CsPbBr3/Porous‐SiO2 Composite Film for Efficient Perovskite Light‐Emitting Diodes
This study aims to enhance the performance of inorganic perovskite light‐emitting diodes (PeLEDs) by incorporating porous silica (p‐SiO2) to fabricate perovskite‐composite films for electroluminescence (EL) devices. This is because, in addition to the inorganic perovskite material, composites with i...
Saved in:
Published in | Advanced materials interfaces Vol. 11; no. 20 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.07.2024
Wiley-VCH |
Subjects | |
Online Access | Get full text |
ISSN | 2196-7350 2196-7350 |
DOI | 10.1002/admi.202400116 |
Cover
Abstract | This study aims to enhance the performance of inorganic perovskite light‐emitting diodes (PeLEDs) by incorporating porous silica (p‐SiO2) to fabricate perovskite‐composite films for electroluminescence (EL) devices. This is because, in addition to the inorganic perovskite material, composites with inherently stable materials are needed for perovskite to ensure additional external stability. The introduced p‐SiO2 particles impede the crystal growth of perovskite during the anti‐solvent assisted crystallization process, resulting in the formation of smaller CsPbBr3 crystals in the CsPbBr3/p‐SiO2 composite film. Accordingly, compared to previous CsPbBr3 films, this composite film exhibits two folds with higher photoluminescence quantum yield (PLQY) due to improved crystalline formation. Surprisingly, the CsPbBr3/p‐SiO2 composite film additionally has good water‐resistant properties because the residual cetyltrimethylammonium bromide (CTAB) molecules are extracted from the p‐SiO2 particles and are oriented at the top surface of the CsPbBr3/p‐SiO2 composite film. The EL device fabricated with this composite film exhibits outstanding luminescence efficiency, with a current efficiency (CE) of 70.06 cd A−1 and an external quantum efficiency (EQE) of 16.97%, surpassing control samples by two folds of magnitude. Furthermore, the operational stability improves approximately sevenfold compared to the control, presenting a promising strategy for advancing the field of inorganic perovskite ELs.
This study focuses on enhancing the performance of inorganic perovskite light‐emitting diodes by incorporating porous silica (p‐SiO2) to fabricate perovskite‐composite films for electroluminescence (EL) devices. The p‐SiO2 particles hinder the crystal growth of perovskite, resulting in smaller CsPbBr3 crystals. Surprisingly, the CsPbBr3/p‐SiO2 film exhibits good water‐resistant properties. The CsPbBr3/p‐SiO2 EL device shows outstanding luminescence efficiency, surpassing control samples by twofold. |
---|---|
AbstractList | This study aims to enhance the performance of inorganic perovskite light‐emitting diodes (PeLEDs) by incorporating porous silica (p‐SiO2) to fabricate perovskite‐composite films for electroluminescence (EL) devices. This is because, in addition to the inorganic perovskite material, composites with inherently stable materials are needed for perovskite to ensure additional external stability. The introduced p‐SiO2 particles impede the crystal growth of perovskite during the anti‐solvent assisted crystallization process, resulting in the formation of smaller CsPbBr3 crystals in the CsPbBr3/p‐SiO2 composite film. Accordingly, compared to previous CsPbBr3 films, this composite film exhibits two folds with higher photoluminescence quantum yield (PLQY) due to improved crystalline formation. Surprisingly, the CsPbBr3/p‐SiO2 composite film additionally has good water‐resistant properties because the residual cetyltrimethylammonium bromide (CTAB) molecules are extracted from the p‐SiO2 particles and are oriented at the top surface of the CsPbBr3/p‐SiO2 composite film. The EL device fabricated with this composite film exhibits outstanding luminescence efficiency, with a current efficiency (CE) of 70.06 cd A−1 and an external quantum efficiency (EQE) of 16.97%, surpassing control samples by two folds of magnitude. Furthermore, the operational stability improves approximately sevenfold compared to the control, presenting a promising strategy for advancing the field of inorganic perovskite ELs.
This study focuses on enhancing the performance of inorganic perovskite light‐emitting diodes by incorporating porous silica (p‐SiO2) to fabricate perovskite‐composite films for electroluminescence (EL) devices. The p‐SiO2 particles hinder the crystal growth of perovskite, resulting in smaller CsPbBr3 crystals. Surprisingly, the CsPbBr3/p‐SiO2 film exhibits good water‐resistant properties. The CsPbBr3/p‐SiO2 EL device shows outstanding luminescence efficiency, surpassing control samples by twofold. This study aims to enhance the performance of inorganic perovskite light‐emitting diodes (PeLEDs) by incorporating porous silica (p‐SiO2) to fabricate perovskite‐composite films for electroluminescence (EL) devices. This is because, in addition to the inorganic perovskite material, composites with inherently stable materials are needed for perovskite to ensure additional external stability. The introduced p‐SiO2 particles impede the crystal growth of perovskite during the anti‐solvent assisted crystallization process, resulting in the formation of smaller CsPbBr3 crystals in the CsPbBr3/p‐SiO2 composite film. Accordingly, compared to previous CsPbBr3 films, this composite film exhibits two folds with higher photoluminescence quantum yield (PLQY) due to improved crystalline formation. Surprisingly, the CsPbBr3/p‐SiO2 composite film additionally has good water‐resistant properties because the residual cetyltrimethylammonium bromide (CTAB) molecules are extracted from the p‐SiO2 particles and are oriented at the top surface of the CsPbBr3/p‐SiO2 composite film. The EL device fabricated with this composite film exhibits outstanding luminescence efficiency, with a current efficiency (CE) of 70.06 cd A−1 and an external quantum efficiency (EQE) of 16.97%, surpassing control samples by two folds of magnitude. Furthermore, the operational stability improves approximately sevenfold compared to the control, presenting a promising strategy for advancing the field of inorganic perovskite ELs. Abstract This study aims to enhance the performance of inorganic perovskite light‐emitting diodes (PeLEDs) by incorporating porous silica (p‐SiO2) to fabricate perovskite‐composite films for electroluminescence (EL) devices. This is because, in addition to the inorganic perovskite material, composites with inherently stable materials are needed for perovskite to ensure additional external stability. The introduced p‐SiO2 particles impede the crystal growth of perovskite during the anti‐solvent assisted crystallization process, resulting in the formation of smaller CsPbBr3 crystals in the CsPbBr3/p‐SiO2 composite film. Accordingly, compared to previous CsPbBr3 films, this composite film exhibits two folds with higher photoluminescence quantum yield (PLQY) due to improved crystalline formation. Surprisingly, the CsPbBr3/p‐SiO2 composite film additionally has good water‐resistant properties because the residual cetyltrimethylammonium bromide (CTAB) molecules are extracted from the p‐SiO2 particles and are oriented at the top surface of the CsPbBr3/p‐SiO2 composite film. The EL device fabricated with this composite film exhibits outstanding luminescence efficiency, with a current efficiency (CE) of 70.06 cd A−1 and an external quantum efficiency (EQE) of 16.97%, surpassing control samples by two folds of magnitude. Furthermore, the operational stability improves approximately sevenfold compared to the control, presenting a promising strategy for advancing the field of inorganic perovskite ELs. |
Author | Noh, Heejin Lim, Hyeonji Kim, Kyung Ho Yu, Taekyung Im, Sang Hyuk Kim, Bong Woo |
Author_xml | – sequence: 1 givenname: Bong Woo surname: Kim fullname: Kim, Bong Woo organization: Korea University – sequence: 2 givenname: Heejin surname: Noh fullname: Noh, Heejin organization: Kyung Hee University – sequence: 3 givenname: Kyung Ho surname: Kim fullname: Kim, Kyung Ho organization: Korea University – sequence: 4 givenname: Hyeonji surname: Lim fullname: Lim, Hyeonji organization: Kyung Hee University – sequence: 5 givenname: Taekyung orcidid: 0000-0003-4703-3523 surname: Yu fullname: Yu, Taekyung email: tkyu@khu.ac.kr organization: Kyung Hee University – sequence: 6 givenname: Sang Hyuk orcidid: 0000-0001-7081-5959 surname: Im fullname: Im, Sang Hyuk email: imromy@korea.ac.kr organization: Korea University |
BookMark | eNpNkc9O4zAQxi3ESvxZrnuOxLkwthPHPkIpUKmISrucLcceF5cmLnYK4raPsM_Ik9BQhPY0o5lvvm-k3xHZ72KHhPyicEYB2LlxbThjwEoASsUeOWRUiVHNK9j_rz8gJzkvYdAwyiQ_JA_jPG8uEz-fxxQ3-f3vv9_hnhXj2K5jDj0W12HVFj6mYuJ9sAG7vphjii_5adjOwuKx3x5N2tD3oVsUVyE6zD_JD29WGU--6jF5uJ78Gd-OZvc30_HFbOQ4L8UIJTCU1DXOm4Z5YSpFsbFoStVI5N4BMi6MQrRcUF9B6ZQXlltTNc6qih-T6c7XRbPU6xRak950NEF_DmJaaJP6YFeoK8tYKaTiQ3QDQtWylmVJmffAG2u3Xqc7r3WKzxvMvV7GTeq272sOkoKsK1BbVblTvYYVvn1HUtADBj1g0N8Y9MXV3ZTSWvAPTXV_zQ |
ContentType | Journal Article |
Copyright | 2024 The Authors. Advanced Materials Interfaces published by Wiley‐VCH GmbH 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. Advanced Materials Interfaces published by Wiley‐VCH GmbH – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P 7SR 7U5 8BQ 8FD JG9 L7M DOA |
DOI | 10.1002/admi.202400116 |
DatabaseName | Wiley Online Library Open Access Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2196-7350 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_5c2246893d334b06978784412ff03bcc ADMI1176 |
Genre | article |
GrantInformation_xml | – fundername: National Research Foundation of Korea – fundername: Ministry of Science ICT and Future Planning funderid: 2022R1A2C3004964; 2022M3H4A1A03074093 |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ABJCF ACAHQ ACCFJ ACCMX ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AFKRA AIACR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARAPS ARCSS AVUZU AZVAB BENPR BGLVJ BMXJE BRXPI CCPQU DCZOG DPXWK EBS G-S GODZA GROUPED_DOAJ HCIFZ KB. LATKE LEEKS LITHE LOXES LUTES LYRES M7S MEWTI MY~ M~E O9- P2W PDBOC PTHSS R.K ROL WBKPD WOHZO WXSBR WYJ ZZTAW 7SR 7U5 8BQ 8FD AAFWJ AAMMB ADMLS AEFGJ AFPKN AGXDD AIDQK AIDYY JG9 L7M PHGZM PHGZT PQGLB PUEGO |
ID | FETCH-LOGICAL-d3346-e802e81dbdfab2f6a591ebcea49b8e3fd0e236a9eec361f504d9f6c3ca5bdc953 |
IEDL.DBID | DOA |
ISSN | 2196-7350 |
IngestDate | Wed Aug 27 01:29:24 EDT 2025 Fri Jul 25 12:04:21 EDT 2025 Wed Jan 22 17:17:43 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-d3346-e802e81dbdfab2f6a591ebcea49b8e3fd0e236a9eec361f504d9f6c3ca5bdc953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7081-5959 0000-0003-4703-3523 |
OpenAccessLink | https://doaj.org/article/5c2246893d334b06978784412ff03bcc |
PQID | 3081087509 |
PQPubID | 2034582 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5c2246893d334b06978784412ff03bcc proquest_journals_3081087509 wiley_primary_10_1002_admi_202400116_ADMI1176 |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials interfaces |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2021; 24 2022; 233 2018; 28 2022; 198 2017; 8 2021; 5 2023; 35 2021; 4 2019; 6 2021; 2 2019; 31 2018; 149 2023; 5 2023; 7 2023; 8 2018; 102 2019; 15 2022; 918 2017; 29 2021; 100 2020; 55 2023; 965 2017; 9 2022; 611 2022; 433 2016; 55 2020; 8 2021; 13 2021; 97 2014; 4 2020; 3 2015; 27 2020; 1 2022; 5 2022; 6 2022; 7 2019; 48 2017; 56 2014; 16 2023; 611 2019 2019; 119 2018; 30 2016; 116 2022; 32 2018; 12 2019; 151 2016; 28 |
References_xml | – volume: 8 start-page: 151 year: 2023 publication-title: ACS Energy Lett. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces. – volume: 16 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 116 start-page: 4558 year: 2016 publication-title: Chem. Rev. – volume: 1 year: 2020 publication-title: Cell Rep. Phys. Sci. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 481 year: 2021 publication-title: Joule. – volume: 611 year: 2023 publication-title: Appl. Surf. Sci. – volume: 2 year: 2021 publication-title: Cell Rep. Phys. Sci. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 7249 year: 2017 publication-title: ACS Appl. Mater. Interfaces. – volume: 8 year: 2020 publication-title: Adv. Opt. Mater. – volume: 5 start-page: 5316 year: 2023 publication-title: ACS Appl. Electron. Mater. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 965 year: 2023 publication-title: J. Alloys Compd. – volume: 611 start-page: 688 year: 2022 publication-title: Nature. – volume: 48 start-page: 310 year: 2019 publication-title: Chem. Soc. Rev. – volume: 151 year: 2019 publication-title: J. Chem. Phys. – volume: 3 year: 2020 publication-title: J. Phys.: Mater. – volume: 6 year: 2022 publication-title: Sol. RRL. – volume: 149 start-page: 246 year: 2018 publication-title: Dyes Pigm. – volume: 7 year: 2023 publication-title: Small Methods. – volume: 8 start-page: 341 year: 2023 publication-title: Nat. Rev. Mater. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 55 start-page: 7924 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 918 year: 2022 publication-title: J. Alloys Compd. – volume: 433 year: 2022 publication-title: Chem. Eng. J. – year: 2019 publication-title: Joule. – volume: 24 year: 2021 publication-title: iScience. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 5 start-page: 3660 year: 2022 publication-title: ACS Appl. Energy Mater. – volume: 100 start-page: 383 year: 2021 publication-title: J. Ind. Eng. Chem. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 27 start-page: 1248 year: 2015 publication-title: Adv. Mater. – volume: 5 start-page: 203 year: 2022 publication-title: Nat. Electron. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 233 start-page: 421 year: 2022 publication-title: Sol. Energy. – volume: 6 year: 2019 publication-title: Mater. Res. Express. – volume: 4 year: 2014 publication-title: RSC Adv. – volume: 7 start-page: 757 year: 2022 publication-title: Nat. Rev. Mater. – volume: 55 year: 2020 publication-title: J. Mater. Sci. – volume: 198 year: 2022 publication-title: Dyes Pigm. – volume: 97 start-page: 417 year: 2021 publication-title: J. Ind. Eng. Chem. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 28 year: 2016 publication-title: Adv. Mater. – volume: 12 start-page: 8579 year: 2018 publication-title: ACS Nano. – volume: 119 start-page: 3296 year: 2019 publication-title: Chem. Rev. – volume: 8 start-page: 89 year: 2023 publication-title: Nat. Rev. Mater. – volume: 4 start-page: 6306 year: 2021 publication-title: ACS Appl. Nano Mater. – volume: 15 year: 2019 publication-title: Small. – volume: 102 start-page: 86 year: 2018 publication-title: Mater. Res. Bull. – volume: 8 start-page: 1605 year: 2020 publication-title: Photonics Res. |
SSID | ssj0001121283 |
Score | 2.3302064 |
Snippet | This study aims to enhance the performance of inorganic perovskite light‐emitting diodes (PeLEDs) by incorporating porous silica (p‐SiO2) to fabricate... Abstract This study aims to enhance the performance of inorganic perovskite light‐emitting diodes (PeLEDs) by incorporating porous silica (p‐SiO2) to fabricate... |
SourceID | doaj proquest wiley |
SourceType | Open Website Aggregation Database Publisher |
SubjectTerms | Cetyltrimethylammonium bromide composite Control stability Crystal growth Crystallization Current efficiency Efficiency inorganic perovskite Light emitting diodes Particulate composites Perovskites Photoluminescence porous silica Quantum efficiency Silicon dioxide Stability water resistance |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Lb9QwEMet0gqJC6IFxEKpfOg1WseOZ-NjH7sqiLYrwUq9WR4_UCR2UyWFMx-Bz8gnwXbSbXvkauUle8bzn9H4F0KOq5gzSM-hCIAZqh33QWFcIREYzkxthEsF_csruFhVn2_kzaNT_AMfYltwS56R9-vk4Ab76QM01Lh1E_O71ANZlvCM7EVlL5KN82r5UGUp49acWZzRM6GYCcnuyY2MT58-YqT2P5GajwVrjjiLV-TlKBXpybC2-2THbw7I89yyafvXZHXWL_G0E9Nl28X0_e_vP1-ba06Tg6dGLE8XzY81jZqUzjMmIkYXuvRd-6tPBVv6JWXl8ab5usmtz_S8aZ3v35DVYv7t7KIYf5JQOCEqKHzNuI-iE10wyAMYqUqP1ptKYe1FcMxzAUZ5bwWUQbLKqQBWWCPRWSXFW7K7aTf-HaHc-WBifIcArgqlQoNQeeYUIGKtzIScpgnStwMHQycydR5ou-96NHQtbULURRWUPg8ZxCx1VkfNxUNgAq2dkMP76dWju_RaRGGS0PpMTUiRp3z7kgGrzHVaK71dK31yfvmpLGfw_j-v_0BepMGh4faQ7N51P_3HKCvu8Chbzj_-oMdQ priority: 102 providerName: Wiley-Blackwell |
Title | CsPbBr3/Porous‐SiO2 Composite Film for Efficient Perovskite Light‐Emitting Diodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202400116 https://www.proquest.com/docview/3081087509 https://doaj.org/article/5c2246893d334b06978784412ff03bcc |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BT9swFLYG0yQuaIwhOqDyYdeojp248ZFCK4YGizYqcbP87GcpEm1RwzjzE_iN_JLZTovKicuukZI478Xvfd_Tp8-EfC8CZyiRy8xLSKbaoQ4K47ISJIOhqYxwcaB_dS0vpsXlbXm7cdRX1IR19sBd4AaljZZnoas6IQpgMrCeYRV6OPeeCbA2Vl-m2AaZStOVPJTkSqxdGhkfGDdrAh2Mksk8Xzv0v4GVm-A0dZfJZ7K7goX0tFvOHvmA8y_kU5Jn2nafTM_aGkZLMagXy0DVX56e_zS_OI2bOYqukE6auxkN-JOOkyVE6CS0xuXisY3DWfozMvBw03jWJJkzPW8WDtuvZDoZ35xdZKsDEbL48TLDinEMABOcN8C9NKXKESyaQkGFwjuGXEijEK2QuS9Z4ZSXVlhTgrOqFAdke76Y4yGh3KE3oZdLL13hcwUGZIHMKQkAlTI9MooB0ved54WOLtTpQsiNXuVGv5ebHjleh1evtkarRQAh0UafqR7JUshfX9JZKHMdc6Vfc6VPz69-5PlQfvsfazoiO_HJneL2mGw_LP_iScAVD9AnW7yo--TjaHxd_-6nH-ofdW_MuQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLWgFYIN4immFPCCbTSOHXvi5bSd0RRmykg0CLGx_KwiMROUtKz5BL6RL-HayUzpkm3kPOT7Ovfq-ASh9wX0DNxTkQVhkqg25EGmXcaNIGaiS81cHOivLsSiKj585Ts2YTwL0-tD7AduMTJSvo4BHgfS41vVUO02NTR4kQSZ5-I-OuRQTsHJD6dfqm_V7aAlh-yc5DghOEU2YZzsxBsJHd99yCDcfwdt_otZU9GZP0GPB7SIp715n6J7fvsMPUisTds9R9VptzYnLRuvmxY6-D-_fn-uP1EcYzxysTye1983GGApniWlCCgweO3b5mcXZ7Z4GRtzuGm2qRP7GZ_VjfPdC1TNZ5eni2z4T0LmGCtE5ktCPeBO44I2NAjNZe6N9bqQpvQsOOIpE1p6b5nIAyeFk0FYZjU3zkrOXqKDbbP1rxCmzgcNJV4E4YqQS6ONKDxxUhhjSqlH6CRukPrRS2GoKE6dLjTtlRp8XXEbVeoACMXPM0RAozopAXbREAgz1o7Q8W571RAxnWKATaK6PpEjlKUt37-kV1amKtpK7W2lpmer8zyfiKP_XP8OPVxcrpZqeX7x8TV6FBf0_NtjdHDd3vg3gDKuzdvBj_4CxmnMjQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Lb9QwEMctKAL1UvFUF1rwgWu0jh-z8bHt7qqFtkSClXqz_ESR2E2VFM58BD4jnwTbSbftkWveGs_Y_xmNf0HoI485g_AUigAmQ7XjPMi0K4QBYma60sylgv7FJZyu-KcrcXVvF__Ah9gW3FJk5Pk6Bfi1C9M7aKh26ybmd6kHsizhMXrCo_MlH6e8vquylHFqzizOGJlQzJggt-RGQqcPHzFS-x9IzfuCNa84y-dob5SK-GgY2xfokd-8RE9zy6btX6HVSV-b445N67aL6fvf33--Nl8oTgGeGrE8XjY_1jhqUrzImIi4uuDad-2vPhVs8XnKyuNNi3WTW5_xvGmd71-j1XLx7eS0GH-SUDjGOBS-ItRH0Wlc0IYG0EKW3livuTSVZ8ERTxlo6b1lUAZBuJMBLLNaGGelYG_Qzqbd-H2EqfNBx_UdAjgeSmm0Ae6Jk2CMqaSeoONkIHU9cDBUIlPnA233XY2OroRNiLqogtLnGQIxS51VUXPREAgz1k7Qwa151RguvWJRmCS0PpETVGSTb18yYJWpSmOltmOljuYXZ2U5g7f_ef0H9KyeL9X52eXnd2g3nR96bw_Qzk330x9GhXFj3mcn-gfWEcnx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CsPbBr3%2FPorous%E2%80%90SiO2+Composite+Film+for+Efficient+Perovskite+Light%E2%80%90Emitting+Diodes&rft.jtitle=Advanced+materials+interfaces&rft.au=Bong+Woo+Kim&rft.au=Heejin+Noh&rft.au=Kyung+Ho+Kim&rft.au=Hyeonji+Lim&rft.date=2024-07-01&rft.pub=Wiley-VCH&rft.eissn=2196-7350&rft.volume=11&rft.issue=20&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadmi.202400116&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5c2246893d334b06978784412ff03bcc |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon |