Nanosecond Magneto‐Ionic Control of Magnetism Using a Resistive Switching HfO2 Gate Oxide
Voltage‐controlled magnetism (VCM) offers an efficient operating method for various spintronic applications, with reduced power consumption compared to conventional current‐driven technologies. Among the VCM mechanisms, magneto‐ionic control provides large modulation and non‐volatile characteristics...
Saved in:
Published in | Advanced electronic materials Vol. 11; no. 3 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Wiley-VCH
01.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2199-160X 2199-160X |
DOI | 10.1002/aelm.202400535 |
Cover
Abstract | Voltage‐controlled magnetism (VCM) offers an efficient operating method for various spintronic applications, with reduced power consumption compared to conventional current‐driven technologies. Among the VCM mechanisms, magneto‐ionic control provides large modulation and non‐volatile characteristics. However, its operating speed is limited to a microsecond timescale due to slow ion migration, which must be improved for practical device applications. Here, the nanosecond operation of magneto‐ionic VCM in a Ta/CoFeB/MgO/AlOx structure by introducing an HfO2 gate oxide with resistive switching characteristics is demonstrated. By inducing soft breakdown in the HfO2 gate oxide, the coercivity of the perpendicularly magnetized CoFeB can be controlled by 20% with a 20 ns gate voltage of ≈7 MV cm−1. This nanosecond magneto‐ionic VCM performance is maintained after repeated operations up to 10 000 cycles. Further, by utilizing an HfO2 gate in a spin‐orbit torque (SOT) device, the ability to control field‐free SOT switching polarity with nanosecond gate voltages is demonstrated. These findings provide a novel pathway to realize nanosecond, non‐volatile VCM for low‐power spintronic applications.
A nanosecond operation of magneto‐ionic control of magnetism in a Ta/CoFeB/MgO structure by introducing a HfO2 gate oxide with resistive switching is demonstrated. After inducing a soft breakdown in the HfO2 gate, the coercivity of the CoFeB layer is controlled by 20% with a 20 ns gate voltage, which remains effective for up to 10 000 operations. |
---|---|
AbstractList | Voltage‐controlled magnetism (VCM) offers an efficient operating method for various spintronic applications, with reduced power consumption compared to conventional current‐driven technologies. Among the VCM mechanisms, magneto‐ionic control provides large modulation and non‐volatile characteristics. However, its operating speed is limited to a microsecond timescale due to slow ion migration, which must be improved for practical device applications. Here, the nanosecond operation of magneto‐ionic VCM in a Ta/CoFeB/MgO/AlOx structure by introducing an HfO2 gate oxide with resistive switching characteristics is demonstrated. By inducing soft breakdown in the HfO2 gate oxide, the coercivity of the perpendicularly magnetized CoFeB can be controlled by 20% with a 20 ns gate voltage of ≈7 MV cm−1. This nanosecond magneto‐ionic VCM performance is maintained after repeated operations up to 10 000 cycles. Further, by utilizing an HfO2 gate in a spin‐orbit torque (SOT) device, the ability to control field‐free SOT switching polarity with nanosecond gate voltages is demonstrated. These findings provide a novel pathway to realize nanosecond, non‐volatile VCM for low‐power spintronic applications.
A nanosecond operation of magneto‐ionic control of magnetism in a Ta/CoFeB/MgO structure by introducing a HfO2 gate oxide with resistive switching is demonstrated. After inducing a soft breakdown in the HfO2 gate, the coercivity of the CoFeB layer is controlled by 20% with a 20 ns gate voltage, which remains effective for up to 10 000 operations. Abstract Voltage‐controlled magnetism (VCM) offers an efficient operating method for various spintronic applications, with reduced power consumption compared to conventional current‐driven technologies. Among the VCM mechanisms, magneto‐ionic control provides large modulation and non‐volatile characteristics. However, its operating speed is limited to a microsecond timescale due to slow ion migration, which must be improved for practical device applications. Here, the nanosecond operation of magneto‐ionic VCM in a Ta/CoFeB/MgO/AlOx structure by introducing an HfO2 gate oxide with resistive switching characteristics is demonstrated. By inducing soft breakdown in the HfO2 gate oxide, the coercivity of the perpendicularly magnetized CoFeB can be controlled by 20% with a 20 ns gate voltage of ≈7 MV cm−1. This nanosecond magneto‐ionic VCM performance is maintained after repeated operations up to 10 000 cycles. Further, by utilizing an HfO2 gate in a spin‐orbit torque (SOT) device, the ability to control field‐free SOT switching polarity with nanosecond gate voltages is demonstrated. These findings provide a novel pathway to realize nanosecond, non‐volatile VCM for low‐power spintronic applications. |
Author | Kang, Min‐Gu Park, Byong‐Guk Jeong, Jimin Park, Yeon Su |
Author_xml | – sequence: 1 givenname: Jimin surname: Jeong fullname: Jeong, Jimin organization: KAIST – sequence: 2 givenname: Yeon Su surname: Park fullname: Park, Yeon Su organization: KAIST – sequence: 3 givenname: Min‐Gu orcidid: 0000-0002-1131-8490 surname: Kang fullname: Kang, Min‐Gu email: mingu.kang@mat.ethz.ch organization: ETH Zürich – sequence: 4 givenname: Byong‐Guk orcidid: 0000-0001-8813-7025 surname: Park fullname: Park, Byong‐Guk email: bgpark@kaist.ac.kr organization: KAIST |
BookMark | eNpNkF1LAkEUhocoyMzbrucPrJ352nYuRUwFTaiEoIthvtZG1p3YXTLv-gn9xn5Ja4p0dQ7Py3k4vFfovIylR-iGQJ8A0Fvti02fAuUAgokz1KFEyoSk8HL-b79EvbpeAwC5SxkXrINeH3QZa29j6fBcr0rfxJ-v72ksg8XDWDZVLHDMj1GoN3hZh3KFNX70daib8OHx0zY09m1PJ_mC4rFuPF58Buev0UWui9r3jrOLlvej5-EkmS3G0-FgljgGgiSEc8mJzVNpqbA2F4Zo57ixxtCsfZ0J4TnXjjiqGWdAXZpqA9IQ0l61pIumB6-Leq3eq7DR1U5FHdQfiNVK6aoJtvDK5FJnEkRqc86ZzLSA1LjMEZJZAwxaFzu4tqHwu5OMgNrXrPY1q1PNajCazSUj7BdsBHRO |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH |
DBID | 24P DOA |
DOI | 10.1002/aelm.202400535 |
DatabaseName | Wiley Online Library Open Access DOAJ Directory of Open Access Journals |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Open Access (UHCL Subscription) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2199-160X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_bf9a89056cf44398a506bd8d118cb030 AELM931 |
Genre | article |
GrantInformation_xml | – fundername: Ministry of Education funderid: 2022R1A6A3A03053958 – fundername: National Research Foundation of Korea funderid: NRF‐2022M3H4A1A04096339; RS‐2023‐00261042 |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAXRX AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCMX ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AFPKN AIACR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG EBS EJD GODZA GROUPED_DOAJ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI O9- P2W ROL SUPJJ WBKPD WOHZO WXSBR ZZTAW AAFWJ AAMMB AEFGJ AGXDD AIDQK AIDYY M~E |
ID | FETCH-LOGICAL-d3051-144941cf69c25ccf5b1add4bcbb28219355e44ad1d2a34302d66ab09b111cf343 |
IEDL.DBID | 24P |
ISSN | 2199-160X |
IngestDate | Wed Aug 27 01:25:29 EDT 2025 Tue Mar 11 09:30:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-d3051-144941cf69c25ccf5b1add4bcbb28219355e44ad1d2a34302d66ab09b111cf343 |
ORCID | 0000-0002-1131-8490 0000-0001-8813-7025 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202400535 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bf9a89056cf44398a506bd8d118cb030 wiley_primary_10_1002_aelm_202400535_AELM931 |
PublicationCentury | 2000 |
PublicationDate | March 2025 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
PublicationDecade | 2020 |
PublicationTitle | Advanced electronic materials |
PublicationYear | 2025 |
Publisher | Wiley-VCH |
Publisher_xml | – name: Wiley-VCH |
References | 2010; 97 2020; 20 2019; 52 2016; 109 2019; 11 2019; 10 2023; 9 2011; 10 2019; 18 2020; 11 2017; 110 2015; 107 2012; 11 2018; 6 2022; 563 2020; 6 2020; 5 2022; 121 2018; 5 2023; 23 2018; 1 2021; 118 2022; 34 2007; 6 2011; 22 2022; 32 2022; 601 2017; 20 2015; 14 2019; 3 2012; 101 2015; 4 2013; 46 2023; 123 2015; 10 2008; 11 2016; 125 2014; 115 2014; 113 2021; 13 2016; 7 2021; 12 2016; 2 2023 2020 2019 2022; 13 2018 2017 2024; 45 2009; 4 2019; 573 2022; 17 |
References_xml | – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 113 year: 2014 publication-title: Phys. Rev. Lett. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 28 year: 2008 publication-title: Mater. Today – volume: 45 start-page: 184 year: 2024 publication-title: IEEE Electron Device Lett. – volume: 46 year: 2013 publication-title: J. Phys. D: Appl. Phys. – volume: 5 start-page: 173 year: 2020 publication-title: Nat. Rev. Mater. – volume: 11 year: 2019 publication-title: Phys. Rev. Appl. – volume: 22 year: 2011 publication-title: Nanotechnology – volume: 10 start-page: 853 year: 2011 publication-title: Nat. Mater. – volume: 6 start-page: 833 year: 2007 publication-title: Nat. Mater. – year: 2018 – volume: 20 start-page: 530 year: 2017 publication-title: Mater. Today. – volume: 20 start-page: 3435 year: 2020 publication-title: Nano Lett. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 6 year: 2020 publication-title: Adv. Electron. Mater. – volume: 110 year: 2017 publication-title: Appl. Phys. Lett. – volume: 2 year: 2016 publication-title: Adv. Electron. Mater. – volume: 97 year: 2010 publication-title: Appl. Phys. Lett. – volume: 5 start-page: 1275 year: 2018 publication-title: IEEE Internet Things J – volume: 18 start-page: 35 year: 2019 publication-title: Nat. Mater. – volume: 563 year: 2022 publication-title: J. Magn. Magn. Mater. – volume: 107 year: 2015 publication-title: Appl. Phys. Lett. – volume: 23 start-page: 3167 year: 2023 publication-title: Nano Lett. – year: 2019 – volume: 9 year: 2023 publication-title: Adv. Electron.Mater. – volume: 9 year: 2023 publication-title: Adv. Electron. Mater. – volume: 1 start-page: 398 year: 2018 publication-title: Nat. Electron. – volume: 12 start-page: 7111 year: 2021 publication-title: Nat. Commun. – volume: 52 year: 2019 publication-title: J. Phys. D: Appl. Phys. – volume: 101 year: 2012 publication-title: Appl. Phys. Lett. – volume: 11 start-page: 64 year: 2012 publication-title: Nat. Mater. – volume: 10 start-page: 248 year: 2019 publication-title: Nat. Commun. – volume: 123 year: 2023 publication-title: Appl. Phys. Lett. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 3 year: 2019 publication-title: Phys Rev. Mater. – volume: 601 start-page: 211 year: 2022 publication-title: Nature – volume: 6 year: 2018 publication-title: APL Mater. – volume: 109 year: 2016 publication-title: Appl. Phys. Lett. – volume: 11 start-page: 5871 year: 2020 publication-title: Nat. Commun. – volume: 115 year: 2014 publication-title: J. Appl. Phys. – volume: 118 year: 2021 publication-title: Appl. Phys. Lett. – year: 2020 – year: 2023 – volume: 10 start-page: 209 year: 2015 publication-title: Nat. Nanotechnol. – volume: 4 start-page: 586 year: 2015 publication-title: Electronics – volume: 121 year: 2022 publication-title: Appl. Phys. Lett. – volume: 573 start-page: 390 year: 2019 publication-title: Nature – volume: 17 year: 2022 publication-title: Phys. Rev. Appl. – year: 2017 – volume: 10 start-page: 327 year: 2019 publication-title: Micromachines – volume: 4 start-page: 158 year: 2009 publication-title: Nat. Nanotechnol. – volume: 125 start-page: 25 year: 2016 publication-title: Solid‐State Electron. – volume: 14 start-page: 174 year: 2015 publication-title: Nat. Mater. – volume: 13 start-page: 3783 year: 2022 publication-title: Nat. Commun. |
SSID | ssj0001763453 |
Score | 2.3270102 |
Snippet | Voltage‐controlled magnetism (VCM) offers an efficient operating method for various spintronic applications, with reduced power consumption compared to... Abstract Voltage‐controlled magnetism (VCM) offers an efficient operating method for various spintronic applications, with reduced power consumption compared... |
SourceID | doaj wiley |
SourceType | Open Website Publisher |
SubjectTerms | magneto‐ionic effect resistive switching spin‐orbit torque voltage‐controlled magnetism |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJy-iqFhf7MGjoXnsJtljLS1VrAW1UPAQ9ikFTcXGx9Gf4G_0lziziaWevHjdQBJmd2a-bzL5hpAT1LQyTIVBJqQOmFE8kEqwINfAxFIrMunrkKOrdDhhF1M-XRn1hT1htTxwbbiOckLmAtK0dgySZy55mCqTGwDGWsEJxegbinCFTPnqCrgN48mPSmMYd6R9wB_PsWWS42w3r9D_G5H6lDLYJBsNFqTd-h22yJott8kdxLv5AmmqoSN5X9pq_vXxeY4KtrRX95XTuWsuzRaP1H_0p5Je2wX666ulN2-zyrdI0qEbxxQLZHT8PjN2h0wG_dveMGgmIAQG_DAKgO0IFmmXCh1zrR1XEcQjprRSQJUi1Ea3jEkTmVgmLAljk6ZShUJBBNMOVnZJq5yXdo9QnekccrEGhOWYkZlkBqe9GA4YD0lSm5yhRYqnWuSiQNlpvwCbUTSbUfy1GW1y6u25vEstihwXaP1iaf2i278ciSTa_49nHpD1GGfy-r6wQ9Kqnl_sEQCFSh37M_ENVLC5tg priority: 102 providerName: Directory of Open Access Journals |
Title | Nanosecond Magneto‐Ionic Control of Magnetism Using a Resistive Switching HfO2 Gate Oxide |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202400535 https://doaj.org/article/bf9a89056cf44398a506bd8d118cb030 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgXLggECDKUvnAkahZnMXHUrUqiFIEVKrEIfIWVAkS1IblyCfwjXwJM05o6ZGrHfkwmRm_Nxq_IeQUNa00k64Tc6EcpmXoCMmZkyhgYpHhsbB1yOF1NBizy0k4-fOKv9KHWBTcMDJsvsYAF3LeXoqGCvOEL8mxBzIMwnWyAcg-QB_32c2yygLhw6wUJUQmd7zInfwqN7p-e_WIWrV_FaXaa6a_TbZqfEg71Q_dIWsm3yUPkAOLOVJXTYfiMTdl8f35dYGqtrRb9ZrTIqu3pvNnahsBqKC3Zo4x_Gbo3fu0tG2TdJCNfIpFMzr6mGqzR8b93n134NRTERwNsek5wIA481QWceWHSmWh9CBHMamkBPrkoV66YUxoT_siYIHr6ygS0uUSsprKYGWfNPIiNweEqlglcD8rQF0Z0yIWTOMEGB0C7kPi1CTnaJH0pRK-SFGK2i4Us8e09uxUZlwkHHCUyhigm0SEbiR1ooG5KAkppEnOrD0Xp1RCyX6K1k8X1k87vashD7zD_31-RDZ9nMhru8KOSaOcvZoTgAmlbFlPaFmS_QMEobal |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oHPRiNGp8uwePNrRlW7pHJBBQHomCIXpo9lVCotQAPo7-BH-jv8SZbYFw9Lpt9jC738w3k9lvCLlCTSvNpOtUuFAO0zJwhOTMiRRkYqHhFWHrkJ1u2Byw22Gw6CbEtzCZPsSy4IbIsP4aAY4F6dJKNVSYF3xKjk2QQTnYJMUAwilc8mL1cfA0WBVaAEHMqlECOLnjhe5wId7o-qX1TXLh_nWiaiNNY5fs5BSRVrMz3SMbZrJPnsENpjPMXjXtiNHEzNPf758WCtvSWtZuTtMk_zSevVLbC0AFvTczhPGHoQ-f47ntnKTNpOdTrJvR3tdYmwMyaNT7taaTD0ZwNMDTcyAJ4sxTSciVHyiVBNIDN8WkkhIyKA8l0w1jQnvaF2VWdn0dhkK6XIJjUwmsHJLCJJ2YI0JVRUUQohUQr4RpURFM4xAYHQD1w9zpmNygReK3TPsiRjVqu5BOR3F-uWOZcBFxoFIqYUBwIgEnIXWkIXlRErzIMbm29lzukmkl-zFaP15aP67W2x1e9k7-9_sl2Wr2O-243erenZJtHwf02iaxM1KYT9_NObCGubzI78UfTWC67Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSIgLAgFixweORGRx0vhYSqsCXRCLVIlD5BVVggS1ZTnyCXwjX8KMEwocudqRD5N54zej8RtCDlHTSjPpe3UulMe0jD0hOfNSBZlYYnhduDpkr590btn5MB7-esVf6kPMCm6IDBevEeBP2h7_iIYK84AvybEHMo7iebLAwPnQx0N2-VNlAfgwJ0UJyORekPjDb-VGPzz-e0Sl2v-Xpbprpr1Clit-SBvlD10lcyZfI3cQA4sJpq6a9sR9bqbF5_vHGara0mbZa04LW22NJo_UNQJQQa_MBDH8Yuj162jq2iZpxw5CikUzOngbabNObtutm2bHq6YieBqwGXiQAXEWKJtwFcZK2VgGEKOYVFJC-hSgXrphTOhAhyJikR_qJBHS5xKimrKwskFqeZGbTUJVXaVwPytgXZZpURdM4wQYHQPvw8Rpi5ygRbKnUvgiQylqt1CM77PKszNpuUg58ChlGbCbVMR-InWqIXNREkLIFjly9pydUgolhxlaP5tZP2u0uj0eBdv_-_yALF6etrPuWf9ihyyFOJzXNYjtktp0_Gz2gDFM5b5zii_R3rhR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanosecond+Magneto%E2%80%90Ionic+Control+of+Magnetism+Using+a+Resistive+Switching+HfO2+Gate+Oxide&rft.jtitle=Advanced+electronic+materials&rft.au=Jeong%2C+Jimin&rft.au=Park%2C+Yeon+Su&rft.au=Kang%2C+Min%E2%80%90Gu&rft.au=Park%2C+Byong%E2%80%90Guk&rft.date=2025-03-01&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=11&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faelm.202400535&rft.externalDBID=10.1002%252Faelm.202400535&rft.externalDocID=AELM931 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon |