Inferring the vertical distribution of CO and CO2 from TCCON total column values using the TARDISS algorithm

We describe an approach for determining limited information about the vertical distribution of carbon monoxide (CO) and carbon dioxide (CO2) from total column ground-based Total Carbon Column Observation Network (TCCON) observations. For CO and CO2, it has been difficult to retrieve information abou...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric measurement techniques Vol. 16; no. 10; pp. 2601 - 2625
Main Authors Parker, Harrison A, Laughner, Joshua L, Toon, Geoffrey C, Wunch, Debra, Roehl, Coleen M, Iraci, Laura T, Podolske, James R, McKain, Kathryn, Baier, Bianca C, Wennberg, Paul O
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 30.05.2023
Copernicus Publications
Subjects
Online AccessGet full text
ISSN1867-1381
1867-8548
1867-8548
DOI10.5194/amt-16-2601-2023

Cover

Abstract We describe an approach for determining limited information about the vertical distribution of carbon monoxide (CO) and carbon dioxide (CO2) from total column ground-based Total Carbon Column Observation Network (TCCON) observations. For CO and CO2, it has been difficult to retrieve information about their vertical distribution from spectral line shapes because of the errors in the spectroscopy and the atmospheric temperature profile that mask the effects of variations in their mixing ratio with altitude. For CO2 the challenge is especially difficult given that these variations are typically 2 % or less. Nevertheless, if sufficient accuracy can be obtained, such information would be highly valuable for evaluation of retrievals from satellites and more generally for improving the estimate of surface sources and sinks of these trace gases.We present here the Temporal Atmospheric Retrieval Determining Information from Secondary Scaling (TARDISS) retrieval algorithm. TARDISS uses several simultaneously obtained total column observations of the same gas from different absorption bands with distinctly different vertical averaging kernels. The different total column retrievals are combined in TARDISS using a Bayesian approach where the weights and temporal covariance applied to the different retrievals include additional constraints on the diurnal variation in the vertical distribution for these gases. We assume that the near-surface part of the column varies rapidly over the course of a day (from surface sources and sinks, for example) and that the upper part of the column has a larger temporal covariance over the course of a day.Using measurements from the five North American TCCON sites, we find that the retrieved lower partial column (between the surface and∼ 800 hPa) of the CO and CO2 dry mole fractions (DMFs) have slopes of 0.999 ± 0.002 and 1.001 ± 0.003 with respect to lower column DMF from integrated in situ data measured directly from aircraft and in AirCores. The average error for our lower columnCO retrieval is 1.51 ppb (∼ 2 %) while the average error for our CO2 retrieval is 5.09 ppm (∼ 1.25 %). Compared with classical line-shape-derived vertical profile retrievals, our algorithm reduces the influence of forward model errors such as imprecision in spectroscopy (line shapes and intensities) and in the instrument line shape. In addition, because TARDISS uses the existing retrieved column abundances from TCCON (which themselves are computationally much less intensive than profile retrieval algorithms), it is very fast and processes years of data in minutes. We anticipate that this approach will find broad application for use in carbon cycle science.
AbstractList We describe an approach for determining limited information about the vertical distribution of carbon monoxide (CO) and carbon dioxide (CO2) from total column ground-based Total Carbon Column Observation Network (TCCON) observations. For CO and CO2, it has been difficult to retrieve information about their vertical distribution from spectral line shapes because of the errors in the spectroscopy and the atmospheric temperature profile that mask the effects of variations in their mixing ratio with altitude. For CO2 the challenge is especially difficult given that these variations are typically 2 % or less. Nevertheless, if sufficient accuracy can be obtained, such information would be highly valuable for evaluation of retrievals from satellites and more generally for improving the estimate of surface sources and sinks of these trace gases.We present here the Temporal Atmospheric Retrieval Determining Information from Secondary Scaling (TARDISS) retrieval algorithm. TARDISS uses several simultaneously obtained total column observations of the same gas from different absorption bands with distinctly different vertical averaging kernels. The different total column retrievals are combined in TARDISS using a Bayesian approach where the weights and temporal covariance applied to the different retrievals include additional constraints on the diurnal variation in the vertical distribution for these gases. We assume that the near-surface part of the column varies rapidly over the course of a day (from surface sources and sinks, for example) and that the upper part of the column has a larger temporal covariance over the course of a day.Using measurements from the five North American TCCON sites, we find that the retrieved lower partial column (between the surface and∼ 800 hPa) of the CO and CO2 dry mole fractions (DMFs) have slopes of 0.999 ± 0.002 and 1.001 ± 0.003 with respect to lower column DMF from integrated in situ data measured directly from aircraft and in AirCores. The average error for our lower columnCO retrieval is 1.51 ppb (∼ 2 %) while the average error for our CO2 retrieval is 5.09 ppm (∼ 1.25 %). Compared with classical line-shape-derived vertical profile retrievals, our algorithm reduces the influence of forward model errors such as imprecision in spectroscopy (line shapes and intensities) and in the instrument line shape. In addition, because TARDISS uses the existing retrieved column abundances from TCCON (which themselves are computationally much less intensive than profile retrieval algorithms), it is very fast and processes years of data in minutes. We anticipate that this approach will find broad application for use in carbon cycle science.
We describe an approach for determining limited information about the vertical distribution of carbon monoxide ( CO ) and carbon dioxide ( CO2 ) from total column ground-based Total Carbon Column Observation Network (TCCON) observations. For CO and CO2 , it has been difficult to retrieve information about their vertical distribution from spectral line shapes because of the errors in the spectroscopy and the atmospheric temperature profile that mask the effects of variations in their mixing ratio with altitude. For CO2 the challenge is especially difficult given that these variations are typically 2 % or less. Nevertheless, if sufficient accuracy can be obtained, such information would be highly valuable for evaluation of retrievals from satellites and more generally for improving the estimate of surface sources and sinks of these trace gases. We present here the Temporal Atmospheric Retrieval Determining Information from Secondary Scaling (TARDISS) retrieval algorithm. TARDISS uses several simultaneously obtained total column observations of the same gas from different absorption bands with distinctly different vertical averaging kernels. The different total column retrievals are combined in TARDISS using a Bayesian approach where the weights and temporal covariance applied to the different retrievals include additional constraints on the diurnal variation in the vertical distribution for these gases. We assume that the near-surface part of the column varies rapidly over the course of a day (from surface sources and sinks, for example) and that the upper part of the column has a larger temporal covariance over the course of a day. Using measurements from the five North American TCCON sites, we find that the retrieved lower partial column (between the surface and ∼  800  hPa ) of the CO and CO2 dry mole fractions (DMFs) have slopes of 0.999  ±  0.002 and 1.001  ±  0.003 with respect to lower column DMF from integrated in situ data measured directly from aircraft and in AirCores. The average error for our lower column CO retrieval is 1.51  ppb ( ∼  2 %) while the average error for our CO2  retrieval is 5.09  ppm ( ∼  1.25 %). Compared with classical line-shape-derived vertical profile retrievals, our algorithm reduces the influence of forward model errors such as imprecision in spectroscopy (line shapes and intensities) and in the instrument line shape. In addition, because TARDISS uses the existing retrieved column abundances from TCCON (which themselves are computationally much less intensive than profile retrieval algorithms), it is very fast and processes years of data in minutes. We anticipate that this approach will find broad application for use in carbon cycle science.
Author Toon, Geoffrey C
McKain, Kathryn
Baier, Bianca C
Parker, Harrison A
Podolske, James R
Wennberg, Paul O
Iraci, Laura T
Laughner, Joshua L
Wunch, Debra
Roehl, Coleen M
Author_xml – sequence: 1
  givenname: Harrison
  surname: Parker
  middlename: A
  fullname: Parker, Harrison A
– sequence: 2
  givenname: Joshua
  surname: Laughner
  middlename: L
  fullname: Laughner, Joshua L
– sequence: 3
  givenname: Geoffrey
  surname: Toon
  middlename: C
  fullname: Toon, Geoffrey C
– sequence: 4
  givenname: Debra
  surname: Wunch
  fullname: Wunch, Debra
– sequence: 5
  givenname: Coleen
  surname: Roehl
  middlename: M
  fullname: Roehl, Coleen M
– sequence: 6
  givenname: Laura
  surname: Iraci
  middlename: T
  fullname: Iraci, Laura T
– sequence: 7
  givenname: James
  surname: Podolske
  middlename: R
  fullname: Podolske, James R
– sequence: 8
  givenname: Kathryn
  surname: McKain
  fullname: McKain, Kathryn
– sequence: 9
  givenname: Bianca
  surname: Baier
  middlename: C
  fullname: Baier, Bianca C
– sequence: 10
  givenname: Paul
  surname: Wennberg
  middlename: O
  fullname: Wennberg, Paul O
BookMark eNo9kF1L5DAUhoMorB97v5cBr7smaZoml1Ld3QFxQGevQz7HDmkypqniv7d11Kv3cDjngfc5A8cxRQfAL4x-N1jQKzWUCrOKMIQrgkh9BE4xZ23FG8qPP2dcc_wDnI3jDiFGcUtOQVhF73Lu4xaWJwdfXC69UQHafiy511PpU4TJw24NVbRzEOhzGuCm69b3sKQy35oUpiHCFxUmN8Jp_IJtrh9uVo-PUIVtyn15Gi7AiVdhdD8_8xz8_3O76f5Vd-u_q-76rrJE4FJpYV2jNLW00QJZYxHzhhghLGuYd8IYQw2xjAriDWsc5oJrLlitPeO-ofU5WB24Nqmd3Od-UPlNJtXLj0XKW6mWnsFJ74nhVFssWkVbqpVSFmlGjKO1E35h4QNrinv19qpC-AZiJBf1clYvMZOLermon38uDz_7nJ5nJ0Xu0pTjXFkSPl-glghSvwMGJIZH
ContentType Journal Article
Copyright 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.5194/amt-16-2601-2023
DatabaseName Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1867-8548
EndPage 2625
ExternalDocumentID oai_doaj_org_article_ff2c84bd197a474baaad0b62ce43e9f4
10.5194/amt-16-2601-2023
GroupedDBID 23N
5VS
7QH
7TG
7TN
7UA
8FD
8FE
8FG
8FH
8R4
8R5
AAFWJ
ABDBF
ABUWG
ACGFO
ACUHS
ADBBV
AEGXH
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
C1K
CCPQU
D1K
DWQXO
E3Z
ESX
F1W
GROUPED_DOAJ
H13
H8D
H96
HCIFZ
IAO
IEA
ISR
ITC
K6-
KL.
KQ8
L.G
L7M
LK5
M7R
OK1
P2P
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
Q2X
RKB
RNS
TR2
TUS
ADTOC
C1A
IPNFZ
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-d291t-b9de5ab4d45b90dcd06fc2c99d656fe9ccc4c2d6492fc65e1898b8963bf68f543
IEDL.DBID UNPAY
ISSN 1867-1381
1867-8548
IngestDate Tue Oct 14 18:06:46 EDT 2025
Sun Sep 07 11:16:34 EDT 2025
Mon Oct 06 16:44:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d291t-b9de5ab4d45b90dcd06fc2c99d656fe9ccc4c2d6492fc65e1898b8963bf68f543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.5194/amt-16-2601-2023
PQID 2820207292
PQPubID 105742
PageCount 25
ParticipantIDs doaj_primary_oai_doaj_org_article_ff2c84bd197a474baaad0b62ce43e9f4
unpaywall_primary_10_5194_amt_16_2601_2023
proquest_journals_2820207292
PublicationCentury 2000
PublicationDate 2023-05-30
PublicationDateYYYYMMDD 2023-05-30
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-30
  day: 30
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric measurement techniques
PublicationYear 2023
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
SSID ssj0064172
Score 2.3540967
Snippet We describe an approach for determining limited information about the vertical distribution of carbon monoxide (CO) and carbon dioxide (CO2) from total column...
We describe an approach for determining limited information about the vertical distribution of carbon monoxide ( CO ) and carbon dioxide ( CO2 ) from total...
SourceID doaj
unpaywall
proquest
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 2601
SubjectTerms Absorption bands
Absorption spectra
Algorithms
Altitude
Analytical methods
Atmospheric temperature
Bayesian analysis
Carbon
Carbon cycle
Carbon dioxide
Carbon monoxide
Covariance
Distribution
Diurnal variations
Errors
Fourier transforms
Fractions
Gas absorption
Gases
Ground-based observation
Information retrieval
Line shape
Line spectra
Mixing ratio
Ozone
Probability theory
Scaling
Shape
Spectroscopy
Spectrum analysis
Stratosphere
Temperature profile
Temperature profiles
Trace gases
Vertical distribution
Vertical profiles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS94wGA7Dy7zI3Bz7phs5jB0GwSZN0-bouokOVJif4C3kpwq1lc-K-N_7vmkVd_KyU2kPacjT5H2e9M3zEvKthCBnIZCz5FLNgP8HZrn3rI68riPE85h9uo-O1cGZ_HNenb8o9YU5YZM98DRwuykJ30gXuK6trKWz1obCKeGjLKNO2Qm0aPSTmJrWYCV5LtuEbm3ossenH5TAVuSuvR4ZVwyttBjWDp_N-v9hmG_v-hv7cG-77kWw2X9HNmaWSPem3m2SN7F_TxZHQHCHVd4Hp99p210B28x3H0h3iAf3cI-OAqOjucgyjD4N6Is7l7SiQ6LtCbV9gIugeLCELtv25JiOA1Bw6nGh6inaf8dbignxU2PLvb-_Dk9Pqe0uhtXVeHm9Rc72fy_bAzYXUmBBaD4yp0OsrJNBVk4XwYdCJS-81gHYXIraey-9CEpqkbyqAB7duAampkuqSZUsP5K1fujjJ0ILFWNde1d60IUyxkaDwuJJlNEWHvjEgvzE0TQ3k1eGQffq_AAwNTOm5jVMF2TnCQszT6lbA9oQqC1oAbEgP57xeX4RiBmE1wC8hiuD8BqE9_P_6NA2Wce2ctZAsUPWxtVd_AJkZHRf83f3CAts3S0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELXK9gAXxKdYKMgHxAHJauI4TnxAqA2tWqRuUbuVerP82SKlybJNhfj3zHiTAhdOUaLIkfLsmTf-eI-Q9wUkOQOJnEUbKwb83zOTO8eqkFdVgHwekk73yUIeXYivl-XlFllMZ2FwW-UUE1Og9r3DOfJdKA2A2QAV5J9XPxi6RuHq6mShYUZrBf8pSYw9INsclbFmZHv_YPHtbIrNUuTJzglV3FB9L98sXAKLEbvmZmC5ZCixxdBTfBTx_4d5PrzrVubXT9O2fyWhwyfk8cge6d4G7qdkK3TPyPwEiG-_TvPj9ANt2u_AQtPdc9Ie44E-nLujwPRoMl8GVKhHvdzR6or2kTan1HQeLpzigRO6bJrTBR16oObUYQDrKMqCh1uKG-U3jS33zr4cn59T017Bjxqub16Qi8ODZXPERoMF5rnKB2aVD6WxwovSqsw7n8nouFPKA8uLQTnnhONeCsWjkyXApmpbw5C1UdaxFMVLMuv6LrwiNJMhVJWzhYN6UYRQK6i88siLYDIHPGNO9vFv6tVGQ0OjqnV60K-v9DhIdIzc1cL6XFVGVMIaY3xmJXdBFEFFMSc7ExZ6HGq3-k_HmJOP9_jcfwiKHIRXA7w6lxrh1Qjv6_-39YY8wrfSPoFsh8yG9V14C_RjsO_GPvUbJ5TZjg
  priority: 102
  providerName: ProQuest
Title Inferring the vertical distribution of CO and CO2 from TCCON total column values using the TARDISS algorithm
URI https://www.proquest.com/docview/2820207292
https://doi.org/10.5194/amt-16-2601-2023
https://doaj.org/article/ff2c84bd197a474baaad0b62ce43e9f4
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: ABDBF
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: BFMQW
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: BENPR
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: 8FG
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXo7gEufCMWysoHxAHJJXEcJz5uQ5cWqduq3ZXKyfInVKRJtZsVgl_P2AlVQRzg5CSKnCjPk3kztt8g9DoDJ6fAkROvfUGA_1uiUmNI4dKicODPXdTpPl7wwxX7eJFfDPmOsBfm1vw9cAv2Tl11JOUkCF-RUOl7B415Dqx7hMarxensU4inSrD1NIv1SONxCSy8n5H8axeDOv9vlPLutrlW37-pur7lXeYPeqmjTRQlDItKvu5tO71nfvwh2fgvL_4Q3R8oJp71Y-IRuuOax2hyDOy4XcckOn6Dq_oSqGo8e4Lqo7DrLyT4MNBBHCs0A3TYBlHdoR4Wbj2uTrBqLDQUh10peFlVJwvctcDfsQl_uQYH7XC3wWE1fd_Zcnb2_uj8HKv6c7u-7L5cPUWr-cGyOiRDFQZiqUg7ooV1udLMslyLxBqbcG-oEcICFfROGGOYoZYzQb3hOWArSl2CXWvPS5-z7BkaNW3jniOccOeKwujMQFDJnCsFhGepp5lTiQEyMkH7ARl53QttyCB9HS_Ah5WDJUnvqSmZtqkoFCuYVkrZRHNqHMuc8GyCdn_hKgd73EgILIEXQyBBJ-jtDdY3D4JIKIAmATSZchlAkwG0F_9z80t0LzRxaUGyi0bdeuteAWPp9BTtlPMPUzTeP1icnk1j3D8dBvBPACXnzg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKeygXxKdYKOADcECymjhOsj5UqE1b7dLuFrVbqTfjz4KUJstuqqp_jt_GTDYpcOHWU5RIcSLP2PPG9rxHyPsEgpyGQM6CCTkD_O-Yjq1luY_z3EM89y1P92Sajc7Fl4v0Yo386mth8FhlPye2E7WrLa6Rb0NqAMgGoCD_PP_JUDUKd1d7CQ3dSSu4nZZirCvsOPK3N5DCLXfG-2DvD5wfHsyKEetUBpjjMm6Ykc6n2ggnUiMjZ12UBcutlA6gTvDSWissd5mQPNgshX-XQzMEvzUhG4ZUJNDuA7IhEiEh-dvYO5h-Pe1jQSbiVj4KWeOQ7S9ebZQCahLb-qphccaQ0ouhhnknGvAP0t28rub69kaX5V9B7_AxedShVbq7cq8nZM1XT8lgAkC7XrTr8fQjLcofgHrbu2ekHGMBIa4VUkCWtBV7Bi-gDvl5O2ktWgdanFBdObhwigUudFYUJ1Pa1JAKUIsTZkWRhtwvKR7MXzU22z3dH5-dUV1egmGa71fPyfm9dPULsl7VlX9JaJR5n-fWJBbyU-H9UEKmFweeeB1ZwDUDsoe9qeYrzg6FLNrtg3pxqbpBqULgdiiMi2WuRS6M1tpFJuPWi8TLIAZkq7eF6ob2Uv1xxAH5dGefuw9BUoXmVWBeFWcKzavQvK_-39Y7sjmaTY7V8Xh69Jo8xDfaMwrRFllvFtf-DUCfxrzt_IuSb_ft0r8BSSsYNQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VVIJeeCMCBfYAHJC2sTcbPw4ItQlRQ0kKNBW9LftsEakdEkdV-Wn8Ff4MM36Ux4FbD5wsW_LaXn87883u7DeEPO2Ck1PgyJnXPmbA_y1ToTEsdmEcO_DnrtTpHk-i3UPx5qh3tEa-N3thMK2ysYmloba5wTnyDoQGwGyACvKOr9Mi3g2Gr-ZfGVaQwpXWppxGBZE9d34G4dvy5WgA__oZ58PX0_4uqysMMMvTsGA6ta6ntLCip9PAGhtE3nCTphZojnepMUYYbiORcm-iHrx3mugEMKt9lPie6EK7V8h6giJoLbK-Mxy__9j4gUiEZekoVIxDpb-wWiQFxiQ66rRgYcRQzoth_fK6YMAfLPfaKpur8zM1m_3m8IY3yI-mq6o8ly9bq0JvmW9_qUj-n315k1yveTjdrgbOLbLmstukPYYQIl-UKw30Oe3PPgOfL8_ukNkIt0biLCgFzkzLMtaAb2pRebguGkZzT_v7VGUWDpzi1h067ff3J7TIIcihBl1BRlFg3S0pbjmoGptufxiMDg6omh1D1xQnp3fJ4aV8_D3SyvLM3Sc0iJyLY6O7BiJv4VySQgwbet51KjDA2NpkB7Ei55UaiUR98PJCvjiWtbmR3nOTCG3DNFYiFlopZQMdceNE16VetMlmgwxZG62l_AWLNnlxgb6LB0G4iOCVAF4ZRhLBKxG8D_7d1hNyFcAl344mew_JBt5QJl8Em6RVLFbuEXC6Qj-uBw8lny4bYz8BMkVfjA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVge4ALlC-x0CIfEAckl8RxnPi4pK1apG4R3ZXKyfJnqUiTajcrBL-emSRUBXGAk5MocqI8T-bN2H5DyOsMnJwBR86ijQUD_u-ZSZ1jRUiLIoA_D71O98lcHi3Fh_P8fMx34F6YW_P3wC3EO3PVsVQyFL5iWOn7LtmSObDuCdlazj_OPmM8VYKtp1lfj7Q_LoGFDzOSf-1iVOf_jVLe2zTX5vs3U9e3vMvhw0HqaN2LEuKikq97m87uuR9_SDb-y4tvkwcjxaSzYUw8IndC85hMT4Adt6s-iU7f0Kq-BKranz0h9THu-sMEHwU6SPsKzQAd9SiqO9bDom2k1Sk1jYeGU9yVQhdVdTqnXQv8nTr8yzUUtcPDmuJq-qGzxezT_vHZGTX1Rbu67L5cPSXLw4NFdcTGKgzMc5V2zCofcmOFF7lViXc-kdFxp5QHKhiDcs4Jx70Uikcnc8BWlbYEu7ZRljEX2TMyadomPCc0kSEUhbOZg6BShFAqCM_SyLNgEgdkZEreIzL6ehDa0Ch93V-AD6tHS9IxclcK61NVGFEIa4zxiZXcBZEFFcWU7PzCVY_2uNYQWAIvhkCCT8nbG6xvHgSREIKmATSdSo2gaQTtxf_c_JLcx6ZfWpDskEm32oRdYCydfTUO1p8OHeRZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inferring+the+vertical+distribution+of+CO+and+CO2+from+TCCON+total+column+values+using+the+TARDISS+algorithm&rft.jtitle=Atmospheric+measurement+techniques&rft.au=H.+A.+Parker&rft.au=J.+L.+Laughner&rft.au=G.+C.+Toon&rft.au=D.+Wunch&rft.date=2023-05-30&rft.pub=Copernicus+Publications&rft.issn=1867-1381&rft.eissn=1867-8548&rft.volume=16&rft.spage=2601&rft.epage=2625&rft_id=info:doi/10.5194%2Famt-16-2601-2023&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ff2c84bd197a474baaad0b62ce43e9f4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-1381&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-1381&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-1381&client=summon