The the Machine Learning Workshop Get Ready to Develop Your Own High-Performance Machine Learning Algorithms with Scikit-learn, 2nd Edition

With expert guidance and real-world examples, The Machine Learning Workshop gets you up and running with programming machine learning algorithms. By showing you how to leverage scikit-learn's flexibility, it teaches you all the skills you need to use machine learning to solve real-world problem...

Full description

Saved in:
Bibliographic Details
Main Author Saleh, Hyatt
Format eBook
LanguageEnglish
Published Birmingham Packt Publishing, Limited 2020
Edition2
Online AccessGet full text
ISBN1839219068
9781839219061

Cover

Abstract With expert guidance and real-world examples, The Machine Learning Workshop gets you up and running with programming machine learning algorithms. By showing you how to leverage scikit-learn's flexibility, it teaches you all the skills you need to use machine learning to solve real-world problems.
AbstractList With expert guidance and real-world examples, The Machine Learning Workshop gets you up and running with programming machine learning algorithms. By showing you how to leverage scikit-learn's flexibility, it teaches you all the skills you need to use machine learning to solve real-world problems.
Author Saleh, Hyatt
Author_xml – sequence: 1
  fullname: Saleh, Hyatt
BookMark eNotjstOwzAURI14CFryD2HFKtK1r59LiEpBCmJTxLJy42tSWtklCf-PJViMRmdGGs2CXaSc6IxVzlhu0TqrpBbnbFHACe5A26sCvJRSCGmvWTVNXwCAJQNjbtjdZqB6Lnr1_bBPVHfkx7RPn_VHHg_TkE-37DL640TVvy_Z-9Nq0z433dv6pX3omoAKeaMl94Q8OK9F72PQWu0AFBBwYckoiCaQ4VIoYbSUBgEtlosY-xhDz3HJ7v92T2P-_qFp3tIu50NPaR79cbt6bLXQDrXBX95rQIE
ContentType eBook
DEWEY 006.31
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781838985462
1838985468
Edition 2
ExternalDocumentID EBC6269367
GroupedDBID 38.
AABBV
AAKGN
AANYM
AAZGR
ABIWA
ABRSK
ABWNX
ACBYE
ADBND
AECLD
AEHEP
AFQEX
ALMA_UNASSIGNED_HOLDINGS
APVFW
ATDNW
BBABE
E2F
IHRAH
L7C
UE6
ID FETCH-LOGICAL-d3531-641ae31d9a62cafd665b0050e0128e750f7de71425276447303832193fcffdc13
ISBN 1839219068
9781839219061
IngestDate Wed Oct 29 02:10:58 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident Q325.5 .S254 2020
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-d3531-641ae31d9a62cafd665b0050e0128e750f7de71425276447303832193fcffdc13
OCLC 1181842248
PQID EBC6269367
PageCount 285
ParticipantIDs proquest_ebookcentral_EBC6269367
PublicationCentury 2000
PublicationDate 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationPlace Birmingham
PublicationPlace_xml – name: Birmingham
PublicationYear 2020
Publisher Packt Publishing, Limited
Publisher_xml – name: Packt Publishing, Limited
SSID ssj0003118077
ssib043741853
ssib049149718
ssib041309141
ssib041428514
Score 2.1450222
Snippet With expert guidance and real-world examples, The Machine Learning Workshop gets you up and running with programming machine learning algorithms. By showing...
SourceID proquest
SourceType Publisher
Subtitle Get Ready to Develop Your Own High-Performance Machine Learning Algorithms with Scikit-learn, 2nd Edition
TableOfContents How Does the Naïve Bayes Algorithm Work? -- Exercise 4.01: Applying the Naïve Bayes Algorithm -- Activity 4.01: Training a Naïve Bayes Model for Our Census Income Dataset -- The Decision Tree Algorithm -- How Does the Decision Tree Algorithm Work? -- Exercise 4.02: Applying the Decision Tree Algorithm -- Activity 4.02: Training a Decision Tree Model for Our Census Income Dataset -- The Support Vector Machine Algorithm -- How Does the SVM Algorithm Work? -- Exercise 4.03: Applying the SVM Algorithm -- Activity 4.03: Training an SVM Model for Our Census Income Dataset -- Error Analysis -- Accuracy, Precision, and Recall -- Summary -- Chapter 5: Supervised Learning - Key Steps -- Introduction -- Artificial Neural Networks -- How Do ANNs Work? -- Forward Propagation -- Cost Function -- Backpropagation -- Updating the Weights and Biases -- Understanding the Hyperparameters -- Number of Hidden Layers and Units -- Activation Functions -- Regularization -- Batch Size -- Learning Rate -- Number of Iterations -- Applications of Neural Networks -- Limitations of Neural Networks -- Applying an Artificial Neural Network -- Scikit-Learn's Multilayer Perceptron -- Exercise 5.01: Applying the MLP Classifier Class -- Activity 5.01: Training an MLP for Our Census Income Dataset -- Performance Analysis -- Error Analysis -- Hyperparameter Fine-Tuning -- Model Comparison -- Activity 5.02: Comparing Different Models to Choose the Best Fit for the Census Income Data Problem -- Summary -- Chapter 6: Building Your Own Program -- Introduction -- Program Definition -- Building a Program - Key Stages -- Preparation -- Creation -- Interaction -- Understanding the Dataset -- Activity 6.01: Performing the Preparation and Creation Stages for the Bank Marketing Dataset -- Saving and Loading a Trained Model -- Saving a Model -- Exercise 6.01: Saving a Trained Model -- Loading a Model
Exercise 6.02: Loading a Saved Model -- Activity 6.02: Saving and Loading the Final Model for the Bank Marketing Dataset -- Interacting with a Trained Model -- Exercise 6.03: Creating a Class and a Channel to Interact with a Trained Model -- Activity 6.03: Allowing Interaction with the Bank Marketing Dataset Model -- Summary -- Appendix -- Index
Cover -- FM -- Copyright -- Table of Contents -- Preface -- Chapter 1: Introduction to Scikit-Learn -- Introduction -- Introduction to Machine Learning -- Applications of ML -- Choosing the Right ML Algorithm -- Scikit-Learn -- Advantages of Scikit-Learn -- Disadvantages of Scikit-Learn -- Other Frameworks -- Data Representation -- Tables of Data -- Features and Target Matrices -- Exercise 1.01: Loading a Sample Dataset and Creating the Features and Target Matrices -- Activity 1.01: Selecting a Target Feature and Creating a Target Matrix -- Data Preprocessing -- Messy Data -- Missing Values -- Outliers -- Exercise 1.02: Dealing with Messy Data -- Dealing with Categorical Features -- Feature Engineering -- Exercise 1.03: Applying Feature Engineering to Text Data -- Rescaling Data -- Exercise 1.04: Normalizing and Standardizing Data -- Activity 1.02: Pre-processing an Entire Dataset -- Scikit-Learn API -- How Does It Work? -- Estimator -- Predictor -- Transformer -- Supervised and Unsupervised Learning -- Supervised Learning -- Unsupervised Learning -- Summary -- Chapter 2: Unsupervised Learning - Real-Life Applications -- Introduction -- Clustering -- Clustering Types -- Applications of Clustering -- Exploring a Dataset - Wholesale Customers Dataset -- Understanding the Dataset -- Data Visualization -- Loading the Dataset Using pandas -- Visualization Tools -- Exercise 2.01: Plotting a Histogram of One Feature from the Circles Dataset -- Activity 2.01: Using Data Visualization to Aid the Pre-processing Process -- k-means Algorithm -- Understanding the Algorithm -- Initialization Methods -- Choosing the Number of Clusters -- Exercise 2.02: Importing and Training the k-means Algorithm over a Dataset -- Activity 2.02: Applying the k-means Algorithm to a Dataset -- Mean-Shift Algorithm -- Understanding the Algorithm
Exercise 2.03: Importing and Training the Mean-Shift Algorithm over a Dataset -- Activity 2.03: Applying the Mean-Shift Algorithm to a Dataset -- DBSCAN Algorithm -- Understanding the Algorithm -- Exercise 2.04: Importing and Training the DBSCAN Algorithm over a Dataset -- Activity 2.04: Applying the DBSCAN Algorithm to the Dataset -- Evaluating the Performance of Clusters -- Available Metrics in Scikit-Learn -- Exercise 2.05: Evaluating the Silhouette Coefficient Score and Calinski-Harabasz Index -- Activity 2.05: Measuring and Comparing the Performance of the Algorithms -- Summary -- Chapter 3: Supervised Learning - Key Steps -- Introduction -- Supervised Learning Tasks -- Model Validation and Testing -- Data Partitioning -- Split Ratio -- Exercise 3.01: Performing a Data Partition on a Sample Dataset -- Cross-Validation -- Exercise 3.02: Using Cross-Validation to Partition the Train Set into a Training and a Validation Set -- Activity 3.01: Data Partitioning on a Handwritten Digit Dataset -- Evaluation Metrics -- Evaluation Metrics for Classification Tasks -- Confusion Matrix -- Accuracy -- Precision -- Recall -- Exercise 3.03: Calculating Different Evaluation Metrics on a Classification Task -- Choosing an Evaluation Metric -- Evaluation Metrics for Regression Tasks -- Exercise 3.04: Calculating Evaluation Metrics on a Regression Task -- Activity 3.02: Evaluating the Performance of the Model Trained on a Handwritten Dataset -- Error Analysis -- Bias, Variance, and Data Mismatch -- Exercise 3.05: Calculating the Error Rate on Different Sets of Data -- Activity 3.03: Performing Error Analysis on a Model Trained to Recognize Handwritten Digits -- Summary -- Chapter 4: Supervised Learning Algorithms: Predicting Annual Income -- Introduction -- Exploring the Dataset -- Understanding the Dataset -- The Naïve Bayes Algorithm
Title The the Machine Learning Workshop
URI https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6269367
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFI9uu3jyG7-JIN4iTZM2y9UxGcLEwwa7jaRJFYRtaj3owb_dlyz9YAqil9CWUJr32vf7vZe-9xC6sCoXjiaQyNIu4ZJroqzhJDaxMtRwAB0X7xjepYMxv50kk_W1z2Z2SaGvso8f80r-o1W4Bnp1WbJ_0Gx1U7gAx6BfGEHDMK6Q3-q0Vq5jjEP_K6Qtq6Q--Nj36-N8UQVOwP77wMngXRVF08WPoxUX_15lT0UjLLX02JvpT0tv0JMdAPhldfOVMtL96x74LpKl4nLxTFzXLbc7HVqQtFBLCLAPHcDCfhXtcPgmaU2XuKvOltS7rpz50jfV981hsiyxziEhc_XlhPCZ--HRuqHMVvWo3zDQA_toC3Wsy_bYRut2toM2yx4XOJi8XXQOosYgahxEjUtR41LUe2h80x_1BiS0lSCGgcUhKafKMmqkSuNM5SZNE2eLIuuw2gKDyoWxAtaaxALYIphA5to5SZZneW4yyvZRezaf2QOEpU9E1lQaqbkCT1czraI4E1yBdLg5RLhc3NRvfoc_bqe1No5-n3KMNuq34gS1i5c3ewpUqNBnQWNf1AwBLg
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=The+the+Machine+Learning+Workshop&rft.au=Saleh%2C+Hyatt&rft.date=2020-01-01&rft.pub=Packt+Publishing%2C+Limited&rft.isbn=9781839219061&rft.externalDocID=EBC6269367
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781839219061/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781839219061/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781839219061/sc.gif&client=summon&freeimage=true