CsPbBr3/Porous‐SiO2 Composite Film for Efficient Perovskite Light‐Emitting Diodes

This study aims to enhance the performance of inorganic perovskite light‐emitting diodes (PeLEDs) by incorporating porous silica (p‐SiO2) to fabricate perovskite‐composite films for electroluminescence (EL) devices. This is because, in addition to the inorganic perovskite material, composites with i...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials interfaces Vol. 11; no. 20
Main Authors Kim, Bong Woo, Noh, Heejin, Kim, Kyung Ho, Lim, Hyeonji, Yu, Taekyung, Im, Sang Hyuk
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.07.2024
Wiley-VCH
Subjects
Online AccessGet full text
ISSN2196-7350
2196-7350
DOI10.1002/admi.202400116

Cover

Abstract This study aims to enhance the performance of inorganic perovskite light‐emitting diodes (PeLEDs) by incorporating porous silica (p‐SiO2) to fabricate perovskite‐composite films for electroluminescence (EL) devices. This is because, in addition to the inorganic perovskite material, composites with inherently stable materials are needed for perovskite to ensure additional external stability. The introduced p‐SiO2 particles impede the crystal growth of perovskite during the anti‐solvent assisted crystallization process, resulting in the formation of smaller CsPbBr3 crystals in the CsPbBr3/p‐SiO2 composite film. Accordingly, compared to previous CsPbBr3 films, this composite film exhibits two folds with higher photoluminescence quantum yield (PLQY) due to improved crystalline formation. Surprisingly, the CsPbBr3/p‐SiO2 composite film additionally has good water‐resistant properties because the residual cetyltrimethylammonium bromide (CTAB) molecules are extracted from the p‐SiO2 particles and are oriented at the top surface of the CsPbBr3/p‐SiO2 composite film. The EL device fabricated with this composite film exhibits outstanding luminescence efficiency, with a current efficiency (CE) of 70.06 cd A−1 and an external quantum efficiency (EQE) of 16.97%, surpassing control samples by two folds of magnitude. Furthermore, the operational stability improves approximately sevenfold compared to the control, presenting a promising strategy for advancing the field of inorganic perovskite ELs. This study focuses on enhancing the performance of inorganic perovskite light‐emitting diodes by incorporating porous silica (p‐SiO2) to fabricate perovskite‐composite films for electroluminescence (EL) devices. The p‐SiO2 particles hinder the crystal growth of perovskite, resulting in smaller CsPbBr3 crystals. Surprisingly, the CsPbBr3/p‐SiO2 film exhibits good water‐resistant properties. The CsPbBr3/p‐SiO2 EL device shows outstanding luminescence efficiency, surpassing control samples by twofold.
AbstractList This study aims to enhance the performance of inorganic perovskite light‐emitting diodes (PeLEDs) by incorporating porous silica (p‐SiO2) to fabricate perovskite‐composite films for electroluminescence (EL) devices. This is because, in addition to the inorganic perovskite material, composites with inherently stable materials are needed for perovskite to ensure additional external stability. The introduced p‐SiO2 particles impede the crystal growth of perovskite during the anti‐solvent assisted crystallization process, resulting in the formation of smaller CsPbBr3 crystals in the CsPbBr3/p‐SiO2 composite film. Accordingly, compared to previous CsPbBr3 films, this composite film exhibits two folds with higher photoluminescence quantum yield (PLQY) due to improved crystalline formation. Surprisingly, the CsPbBr3/p‐SiO2 composite film additionally has good water‐resistant properties because the residual cetyltrimethylammonium bromide (CTAB) molecules are extracted from the p‐SiO2 particles and are oriented at the top surface of the CsPbBr3/p‐SiO2 composite film. The EL device fabricated with this composite film exhibits outstanding luminescence efficiency, with a current efficiency (CE) of 70.06 cd A−1 and an external quantum efficiency (EQE) of 16.97%, surpassing control samples by two folds of magnitude. Furthermore, the operational stability improves approximately sevenfold compared to the control, presenting a promising strategy for advancing the field of inorganic perovskite ELs. This study focuses on enhancing the performance of inorganic perovskite light‐emitting diodes by incorporating porous silica (p‐SiO2) to fabricate perovskite‐composite films for electroluminescence (EL) devices. The p‐SiO2 particles hinder the crystal growth of perovskite, resulting in smaller CsPbBr3 crystals. Surprisingly, the CsPbBr3/p‐SiO2 film exhibits good water‐resistant properties. The CsPbBr3/p‐SiO2 EL device shows outstanding luminescence efficiency, surpassing control samples by twofold.
This study aims to enhance the performance of inorganic perovskite light‐emitting diodes (PeLEDs) by incorporating porous silica (p‐SiO2) to fabricate perovskite‐composite films for electroluminescence (EL) devices. This is because, in addition to the inorganic perovskite material, composites with inherently stable materials are needed for perovskite to ensure additional external stability. The introduced p‐SiO2 particles impede the crystal growth of perovskite during the anti‐solvent assisted crystallization process, resulting in the formation of smaller CsPbBr3 crystals in the CsPbBr3/p‐SiO2 composite film. Accordingly, compared to previous CsPbBr3 films, this composite film exhibits two folds with higher photoluminescence quantum yield (PLQY) due to improved crystalline formation. Surprisingly, the CsPbBr3/p‐SiO2 composite film additionally has good water‐resistant properties because the residual cetyltrimethylammonium bromide (CTAB) molecules are extracted from the p‐SiO2 particles and are oriented at the top surface of the CsPbBr3/p‐SiO2 composite film. The EL device fabricated with this composite film exhibits outstanding luminescence efficiency, with a current efficiency (CE) of 70.06 cd A−1 and an external quantum efficiency (EQE) of 16.97%, surpassing control samples by two folds of magnitude. Furthermore, the operational stability improves approximately sevenfold compared to the control, presenting a promising strategy for advancing the field of inorganic perovskite ELs.
Abstract This study aims to enhance the performance of inorganic perovskite light‐emitting diodes (PeLEDs) by incorporating porous silica (p‐SiO2) to fabricate perovskite‐composite films for electroluminescence (EL) devices. This is because, in addition to the inorganic perovskite material, composites with inherently stable materials are needed for perovskite to ensure additional external stability. The introduced p‐SiO2 particles impede the crystal growth of perovskite during the anti‐solvent assisted crystallization process, resulting in the formation of smaller CsPbBr3 crystals in the CsPbBr3/p‐SiO2 composite film. Accordingly, compared to previous CsPbBr3 films, this composite film exhibits two folds with higher photoluminescence quantum yield (PLQY) due to improved crystalline formation. Surprisingly, the CsPbBr3/p‐SiO2 composite film additionally has good water‐resistant properties because the residual cetyltrimethylammonium bromide (CTAB) molecules are extracted from the p‐SiO2 particles and are oriented at the top surface of the CsPbBr3/p‐SiO2 composite film. The EL device fabricated with this composite film exhibits outstanding luminescence efficiency, with a current efficiency (CE) of 70.06 cd A−1 and an external quantum efficiency (EQE) of 16.97%, surpassing control samples by two folds of magnitude. Furthermore, the operational stability improves approximately sevenfold compared to the control, presenting a promising strategy for advancing the field of inorganic perovskite ELs.
Author Noh, Heejin
Lim, Hyeonji
Kim, Kyung Ho
Yu, Taekyung
Im, Sang Hyuk
Kim, Bong Woo
Author_xml – sequence: 1
  givenname: Bong Woo
  surname: Kim
  fullname: Kim, Bong Woo
  organization: Korea University
– sequence: 2
  givenname: Heejin
  surname: Noh
  fullname: Noh, Heejin
  organization: Kyung Hee University
– sequence: 3
  givenname: Kyung Ho
  surname: Kim
  fullname: Kim, Kyung Ho
  organization: Korea University
– sequence: 4
  givenname: Hyeonji
  surname: Lim
  fullname: Lim, Hyeonji
  organization: Kyung Hee University
– sequence: 5
  givenname: Taekyung
  orcidid: 0000-0003-4703-3523
  surname: Yu
  fullname: Yu, Taekyung
  email: tkyu@khu.ac.kr
  organization: Kyung Hee University
– sequence: 6
  givenname: Sang Hyuk
  orcidid: 0000-0001-7081-5959
  surname: Im
  fullname: Im, Sang Hyuk
  email: imromy@korea.ac.kr
  organization: Korea University
BookMark eNpNkc9O4zAQxi3ESvxZrnuOxLkwthPHPkIpUKmISrucLcceF5cmLnYK4raPsM_Ik9BQhPY0o5lvvm-k3xHZ72KHhPyicEYB2LlxbThjwEoASsUeOWRUiVHNK9j_rz8gJzkvYdAwyiQ_JA_jPG8uEz-fxxQ3-f3vv9_hnhXj2K5jDj0W12HVFj6mYuJ9sAG7vphjii_5adjOwuKx3x5N2tD3oVsUVyE6zD_JD29WGU--6jF5uJ78Gd-OZvc30_HFbOQ4L8UIJTCU1DXOm4Z5YSpFsbFoStVI5N4BMi6MQrRcUF9B6ZQXlltTNc6qih-T6c7XRbPU6xRak950NEF_DmJaaJP6YFeoK8tYKaTiQ3QDQtWylmVJmffAG2u3Xqc7r3WKzxvMvV7GTeq272sOkoKsK1BbVblTvYYVvn1HUtADBj1g0N8Y9MXV3ZTSWvAPTXV_zQ
ContentType Journal Article
Copyright 2024 The Authors. Advanced Materials Interfaces published by Wiley‐VCH GmbH
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. Advanced Materials Interfaces published by Wiley‐VCH GmbH
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
7SR
7U5
8BQ
8FD
JG9
L7M
DOA
DOI 10.1002/admi.202400116
DatabaseName Wiley Online Library Open Access
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID oai_doaj_org_article_5c2246893d334b06978784412ff03bcc
ADMI1176
Genre article
GrantInformation_xml – fundername: National Research Foundation of Korea
– fundername: Ministry of Science ICT and Future Planning
  funderid: 2022R1A2C3004964; 2022M3H4A1A03074093
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABJCF
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AFKRA
AIACR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARAPS
ARCSS
AVUZU
AZVAB
BENPR
BGLVJ
BMXJE
BRXPI
CCPQU
DCZOG
DPXWK
EBS
G-S
GODZA
GROUPED_DOAJ
HCIFZ
KB.
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M7S
MEWTI
MY~
M~E
O9-
P2W
PDBOC
PTHSS
R.K
ROL
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
7SR
7U5
8BQ
8FD
AAFWJ
AAMMB
ADMLS
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
JG9
L7M
PHGZM
PHGZT
PQGLB
PUEGO
ID FETCH-LOGICAL-d3346-e802e81dbdfab2f6a591ebcea49b8e3fd0e236a9eec361f504d9f6c3ca5bdc953
IEDL.DBID DOA
ISSN 2196-7350
IngestDate Wed Aug 27 01:29:24 EDT 2025
Fri Jul 25 12:04:21 EDT 2025
Wed Jan 22 17:17:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d3346-e802e81dbdfab2f6a591ebcea49b8e3fd0e236a9eec361f504d9f6c3ca5bdc953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7081-5959
0000-0003-4703-3523
OpenAccessLink https://doaj.org/article/5c2246893d334b06978784412ff03bcc
PQID 3081087509
PQPubID 2034582
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_5c2246893d334b06978784412ff03bcc
proquest_journals_3081087509
wiley_primary_10_1002_admi_202400116_ADMI1176
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2021; 24
2022; 233
2018; 28
2022; 198
2017; 8
2021; 5
2023; 35
2021; 4
2019; 6
2021; 2
2019; 31
2018; 149
2023; 5
2023; 7
2023; 8
2018; 102
2019; 15
2022; 918
2017; 29
2021; 100
2020; 55
2023; 965
2017; 9
2022; 611
2022; 433
2016; 55
2020; 8
2021; 13
2021; 97
2014; 4
2020; 3
2015; 27
2020; 1
2022; 5
2022; 6
2022; 7
2019; 48
2017; 56
2014; 16
2023; 611
2019
2019; 119
2018; 30
2016; 116
2022; 32
2018; 12
2019; 151
2016; 28
References_xml – volume: 8
  start-page: 151
  year: 2023
  publication-title: ACS Energy Lett.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 16
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 116
  start-page: 4558
  year: 2016
  publication-title: Chem. Rev.
– volume: 1
  year: 2020
  publication-title: Cell Rep. Phys. Sci.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 481
  year: 2021
  publication-title: Joule.
– volume: 611
  year: 2023
  publication-title: Appl. Surf. Sci.
– volume: 2
  year: 2021
  publication-title: Cell Rep. Phys. Sci.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 7249
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 5
  start-page: 5316
  year: 2023
  publication-title: ACS Appl. Electron. Mater.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 965
  year: 2023
  publication-title: J. Alloys Compd.
– volume: 611
  start-page: 688
  year: 2022
  publication-title: Nature.
– volume: 48
  start-page: 310
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 151
  year: 2019
  publication-title: J. Chem. Phys.
– volume: 3
  year: 2020
  publication-title: J. Phys.: Mater.
– volume: 6
  year: 2022
  publication-title: Sol. RRL.
– volume: 149
  start-page: 246
  year: 2018
  publication-title: Dyes Pigm.
– volume: 7
  year: 2023
  publication-title: Small Methods.
– volume: 8
  start-page: 341
  year: 2023
  publication-title: Nat. Rev. Mater.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 55
  start-page: 7924
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 918
  year: 2022
  publication-title: J. Alloys Compd.
– volume: 433
  year: 2022
  publication-title: Chem. Eng. J.
– year: 2019
  publication-title: Joule.
– volume: 24
  year: 2021
  publication-title: iScience.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 5
  start-page: 3660
  year: 2022
  publication-title: ACS Appl. Energy Mater.
– volume: 100
  start-page: 383
  year: 2021
  publication-title: J. Ind. Eng. Chem.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 27
  start-page: 1248
  year: 2015
  publication-title: Adv. Mater.
– volume: 5
  start-page: 203
  year: 2022
  publication-title: Nat. Electron.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 233
  start-page: 421
  year: 2022
  publication-title: Sol. Energy.
– volume: 6
  year: 2019
  publication-title: Mater. Res. Express.
– volume: 4
  year: 2014
  publication-title: RSC Adv.
– volume: 7
  start-page: 757
  year: 2022
  publication-title: Nat. Rev. Mater.
– volume: 55
  year: 2020
  publication-title: J. Mater. Sci.
– volume: 198
  year: 2022
  publication-title: Dyes Pigm.
– volume: 97
  start-page: 417
  year: 2021
  publication-title: J. Ind. Eng. Chem.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 28
  year: 2016
  publication-title: Adv. Mater.
– volume: 12
  start-page: 8579
  year: 2018
  publication-title: ACS Nano.
– volume: 119
  start-page: 3296
  year: 2019
  publication-title: Chem. Rev.
– volume: 8
  start-page: 89
  year: 2023
  publication-title: Nat. Rev. Mater.
– volume: 4
  start-page: 6306
  year: 2021
  publication-title: ACS Appl. Nano Mater.
– volume: 15
  year: 2019
  publication-title: Small.
– volume: 102
  start-page: 86
  year: 2018
  publication-title: Mater. Res. Bull.
– volume: 8
  start-page: 1605
  year: 2020
  publication-title: Photonics Res.
SSID ssj0001121283
Score 2.3302064
Snippet This study aims to enhance the performance of inorganic perovskite light‐emitting diodes (PeLEDs) by incorporating porous silica (p‐SiO2) to fabricate...
Abstract This study aims to enhance the performance of inorganic perovskite light‐emitting diodes (PeLEDs) by incorporating porous silica (p‐SiO2) to fabricate...
SourceID doaj
proquest
wiley
SourceType Open Website
Aggregation Database
Publisher
SubjectTerms Cetyltrimethylammonium bromide
composite
Control stability
Crystal growth
Crystallization
Current efficiency
Efficiency
inorganic perovskite
Light emitting diodes
Particulate composites
Perovskites
Photoluminescence
porous silica
Quantum efficiency
Silicon dioxide
Stability
water resistance
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Lb9QwEMet0gqJC6IFxEKpfOg1WseOZ-NjH7sqiLYrwUq9WR4_UCR2UyWFMx-Bz8gnwXbSbXvkauUle8bzn9H4F0KOq5gzSM-hCIAZqh33QWFcIREYzkxthEsF_csruFhVn2_kzaNT_AMfYltwS56R9-vk4Ab76QM01Lh1E_O71ANZlvCM7EVlL5KN82r5UGUp49acWZzRM6GYCcnuyY2MT58-YqT2P5GajwVrjjiLV-TlKBXpybC2-2THbw7I89yyafvXZHXWL_G0E9Nl28X0_e_vP1-ba06Tg6dGLE8XzY81jZqUzjMmIkYXuvRd-6tPBVv6JWXl8ab5usmtz_S8aZ3v35DVYv7t7KIYf5JQOCEqKHzNuI-iE10wyAMYqUqP1ptKYe1FcMxzAUZ5bwWUQbLKqQBWWCPRWSXFW7K7aTf-HaHc-WBifIcArgqlQoNQeeYUIGKtzIScpgnStwMHQycydR5ou-96NHQtbULURRWUPg8ZxCx1VkfNxUNgAq2dkMP76dWju_RaRGGS0PpMTUiRp3z7kgGrzHVaK71dK31yfvmpLGfw_j-v_0BepMGh4faQ7N51P_3HKCvu8Chbzj_-oMdQ
  priority: 102
  providerName: Wiley-Blackwell
Title CsPbBr3/Porous‐SiO2 Composite Film for Efficient Perovskite Light‐Emitting Diodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202400116
https://www.proquest.com/docview/3081087509
https://doaj.org/article/5c2246893d334b06978784412ff03bcc
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BT9swFLYG0yQuaIwhOqDyYdeojp248ZFCK4YGizYqcbP87GcpEm1RwzjzE_iN_JLZTovKicuukZI478Xvfd_Tp8-EfC8CZyiRy8xLSKbaoQ4K47ISJIOhqYxwcaB_dS0vpsXlbXm7cdRX1IR19sBd4AaljZZnoas6IQpgMrCeYRV6OPeeCbA2Vl-m2AaZStOVPJTkSqxdGhkfGDdrAh2Mksk8Xzv0v4GVm-A0dZfJZ7K7goX0tFvOHvmA8y_kU5Jn2nafTM_aGkZLMagXy0DVX56e_zS_OI2bOYqukE6auxkN-JOOkyVE6CS0xuXisY3DWfozMvBw03jWJJkzPW8WDtuvZDoZ35xdZKsDEbL48TLDinEMABOcN8C9NKXKESyaQkGFwjuGXEijEK2QuS9Z4ZSXVlhTgrOqFAdke76Y4yGh3KE3oZdLL13hcwUGZIHMKQkAlTI9MooB0ved54WOLtTpQsiNXuVGv5ebHjleh1evtkarRQAh0UafqR7JUshfX9JZKHMdc6Vfc6VPz69-5PlQfvsfazoiO_HJneL2mGw_LP_iScAVD9AnW7yo--TjaHxd_-6nH-ofdW_MuQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLWgFYIN4immFPCCbTSOHXvi5bSd0RRmykg0CLGx_KwiMROUtKz5BL6RL-HayUzpkm3kPOT7Ovfq-ASh9wX0DNxTkQVhkqg25EGmXcaNIGaiS81cHOivLsSiKj585Ts2YTwL0-tD7AduMTJSvo4BHgfS41vVUO02NTR4kQSZ5-I-OuRQTsHJD6dfqm_V7aAlh-yc5DghOEU2YZzsxBsJHd99yCDcfwdt_otZU9GZP0GPB7SIp715n6J7fvsMPUisTds9R9VptzYnLRuvmxY6-D-_fn-uP1EcYzxysTye1983GGApniWlCCgweO3b5mcXZ7Z4GRtzuGm2qRP7GZ_VjfPdC1TNZ5eni2z4T0LmGCtE5ktCPeBO44I2NAjNZe6N9bqQpvQsOOIpE1p6b5nIAyeFk0FYZjU3zkrOXqKDbbP1rxCmzgcNJV4E4YqQS6ONKDxxUhhjSqlH6CRukPrRS2GoKE6dLjTtlRp8XXEbVeoACMXPM0RAozopAXbREAgz1o7Q8W571RAxnWKATaK6PpEjlKUt37-kV1amKtpK7W2lpmer8zyfiKP_XP8OPVxcrpZqeX7x8TV6FBf0_NtjdHDd3vg3gDKuzdvBj_4CxmnMjQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Lb9QwEMctKAL1UvFUF1rwgWu0jh-z8bHt7qqFtkSClXqz_ESR2E2VFM58BD4jnwTbSbftkWveGs_Y_xmNf0HoI485g_AUigAmQ7XjPMi0K4QBYma60sylgv7FJZyu-KcrcXVvF__Ah9gW3FJk5Pk6Bfi1C9M7aKh26ybmd6kHsizhMXrCo_MlH6e8vquylHFqzizOGJlQzJggt-RGQqcPHzFS-x9IzfuCNa84y-dob5SK-GgY2xfokd-8RE9zy6btX6HVSV-b445N67aL6fvf33--Nl8oTgGeGrE8XjY_1jhqUrzImIi4uuDad-2vPhVs8XnKyuNNi3WTW5_xvGmd71-j1XLx7eS0GH-SUDjGOBS-ItRH0Wlc0IYG0EKW3livuTSVZ8ERTxlo6b1lUAZBuJMBLLNaGGelYG_Qzqbd-H2EqfNBx_UdAjgeSmm0Ae6Jk2CMqaSeoONkIHU9cDBUIlPnA233XY2OroRNiLqogtLnGQIxS51VUXPREAgz1k7Qwa151RguvWJRmCS0PpETVGSTb18yYJWpSmOltmOljuYXZ2U5g7f_ef0H9KyeL9X52eXnd2g3nR96bw_Qzk330x9GhXFj3mcn-gfWEcnx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CsPbBr3%2FPorous%E2%80%90SiO2+Composite+Film+for+Efficient+Perovskite+Light%E2%80%90Emitting+Diodes&rft.jtitle=Advanced+materials+interfaces&rft.au=Bong+Woo+Kim&rft.au=Heejin+Noh&rft.au=Kyung+Ho+Kim&rft.au=Hyeonji+Lim&rft.date=2024-07-01&rft.pub=Wiley-VCH&rft.eissn=2196-7350&rft.volume=11&rft.issue=20&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadmi.202400116&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5c2246893d334b06978784412ff03bcc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon