Nanosecond Magneto‐Ionic Control of Magnetism Using a Resistive Switching HfO2 Gate Oxide

Voltage‐controlled magnetism (VCM) offers an efficient operating method for various spintronic applications, with reduced power consumption compared to conventional current‐driven technologies. Among the VCM mechanisms, magneto‐ionic control provides large modulation and non‐volatile characteristics...

Full description

Saved in:
Bibliographic Details
Published inAdvanced electronic materials Vol. 11; no. 3
Main Authors Jeong, Jimin, Park, Yeon Su, Kang, Min‐Gu, Park, Byong‐Guk
Format Journal Article
LanguageEnglish
Published Wiley-VCH 01.03.2025
Subjects
Online AccessGet full text
ISSN2199-160X
2199-160X
DOI10.1002/aelm.202400535

Cover

Abstract Voltage‐controlled magnetism (VCM) offers an efficient operating method for various spintronic applications, with reduced power consumption compared to conventional current‐driven technologies. Among the VCM mechanisms, magneto‐ionic control provides large modulation and non‐volatile characteristics. However, its operating speed is limited to a microsecond timescale due to slow ion migration, which must be improved for practical device applications. Here, the nanosecond operation of magneto‐ionic VCM in a Ta/CoFeB/MgO/AlOx structure by introducing an HfO2 gate oxide with resistive switching characteristics is demonstrated. By inducing soft breakdown in the HfO2 gate oxide, the coercivity of the perpendicularly magnetized CoFeB can be controlled by 20% with a 20 ns gate voltage of ≈7 MV cm−1. This nanosecond magneto‐ionic VCM performance is maintained after repeated operations up to 10 000 cycles. Further, by utilizing an HfO2 gate in a spin‐orbit torque (SOT) device, the ability to control field‐free SOT switching polarity with nanosecond gate voltages is demonstrated. These findings provide a novel pathway to realize nanosecond, non‐volatile VCM for low‐power spintronic applications. A nanosecond operation of magneto‐ionic control of magnetism in a Ta/CoFeB/MgO structure by introducing a HfO2 gate oxide with resistive switching is demonstrated. After inducing a soft breakdown in the HfO2 gate, the coercivity of the CoFeB layer is controlled by 20% with a 20 ns gate voltage, which remains effective for up to 10 000 operations.
AbstractList Voltage‐controlled magnetism (VCM) offers an efficient operating method for various spintronic applications, with reduced power consumption compared to conventional current‐driven technologies. Among the VCM mechanisms, magneto‐ionic control provides large modulation and non‐volatile characteristics. However, its operating speed is limited to a microsecond timescale due to slow ion migration, which must be improved for practical device applications. Here, the nanosecond operation of magneto‐ionic VCM in a Ta/CoFeB/MgO/AlOx structure by introducing an HfO2 gate oxide with resistive switching characteristics is demonstrated. By inducing soft breakdown in the HfO2 gate oxide, the coercivity of the perpendicularly magnetized CoFeB can be controlled by 20% with a 20 ns gate voltage of ≈7 MV cm−1. This nanosecond magneto‐ionic VCM performance is maintained after repeated operations up to 10 000 cycles. Further, by utilizing an HfO2 gate in a spin‐orbit torque (SOT) device, the ability to control field‐free SOT switching polarity with nanosecond gate voltages is demonstrated. These findings provide a novel pathway to realize nanosecond, non‐volatile VCM for low‐power spintronic applications. A nanosecond operation of magneto‐ionic control of magnetism in a Ta/CoFeB/MgO structure by introducing a HfO2 gate oxide with resistive switching is demonstrated. After inducing a soft breakdown in the HfO2 gate, the coercivity of the CoFeB layer is controlled by 20% with a 20 ns gate voltage, which remains effective for up to 10 000 operations.
Abstract Voltage‐controlled magnetism (VCM) offers an efficient operating method for various spintronic applications, with reduced power consumption compared to conventional current‐driven technologies. Among the VCM mechanisms, magneto‐ionic control provides large modulation and non‐volatile characteristics. However, its operating speed is limited to a microsecond timescale due to slow ion migration, which must be improved for practical device applications. Here, the nanosecond operation of magneto‐ionic VCM in a Ta/CoFeB/MgO/AlOx structure by introducing an HfO2 gate oxide with resistive switching characteristics is demonstrated. By inducing soft breakdown in the HfO2 gate oxide, the coercivity of the perpendicularly magnetized CoFeB can be controlled by 20% with a 20 ns gate voltage of ≈7 MV cm−1. This nanosecond magneto‐ionic VCM performance is maintained after repeated operations up to 10 000 cycles. Further, by utilizing an HfO2 gate in a spin‐orbit torque (SOT) device, the ability to control field‐free SOT switching polarity with nanosecond gate voltages is demonstrated. These findings provide a novel pathway to realize nanosecond, non‐volatile VCM for low‐power spintronic applications.
Author Kang, Min‐Gu
Park, Byong‐Guk
Jeong, Jimin
Park, Yeon Su
Author_xml – sequence: 1
  givenname: Jimin
  surname: Jeong
  fullname: Jeong, Jimin
  organization: KAIST
– sequence: 2
  givenname: Yeon Su
  surname: Park
  fullname: Park, Yeon Su
  organization: KAIST
– sequence: 3
  givenname: Min‐Gu
  orcidid: 0000-0002-1131-8490
  surname: Kang
  fullname: Kang, Min‐Gu
  email: mingu.kang@mat.ethz.ch
  organization: ETH Zürich
– sequence: 4
  givenname: Byong‐Guk
  orcidid: 0000-0001-8813-7025
  surname: Park
  fullname: Park, Byong‐Guk
  email: bgpark@kaist.ac.kr
  organization: KAIST
BookMark eNpNkF1LAkEUhocoyMzbrucPrJ352nYuRUwFTaiEoIthvtZG1p3YXTLv-gn9xn5Ja4p0dQ7Py3k4vFfovIylR-iGQJ8A0Fvti02fAuUAgokz1KFEyoSk8HL-b79EvbpeAwC5SxkXrINeH3QZa29j6fBcr0rfxJ-v72ksg8XDWDZVLHDMj1GoN3hZh3KFNX70daib8OHx0zY09m1PJ_mC4rFuPF58Buev0UWui9r3jrOLlvej5-EkmS3G0-FgljgGgiSEc8mJzVNpqbA2F4Zo57ixxtCsfZ0J4TnXjjiqGWdAXZpqA9IQ0l61pIumB6-Leq3eq7DR1U5FHdQfiNVK6aoJtvDK5FJnEkRqc86ZzLSA1LjMEZJZAwxaFzu4tqHwu5OMgNrXrPY1q1PNajCazSUj7BdsBHRO
ContentType Journal Article
Copyright 2024 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH
Copyright_xml – notice: 2024 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH
DBID 24P
DOA
DOI 10.1002/aelm.202400535
DatabaseName Wiley Online Library Open Access
DOAJ Directory of Open Access Journals
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Open Access (UHCL Subscription)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2199-160X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_bf9a89056cf44398a506bd8d118cb030
AELM931
Genre article
GrantInformation_xml – fundername: Ministry of Education
  funderid: 2022R1A6A3A03053958
– fundername: National Research Foundation of Korea
  funderid: NRF‐2022M3H4A1A04096339; RS‐2023‐00261042
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AFPKN
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
EBS
EJD
GODZA
GROUPED_DOAJ
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
AAFWJ
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
M~E
ID FETCH-LOGICAL-d3051-144941cf69c25ccf5b1add4bcbb28219355e44ad1d2a34302d66ab09b111cf343
IEDL.DBID 24P
ISSN 2199-160X
IngestDate Wed Aug 27 01:25:29 EDT 2025
Tue Mar 11 09:30:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d3051-144941cf69c25ccf5b1add4bcbb28219355e44ad1d2a34302d66ab09b111cf343
ORCID 0000-0002-1131-8490
0000-0001-8813-7025
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202400535
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_bf9a89056cf44398a506bd8d118cb030
wiley_primary_10_1002_aelm_202400535_AELM931
PublicationCentury 2000
PublicationDate March 2025
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationTitle Advanced electronic materials
PublicationYear 2025
Publisher Wiley-VCH
Publisher_xml – name: Wiley-VCH
References 2010; 97
2020; 20
2019; 52
2016; 109
2019; 11
2019; 10
2023; 9
2011; 10
2019; 18
2020; 11
2017; 110
2015; 107
2012; 11
2018; 6
2022; 563
2020; 6
2020; 5
2022; 121
2018; 5
2023; 23
2018; 1
2021; 118
2022; 34
2007; 6
2011; 22
2022; 32
2022; 601
2017; 20
2015; 14
2019; 3
2012; 101
2015; 4
2013; 46
2023; 123
2015; 10
2008; 11
2016; 125
2014; 115
2014; 113
2021; 13
2016; 7
2021; 12
2016; 2
2023
2020
2019
2022; 13
2018
2017
2024; 45
2009; 4
2019; 573
2022; 17
References_xml – volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 113
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 28
  year: 2008
  publication-title: Mater. Today
– volume: 45
  start-page: 184
  year: 2024
  publication-title: IEEE Electron Device Lett.
– volume: 46
  year: 2013
  publication-title: J. Phys. D: Appl. Phys.
– volume: 5
  start-page: 173
  year: 2020
  publication-title: Nat. Rev. Mater.
– volume: 11
  year: 2019
  publication-title: Phys. Rev. Appl.
– volume: 22
  year: 2011
  publication-title: Nanotechnology
– volume: 10
  start-page: 853
  year: 2011
  publication-title: Nat. Mater.
– volume: 6
  start-page: 833
  year: 2007
  publication-title: Nat. Mater.
– year: 2018
– volume: 20
  start-page: 530
  year: 2017
  publication-title: Mater. Today.
– volume: 20
  start-page: 3435
  year: 2020
  publication-title: Nano Lett.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 6
  year: 2020
  publication-title: Adv. Electron. Mater.
– volume: 110
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 2
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 97
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 5
  start-page: 1275
  year: 2018
  publication-title: IEEE Internet Things J
– volume: 18
  start-page: 35
  year: 2019
  publication-title: Nat. Mater.
– volume: 563
  year: 2022
  publication-title: J. Magn. Magn. Mater.
– volume: 107
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 23
  start-page: 3167
  year: 2023
  publication-title: Nano Lett.
– year: 2019
– volume: 9
  year: 2023
  publication-title: Adv. Electron.Mater.
– volume: 9
  year: 2023
  publication-title: Adv. Electron. Mater.
– volume: 1
  start-page: 398
  year: 2018
  publication-title: Nat. Electron.
– volume: 12
  start-page: 7111
  year: 2021
  publication-title: Nat. Commun.
– volume: 52
  year: 2019
  publication-title: J. Phys. D: Appl. Phys.
– volume: 101
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 11
  start-page: 64
  year: 2012
  publication-title: Nat. Mater.
– volume: 10
  start-page: 248
  year: 2019
  publication-title: Nat. Commun.
– volume: 123
  year: 2023
  publication-title: Appl. Phys. Lett.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 3
  year: 2019
  publication-title: Phys Rev. Mater.
– volume: 601
  start-page: 211
  year: 2022
  publication-title: Nature
– volume: 6
  year: 2018
  publication-title: APL Mater.
– volume: 109
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 11
  start-page: 5871
  year: 2020
  publication-title: Nat. Commun.
– volume: 115
  year: 2014
  publication-title: J. Appl. Phys.
– volume: 118
  year: 2021
  publication-title: Appl. Phys. Lett.
– year: 2020
– year: 2023
– volume: 10
  start-page: 209
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 4
  start-page: 586
  year: 2015
  publication-title: Electronics
– volume: 121
  year: 2022
  publication-title: Appl. Phys. Lett.
– volume: 573
  start-page: 390
  year: 2019
  publication-title: Nature
– volume: 17
  year: 2022
  publication-title: Phys. Rev. Appl.
– year: 2017
– volume: 10
  start-page: 327
  year: 2019
  publication-title: Micromachines
– volume: 4
  start-page: 158
  year: 2009
  publication-title: Nat. Nanotechnol.
– volume: 125
  start-page: 25
  year: 2016
  publication-title: Solid‐State Electron.
– volume: 14
  start-page: 174
  year: 2015
  publication-title: Nat. Mater.
– volume: 13
  start-page: 3783
  year: 2022
  publication-title: Nat. Commun.
SSID ssj0001763453
Score 2.3270102
Snippet Voltage‐controlled magnetism (VCM) offers an efficient operating method for various spintronic applications, with reduced power consumption compared to...
Abstract Voltage‐controlled magnetism (VCM) offers an efficient operating method for various spintronic applications, with reduced power consumption compared...
SourceID doaj
wiley
SourceType Open Website
Publisher
SubjectTerms magneto‐ionic effect
resistive switching
spin‐orbit torque
voltage‐controlled magnetism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJy-iqFhf7MGjoXnsJtljLS1VrAW1UPAQ9ikFTcXGx9Gf4G_0lziziaWevHjdQBJmd2a-bzL5hpAT1LQyTIVBJqQOmFE8kEqwINfAxFIrMunrkKOrdDhhF1M-XRn1hT1htTxwbbiOckLmAtK0dgySZy55mCqTGwDGWsEJxegbinCFTPnqCrgN48mPSmMYd6R9wB_PsWWS42w3r9D_G5H6lDLYJBsNFqTd-h22yJott8kdxLv5AmmqoSN5X9pq_vXxeY4KtrRX95XTuWsuzRaP1H_0p5Je2wX666ulN2-zyrdI0qEbxxQLZHT8PjN2h0wG_dveMGgmIAQG_DAKgO0IFmmXCh1zrR1XEcQjprRSQJUi1Ea3jEkTmVgmLAljk6ZShUJBBNMOVnZJq5yXdo9QnekccrEGhOWYkZlkBqe9GA4YD0lSm5yhRYqnWuSiQNlpvwCbUTSbUfy1GW1y6u25vEstihwXaP1iaf2i278ciSTa_49nHpD1GGfy-r6wQ9Kqnl_sEQCFSh37M_ENVLC5tg
  priority: 102
  providerName: Directory of Open Access Journals
Title Nanosecond Magneto‐Ionic Control of Magnetism Using a Resistive Switching HfO2 Gate Oxide
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202400535
https://doaj.org/article/bf9a89056cf44398a506bd8d118cb030
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgXLggECDKUvnAkahZnMXHUrUqiFIEVKrEIfIWVAkS1IblyCfwjXwJM05o6ZGrHfkwmRm_Nxq_IeQUNa00k64Tc6EcpmXoCMmZkyhgYpHhsbB1yOF1NBizy0k4-fOKv9KHWBTcMDJsvsYAF3LeXoqGCvOEL8mxBzIMwnWyAcg-QB_32c2yygLhw6wUJUQmd7zInfwqN7p-e_WIWrV_FaXaa6a_TbZqfEg71Q_dIWsm3yUPkAOLOVJXTYfiMTdl8f35dYGqtrRb9ZrTIqu3pvNnahsBqKC3Zo4x_Gbo3fu0tG2TdJCNfIpFMzr6mGqzR8b93n134NRTERwNsek5wIA481QWceWHSmWh9CBHMamkBPrkoV66YUxoT_siYIHr6ygS0uUSsprKYGWfNPIiNweEqlglcD8rQF0Z0yIWTOMEGB0C7kPi1CTnaJH0pRK-SFGK2i4Us8e09uxUZlwkHHCUyhigm0SEbiR1ooG5KAkppEnOrD0Xp1RCyX6K1k8X1k87vashD7zD_31-RDZ9nMhru8KOSaOcvZoTgAmlbFlPaFmS_QMEobal
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oHPRiNGp8uwePNrRlW7pHJBBQHomCIXpo9lVCotQAPo7-BH-jv8SZbYFw9Lpt9jC738w3k9lvCLlCTSvNpOtUuFAO0zJwhOTMiRRkYqHhFWHrkJ1u2Byw22Gw6CbEtzCZPsSy4IbIsP4aAY4F6dJKNVSYF3xKjk2QQTnYJMUAwilc8mL1cfA0WBVaAEHMqlECOLnjhe5wId7o-qX1TXLh_nWiaiNNY5fs5BSRVrMz3SMbZrJPnsENpjPMXjXtiNHEzNPf758WCtvSWtZuTtMk_zSevVLbC0AFvTczhPGHoQ-f47ntnKTNpOdTrJvR3tdYmwMyaNT7taaTD0ZwNMDTcyAJ4sxTSciVHyiVBNIDN8WkkhIyKA8l0w1jQnvaF2VWdn0dhkK6XIJjUwmsHJLCJJ2YI0JVRUUQohUQr4RpURFM4xAYHQD1w9zpmNygReK3TPsiRjVqu5BOR3F-uWOZcBFxoFIqYUBwIgEnIXWkIXlRErzIMbm29lzukmkl-zFaP15aP67W2x1e9k7-9_sl2Wr2O-243erenZJtHwf02iaxM1KYT9_NObCGubzI78UfTWC67Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSIgLAgFixweORGRx0vhYSqsCXRCLVIlD5BVVggS1ZTnyCXwjX8KMEwocudqRD5N54zej8RtCDlHTSjPpe3UulMe0jD0hOfNSBZlYYnhduDpkr590btn5MB7-esVf6kPMCm6IDBevEeBP2h7_iIYK84AvybEHMo7iebLAwPnQx0N2-VNlAfgwJ0UJyORekPjDb-VGPzz-e0Sl2v-Xpbprpr1Clit-SBvlD10lcyZfI3cQA4sJpq6a9sR9bqbF5_vHGara0mbZa04LW22NJo_UNQJQQa_MBDH8Yuj162jq2iZpxw5CikUzOngbabNObtutm2bHq6YieBqwGXiQAXEWKJtwFcZK2VgGEKOYVFJC-hSgXrphTOhAhyJikR_qJBHS5xKimrKwskFqeZGbTUJVXaVwPytgXZZpURdM4wQYHQPvw8Rpi5ygRbKnUvgiQylqt1CM77PKszNpuUg58ChlGbCbVMR-InWqIXNREkLIFjly9pydUgolhxlaP5tZP2u0uj0eBdv_-_yALF6etrPuWf9ihyyFOJzXNYjtktp0_Gz2gDFM5b5zii_R3rhR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanosecond+Magneto%E2%80%90Ionic+Control+of+Magnetism+Using+a+Resistive+Switching+HfO2+Gate+Oxide&rft.jtitle=Advanced+electronic+materials&rft.au=Jeong%2C+Jimin&rft.au=Park%2C+Yeon+Su&rft.au=Kang%2C+Min%E2%80%90Gu&rft.au=Park%2C+Byong%E2%80%90Guk&rft.date=2025-03-01&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=11&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faelm.202400535&rft.externalDBID=10.1002%252Faelm.202400535&rft.externalDocID=AELM931
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon