akVmnNEFLgM2gFSowCKR1r63uNDfSKIEohaTBbIbNwDV05R-uuNWk5QAor6vVObcPuHOHOO4xHl3A0f1thPjgMOax8-SGrqF-I7tWWFRd21qJreYk-w1vO7K2ZME5a54OeHxC7_8FAncn5K4gP9Un5O6EvOx8PO9s0f93frlYu3FKs-OgddOI5hGK-cPZfIjhz0wpu12YY0GXnFCgtFFWGPkM0FSQkQ |
| ContentType | Journal Article |
| Copyright | 2017. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2017. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L7M P5Z P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 1XC VOOES ADTOC UNPAY DOA |
| DOI | 10.5194/amt-10-4905-2017 |
| DatabaseName | Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Continental Europe Database ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Collection (ProQuest) Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Physics |
| EISSN | 1867-8548 |
| EndPage | 4914 |
| ExternalDocumentID | oai_doaj_org_article_fc5edb3c729a4c7793a760e3db07ce99 10.5194/amt-10-4905-2017 oai:HAL:insu-01665525v1 |
| GroupedDBID | 23N 5VS 7QH 7TG 7TN 7UA 8FD 8FE 8FG 8FH 8R4 8R5 AAFWJ ABDBF ABUWG ACGFO ACUHS ADBBV AEGXH AENEX AEUYN AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ C1K CCPQU D1K DWQXO E3Z ESX F1W GROUPED_DOAJ H13 H8D H96 HCIFZ IAO IEA IPNFZ ISR ITC K6- KL. KQ8 L.G L7M LK5 M7R OK1 P2P P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC Q2X RIG RKB RNS TR2 TUS 1XC C1A VOOES ADTOC UNPAY |
| ID | FETCH-LOGICAL-d392t-c46e17e1a5f64a418a1e66d696c6083842aa323ef8bfbf061c38104096e63f1a3 |
| IEDL.DBID | BENPR |
| ISSN | 1867-1381 1867-8548 |
| IngestDate | Fri Oct 03 12:51:38 EDT 2025 Sun Oct 26 03:46:13 EDT 2025 Tue Oct 14 20:26:53 EDT 2025 Sat Jul 26 00:05:42 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-d392t-c46e17e1a5f64a418a1e66d696c6083842aa323ef8bfbf061c38104096e63f1a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1752-0558 0000-0002-8805-2141 0000-0003-0394-7200 0000-0002-5022-8842 |
| OpenAccessLink | https://www.proquest.com/docview/2414684928?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2414684928 |
| PQPubID | 105742 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_fc5edb3c729a4c7793a760e3db07ce99 unpaywall_primary_10_5194_amt_10_4905_2017 hal_primary_oai_HAL_insu_01665525v1 proquest_journals_2414684928 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-12-15 |
| PublicationDateYYYYMMDD | 2017-12-15 |
| PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | Atmospheric measurement techniques |
| PublicationYear | 2017 |
| Publisher | Copernicus GmbH European Geosciences Union Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: European Geosciences Union – name: Copernicus Publications |
| SSID | ssj0064172 |
| Score | 2.5242584 |
| Snippet | Recently, presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding Interferometer (IASI)... Recently, Whitburn et al. (2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding... Recently, Whitburn et al.(2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding... |
| SourceID | doaj unpaywall hal proquest |
| SourceType | Open Website Open Access Repository Aggregation Database |
| StartPage | 4905 |
| SubjectTerms | Algorithms Ammonia Artificial neural networks Atmospheric and Oceanic Physics Atmospheric sounding Bias Data Datasets Infrared interferometers Neural networks Physics Real time Satellite observation Satellites Simulation Spectrum analysis Surface temperature Training |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBPEWgIEsgDkhR42dibktFtUW0F6jUmzVxbFopzVbZFMS_Z8ZJq-XEhVteGkWeL55v7Mk3jL2rbBSdVJipqjqVGmQs2xaoyty1xtTKxbx7fnJq12f6y7k532n1RTVhszzwPHAHKZjYtSogCQQdaoQT1LaKqmurOkSXf92rGnebTM1zsNUit20itTZS2RPzBiWyFX0AVxPNPdpVBiFCjcqyWD_Glgsqhdzhmfdvhmv4_Qv6fifkHD1iDxeuyFfzOz5m9-LwhBUnSHM3Y14N5-_5YX-JnDOfPWXdsvrFJd8kjtSOH6--HfPTteKkW4m2hrnqm4-5kRaijEP_YzNeThdXH_EmjCWSyL6kjvMchg6fg6xaEjtOtaTbOG2fsbOjz98P1-XSRqHskPxMZdDojzoKMMlq0KIBEa3trLPBIgFrtARQUsXUtKlNGN8DqX5h3mejVUmAes72hs0QXzCO9MS1tQwQ6kZ3GOubKINrok4gq6R0wT7RWPrrWSnDk3Z1voAe9YtH_b88WrC36Im_bKxXXz3V5nskqNYYaX6Kgu3fesovn93WIx3RttFONgX7cOe9O1OY8BAEPEKAjgkCniDw8n-89iv2gGxRqYsw-2xvGm_iayQsU_smY_MPndvmPg priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIAt2B7gwhsRWpAlEAekbJP4EYfbUlFtEV0hwUpwssaO3VZkk1WSLYJfzzibrQqcEKc4jmUlmrH9jT2ZIeRlIl1aZgwtVZb7mEPmYmMgeJkXRoicFW44PT9dyPmSv_8idt6E3ehWCf2qQTvPQReHQKaDjZ4mh7xIBNrqaX4Iqz5MH6EiDhXTdelvkj0pEMcnZG-5-Dj7GgwthZNAyoZEpUNZIZ5vjyqRW_hf3Yxh-3GVOQ9OkdeI89amXsOP71BV1xaf47vE7F5763PybbrpzdT-_COi43991z1yZ0RTOtvq0n1yw9UPSHSKVN20w-Y7fUWPqgtE3OHuISnHzTaa0cZTJEl6Mvt0QhdzRkOYTOyr3jqZ03bI24VKTaE6a9qL_nz1Bh9CGyOzVnFIcE-hLrEdDEFSXEmD62rn-u4RWR6_-3w0j8esDXGJrNXHlqP4c5eC8JIDTxWkTspSFtJK5D3FMwCWMeeV8cYjTtgQZAzNTOkk8ymwx2RSN7V7QijSUGHyzILNFS8RLZTLbKEc95AlnvGIvA0C0-ttYA4dQmUPFU17pseRp70VrjTMohUB3OY4H0EuE8dKk-TWFUVEXqC4f-tjPvugw68AGnlYCpGJyzQiBzt10OMo7zTSD5eKF5mKyOsrFbnqCu2roGcaxRrKQaw6iPXpvzTeJ7fDJXjQpOKATPp2454hB_Xm-ajpvwBSh_9I priority: 102 providerName: Unpaywall |
| Title | Version 2 of the IASI NH3 neural network retrieval algorithm: near-real-time and reanalysed datasets |
| URI | https://www.proquest.com/docview/2414684928 https://insu.hal.science/insu-01665525 https://www.atmos-meas-tech.net/10/4905/2017/amt-10-4905-2017.pdf https://doaj.org/article/fc5edb3c729a4c7793a760e3db07ce99 |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: ABDBF dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: BFMQW dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: BENPR dateStart: 20100501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: 8FG dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF_a64O-iJ8YrceC4oMQmuxuNokgci09r2KPoh7Up2WzH62QJmcuVfzvndlLan3xLZssA8nMzvxmd_IbQl4l0qWWcchUee5joZmLq0pjlXlZZVnOSxdOz0-XcrESH8-z8x2yHP-FwbLK0ScGR21bg3vkBxBphCxEyYr36x8xdo3C09WxhYYeWivYd4FibJfsMWTGmpC9w-Pl2efRN0uRhnZOyOKG7Hvp9uASUIw40Fc9-iRRJhmYDjYwCyT-EHMusUTyFv68c92s9e9fuq5vhaL5fXJvwJB0tlX6A7LjmockOgX423Zhl5y-pkf1d8CiYfSI2GFXjDLaegqQj57MvpzQ5YJT5LMEWc22Gpx2ocEWWB_V9QW8fn959RYe6i4GcFnH2Ime6sbCPB3YTJylWGO6cf3mMVnNj78eLeKhvUJsART1sRGgp9ylOvNSaJEWOnVSWllKIwGYFYJpzRl3vqh85SHuG2QDg3xQOsl9qvkTMmnaxj0lFGBLWeXMaJMXwgIGKBwzZeGE1yzxXETkEL-lWm8ZNBRyWocbbXehhiWivMmcrbgBuK-FycFx6FwmjtsqyY0ry4i8BE38I2Mx-6SwZl8BcJVZxrKfaUT2R02pYTlu1F_jicibG-3diIJECE1AgQngNZqAQhN49n9Zz8ldnIXFLWm2TyZ9d-1eAETpqynZLeYfpoP1TUOiD6PV8mz27Q-V5ubi |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKeygXxFMECljicUCKmtiOkyBVaFtaZenuCkEr9eY6ttNWyiZLNqXqn-O3MZNNSrlw6y3PUeT5MvONPZ4h5F0gXWgZh0iVx4UvNHN-nmvMMk_zKIp56rrV8-lMZsfi60l0skZ-D3thMK1ysImdoba1wTnybfA0QiYiZcnnxU8fu0bh6urQQkP3rRXsTldirN_YceiuryCEW-6Mv4C-3zN2sH-0l_l9lwHfAjdofSPgc2MX6qiQQosw0aGT0spUGgn8JBFMa864K5K8yAtwfwaLYkFYJJ3kRag5yL1HNgQXKQR_G7v7s2_fB18gRdi1j8KqcVjtL1wtlAJrEtt63qINFGkQAVSxYVrXNAB83DmmZN7iu5uX1UJfX-myvOX6Dh6SBz1npaMVyB6RNVc9Jt4U6HbddLPy9APdKy-A-3ZnT4jtZ-Eoo3VBgWLS8ejHmM4yTrF-JsiqVtnntOkaegHaqS7PYLjb8_knuKkbH8hs6bcXc0d1ZeE53VVPcZZiTuvStcun5PhOBvoZWa_qyj0nFGhSmsfMaBMnwgLnSBwzaeJEoVlQcOGRXRxLtVhV7FBYQ7u7UDdnqv8lVWEiZ3NuILzQwsRgqHQsA8dtHsTGpalH3oIm_pGRjSYK9wgoIMoyilj0K_TI1qAp1f_-S_UXrB75eKO9G1EQeCEEFEAAjxECCiHw4v-y3pDN7Gg6UZPx7PAluY9vYGJNGG2R9ba5dK-AHrX56x6DlJzeNez_AECWH1w |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAL4ikCBSzxOCBFm9iOkyAhtLQsu7RdIUGl3ozjR4uUJks2pepf49cxk0cpF2695TmKPF9mvrHHM4S8jKSLLeMQqfLUh0IzFxaFxizzvEiSlOeuWz3fX8r5gfh8mBxukN_jXhhMqxxtYmeobW1wjnwCnkbITOQsm_ghLeLLzuz96meIHaRwpXVsp9FDZNedn0H4tn632AFdv2Js9vHb9jwcOgyEFnhBGxoBn5q6WCdeCi3iTMdOSitzaSRwk0wwrTnjzmeFLzy4PoMFsSAkkk5yH2sOcq-R6ylWccdd6rNPoxeQIu4aR2G9OKzzF_dLpMCXxESftGj9RB4lAFJslda1CwDvdozJmJeY7s3TaqXPz3RZXnJ6szvk9sBW6bSH112y4ap7JNgHol033Xw8fU23yx_Aeruz-8QO82-U0dpTIJd0Mf26oMs5p1g5E2RVfd45bbpWXoBzqssjGNz2-OQt3NRNCDS2DLHnPdWVhed0VzfFWYrZrGvXrh-QgysZ5odks6or94hQIEh5kTKjTZoJC2wjc8zkmRNes8hzEZAPOJZq1dfqUFg9u7tQN0dq-BmVN4mzBTcQWGhhUjBROpWR47aIUuPyPCAvQBP_yJhP9xTuDlBAkWWSsORXHJCtUVNq-PHX6i9MA_LmQnsXoiDkQggogAAeIwQUQuDx_2U9JzcA7Gpvsdx9Qm7hC5hREydbZLNtTt1T4EVt8awDICXfrxrxfwBbMRz2 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIAt2B7gwhsRWpAlEAekbJP4EYfbUlFtEV0hwUpwssaO3VZkk1WSLYJfzzibrQqcEKc4jmUlmrH9jT2ZIeRlIl1aZgwtVZb7mEPmYmMgeJkXRoicFW44PT9dyPmSv_8idt6E3ehWCf2qQTvPQReHQKaDjZ4mh7xIBNrqaX4Iqz5MH6EiDhXTdelvkj0pEMcnZG-5-Dj7GgwthZNAyoZEpUNZIZ5vjyqRW_hf3Yxh-3GVOQ9OkdeI89amXsOP71BV1xaf47vE7F5763PybbrpzdT-_COi43991z1yZ0RTOtvq0n1yw9UPSHSKVN20w-Y7fUWPqgtE3OHuISnHzTaa0cZTJEl6Mvt0QhdzRkOYTOyr3jqZ03bI24VKTaE6a9qL_nz1Bh9CGyOzVnFIcE-hLrEdDEFSXEmD62rn-u4RWR6_-3w0j8esDXGJrNXHlqP4c5eC8JIDTxWkTspSFtJK5D3FMwCWMeeV8cYjTtgQZAzNTOkk8ymwx2RSN7V7QijSUGHyzILNFS8RLZTLbKEc95AlnvGIvA0C0-ttYA4dQmUPFU17pseRp70VrjTMohUB3OY4H0EuE8dKk-TWFUVEXqC4f-tjPvugw68AGnlYCpGJyzQiBzt10OMo7zTSD5eKF5mKyOsrFbnqCu2roGcaxRrKQaw6iPXpvzTeJ7fDJXjQpOKATPp2454hB_Xm-ajpvwBSh_9I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Version+2+of+the+IASI+NH3+neural+network+retrieval+algorithm%3A+near-real-time+and+reanalysed+datasets&rft.jtitle=Atmospheric+measurement+techniques&rft.au=Martin+Van+Damme&rft.au=Whitburn%2C+Simon&rft.au=Lieven+Clarisse&rft.au=Clerbaux%2C+Cathy&rft.date=2017-12-15&rft.pub=Copernicus+GmbH&rft.issn=1867-1381&rft.eissn=1867-8548&rft.volume=10&rft.issue=12&rft.spage=4905&rft.epage=4914&rft_id=info:doi/10.5194%2Famt-10-4905-2017&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-1381&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-1381&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-1381&client=summon |