Inferring the vertical distribution of CO and CO2 from TCCON total column values using the TARDISS algorithm
We describe an approach for determining limited information about the vertical distribution of carbon monoxide (CO) and carbon dioxide (CO2) from total column ground-based Total Carbon Column Observation Network (TCCON) observations. For CO and CO2, it has been difficult to retrieve information abou...
Saved in:
| Published in | Atmospheric measurement techniques Vol. 16; no. 10; pp. 2601 - 2625 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Katlenburg-Lindau
Copernicus GmbH
30.05.2023
Copernicus Publications |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1867-1381 1867-8548 1867-8548 |
| DOI | 10.5194/amt-16-2601-2023 |
Cover
| Abstract | We describe an approach for determining limited information about the vertical distribution of carbon monoxide (CO) and carbon dioxide (CO2) from total column ground-based Total Carbon Column Observation Network (TCCON) observations. For CO and CO2, it has been difficult to retrieve information about their vertical distribution from spectral line shapes because of the errors in the spectroscopy and the atmospheric temperature profile that mask the effects of variations in their mixing ratio with altitude. For CO2 the challenge is especially difficult given that these variations are typically 2 % or less. Nevertheless, if sufficient accuracy can be obtained, such information would be highly valuable for evaluation of retrievals from satellites and more generally for improving the estimate of surface sources and sinks of these trace gases.We present here the Temporal Atmospheric Retrieval Determining Information from Secondary Scaling (TARDISS) retrieval algorithm. TARDISS uses several simultaneously obtained total column observations of the same gas from different absorption bands with distinctly different vertical averaging kernels. The different total column retrievals are combined in TARDISS using a Bayesian approach where the weights and temporal covariance applied to the different retrievals include additional constraints on the diurnal variation in the vertical distribution for these gases. We assume that the near-surface part of the column varies rapidly over the course of a day (from surface sources and sinks, for example) and that the upper part of the column has a larger temporal covariance over the course of a day.Using measurements from the five North American TCCON sites, we find that the retrieved lower partial column (between the surface and∼ 800 hPa) of the CO and CO2 dry mole fractions (DMFs) have slopes of 0.999 ± 0.002 and 1.001 ± 0.003 with respect to lower column DMF from integrated in situ data measured directly from aircraft and in AirCores. The average error for our lower columnCO retrieval is 1.51 ppb (∼ 2 %) while the average error for our CO2 retrieval is 5.09 ppm (∼ 1.25 %). Compared with classical line-shape-derived vertical profile retrievals, our algorithm reduces the influence of forward model errors such as imprecision in spectroscopy (line shapes and intensities) and in the instrument line shape. In addition, because TARDISS uses the existing retrieved column abundances from TCCON (which themselves are computationally much less intensive than profile retrieval algorithms), it is very fast and processes years of data in minutes. We anticipate that this approach will find broad application for use in carbon cycle science. |
|---|---|
| AbstractList | We describe an approach for determining limited information about the vertical distribution of carbon monoxide (CO) and carbon dioxide (CO2) from total column ground-based Total Carbon Column Observation Network (TCCON) observations. For CO and CO2, it has been difficult to retrieve information about their vertical distribution from spectral line shapes because of the errors in the spectroscopy and the atmospheric temperature profile that mask the effects of variations in their mixing ratio with altitude. For CO2 the challenge is especially difficult given that these variations are typically 2 % or less. Nevertheless, if sufficient accuracy can be obtained, such information would be highly valuable for evaluation of retrievals from satellites and more generally for improving the estimate of surface sources and sinks of these trace gases.We present here the Temporal Atmospheric Retrieval Determining Information from Secondary Scaling (TARDISS) retrieval algorithm. TARDISS uses several simultaneously obtained total column observations of the same gas from different absorption bands with distinctly different vertical averaging kernels. The different total column retrievals are combined in TARDISS using a Bayesian approach where the weights and temporal covariance applied to the different retrievals include additional constraints on the diurnal variation in the vertical distribution for these gases. We assume that the near-surface part of the column varies rapidly over the course of a day (from surface sources and sinks, for example) and that the upper part of the column has a larger temporal covariance over the course of a day.Using measurements from the five North American TCCON sites, we find that the retrieved lower partial column (between the surface and∼ 800 hPa) of the CO and CO2 dry mole fractions (DMFs) have slopes of 0.999 ± 0.002 and 1.001 ± 0.003 with respect to lower column DMF from integrated in situ data measured directly from aircraft and in AirCores. The average error for our lower columnCO retrieval is 1.51 ppb (∼ 2 %) while the average error for our CO2 retrieval is 5.09 ppm (∼ 1.25 %). Compared with classical line-shape-derived vertical profile retrievals, our algorithm reduces the influence of forward model errors such as imprecision in spectroscopy (line shapes and intensities) and in the instrument line shape. In addition, because TARDISS uses the existing retrieved column abundances from TCCON (which themselves are computationally much less intensive than profile retrieval algorithms), it is very fast and processes years of data in minutes. We anticipate that this approach will find broad application for use in carbon cycle science. We describe an approach for determining limited information about the vertical distribution of carbon monoxide ( CO ) and carbon dioxide ( CO2 ) from total column ground-based Total Carbon Column Observation Network (TCCON) observations. For CO and CO2 , it has been difficult to retrieve information about their vertical distribution from spectral line shapes because of the errors in the spectroscopy and the atmospheric temperature profile that mask the effects of variations in their mixing ratio with altitude. For CO2 the challenge is especially difficult given that these variations are typically 2 % or less. Nevertheless, if sufficient accuracy can be obtained, such information would be highly valuable for evaluation of retrievals from satellites and more generally for improving the estimate of surface sources and sinks of these trace gases. We present here the Temporal Atmospheric Retrieval Determining Information from Secondary Scaling (TARDISS) retrieval algorithm. TARDISS uses several simultaneously obtained total column observations of the same gas from different absorption bands with distinctly different vertical averaging kernels. The different total column retrievals are combined in TARDISS using a Bayesian approach where the weights and temporal covariance applied to the different retrievals include additional constraints on the diurnal variation in the vertical distribution for these gases. We assume that the near-surface part of the column varies rapidly over the course of a day (from surface sources and sinks, for example) and that the upper part of the column has a larger temporal covariance over the course of a day. Using measurements from the five North American TCCON sites, we find that the retrieved lower partial column (between the surface and ∼ 800 hPa ) of the CO and CO2 dry mole fractions (DMFs) have slopes of 0.999 ± 0.002 and 1.001 ± 0.003 with respect to lower column DMF from integrated in situ data measured directly from aircraft and in AirCores. The average error for our lower column CO retrieval is 1.51 ppb ( ∼ 2 %) while the average error for our CO2 retrieval is 5.09 ppm ( ∼ 1.25 %). Compared with classical line-shape-derived vertical profile retrievals, our algorithm reduces the influence of forward model errors such as imprecision in spectroscopy (line shapes and intensities) and in the instrument line shape. In addition, because TARDISS uses the existing retrieved column abundances from TCCON (which themselves are computationally much less intensive than profile retrieval algorithms), it is very fast and processes years of data in minutes. We anticipate that this approach will find broad application for use in carbon cycle science. |
| Author | Toon, Geoffrey C McKain, Kathryn Baier, Bianca C Parker, Harrison A Podolske, James R Wennberg, Paul O Iraci, Laura T Laughner, Joshua L Wunch, Debra Roehl, Coleen M |
| Author_xml | – sequence: 1 givenname: Harrison surname: Parker middlename: A fullname: Parker, Harrison A – sequence: 2 givenname: Joshua surname: Laughner middlename: L fullname: Laughner, Joshua L – sequence: 3 givenname: Geoffrey surname: Toon middlename: C fullname: Toon, Geoffrey C – sequence: 4 givenname: Debra surname: Wunch fullname: Wunch, Debra – sequence: 5 givenname: Coleen surname: Roehl middlename: M fullname: Roehl, Coleen M – sequence: 6 givenname: Laura surname: Iraci middlename: T fullname: Iraci, Laura T – sequence: 7 givenname: James surname: Podolske middlename: R fullname: Podolske, James R – sequence: 8 givenname: Kathryn surname: McKain fullname: McKain, Kathryn – sequence: 9 givenname: Bianca surname: Baier middlename: C fullname: Baier, Bianca C – sequence: 10 givenname: Paul surname: Wennberg middlename: O fullname: Wennberg, Paul O |
| BookMark | eNo9kF1L5DAUhoMorB97v5cBr7smaZoml1Ld3QFxQGevQz7HDmkypqniv7d11Kv3cDjngfc5A8cxRQfAL4x-N1jQKzWUCrOKMIQrgkh9BE4xZ23FG8qPP2dcc_wDnI3jDiFGcUtOQVhF73Lu4xaWJwdfXC69UQHafiy511PpU4TJw24NVbRzEOhzGuCm69b3sKQy35oUpiHCFxUmN8Jp_IJtrh9uVo-PUIVtyn15Gi7AiVdhdD8_8xz8_3O76f5Vd-u_q-76rrJE4FJpYV2jNLW00QJZYxHzhhghLGuYd8IYQw2xjAriDWsc5oJrLlitPeO-ofU5WB24Nqmd3Od-UPlNJtXLj0XKW6mWnsFJ74nhVFssWkVbqpVSFmlGjKO1E35h4QNrinv19qpC-AZiJBf1clYvMZOLermon38uDz_7nJ5nJ0Xu0pTjXFkSPl-glghSvwMGJIZH |
| ContentType | Journal Article |
| Copyright | 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L7M P5Z P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
| DOI | 10.5194/amt-16-2601-2023 |
| DatabaseName | Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1867-8548 |
| EndPage | 2625 |
| ExternalDocumentID | oai_doaj_org_article_ff2c84bd197a474baaad0b62ce43e9f4 10.5194/amt-16-2601-2023 |
| GroupedDBID | 23N 5VS 7QH 7TG 7TN 7UA 8FD 8FE 8FG 8FH 8R4 8R5 AAFWJ ABDBF ABUWG ACGFO ACUHS ADBBV AEGXH AENEX AEUYN AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ C1K CCPQU D1K DWQXO E3Z ESX F1W GROUPED_DOAJ H13 H8D H96 HCIFZ IAO IEA ISR ITC K6- KL. KQ8 L.G L7M LK5 M7R OK1 P2P P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC Q2X RKB RNS TR2 TUS ADTOC C1A IPNFZ PUEGO RIG UNPAY |
| ID | FETCH-LOGICAL-d291t-b9de5ab4d45b90dcd06fc2c99d656fe9ccc4c2d6492fc65e1898b8963bf68f543 |
| IEDL.DBID | UNPAY |
| ISSN | 1867-1381 1867-8548 |
| IngestDate | Tue Oct 14 18:06:46 EDT 2025 Sun Sep 07 11:16:34 EDT 2025 Mon Oct 06 16:44:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-d291t-b9de5ab4d45b90dcd06fc2c99d656fe9ccc4c2d6492fc65e1898b8963bf68f543 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.5194/amt-16-2601-2023 |
| PQID | 2820207292 |
| PQPubID | 105742 |
| PageCount | 25 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ff2c84bd197a474baaad0b62ce43e9f4 unpaywall_primary_10_5194_amt_16_2601_2023 proquest_journals_2820207292 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-30 |
| PublicationDateYYYYMMDD | 2023-05-30 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | Atmospheric measurement techniques |
| PublicationYear | 2023 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| SSID | ssj0064172 |
| Score | 2.3540967 |
| Snippet | We describe an approach for determining limited information about the vertical distribution of carbon monoxide (CO) and carbon dioxide (CO2) from total column... We describe an approach for determining limited information about the vertical distribution of carbon monoxide ( CO ) and carbon dioxide ( CO2 ) from total... |
| SourceID | doaj unpaywall proquest |
| SourceType | Open Website Open Access Repository Aggregation Database |
| StartPage | 2601 |
| SubjectTerms | Absorption bands Absorption spectra Algorithms Altitude Analytical methods Atmospheric temperature Bayesian analysis Carbon Carbon cycle Carbon dioxide Carbon monoxide Covariance Distribution Diurnal variations Errors Fourier transforms Fractions Gas absorption Gases Ground-based observation Information retrieval Line shape Line spectra Mixing ratio Ozone Probability theory Scaling Shape Spectroscopy Spectrum analysis Stratosphere Temperature profile Temperature profiles Trace gases Vertical distribution Vertical profiles |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS94wGA7Dy7zI3Bz7phs5jB0GwSZN0-bouokOVJif4C3kpwq1lc-K-N_7vmkVd_KyU2kPacjT5H2e9M3zEvKthCBnIZCz5FLNgP8HZrn3rI68riPE85h9uo-O1cGZ_HNenb8o9YU5YZM98DRwuykJ30gXuK6trKWz1obCKeGjLKNO2Qm0aPSTmJrWYCV5LtuEbm3ossenH5TAVuSuvR4ZVwyttBjWDp_N-v9hmG_v-hv7cG-77kWw2X9HNmaWSPem3m2SN7F_TxZHQHCHVd4Hp99p210B28x3H0h3iAf3cI-OAqOjucgyjD4N6Is7l7SiQ6LtCbV9gIugeLCELtv25JiOA1Bw6nGh6inaf8dbignxU2PLvb-_Dk9Pqe0uhtXVeHm9Rc72fy_bAzYXUmBBaD4yp0OsrJNBVk4XwYdCJS-81gHYXIraey-9CEpqkbyqAB7duAampkuqSZUsP5K1fujjJ0ILFWNde1d60IUyxkaDwuJJlNEWHvjEgvzE0TQ3k1eGQffq_AAwNTOm5jVMF2TnCQszT6lbA9oQqC1oAbEgP57xeX4RiBmE1wC8hiuD8BqE9_P_6NA2Wce2ctZAsUPWxtVd_AJkZHRf83f3CAts3S0 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELXK9gAXxKdYKMgHxAHJauI4TnxAqA2tWqRuUbuVerP82SKlybJNhfj3zHiTAhdOUaLIkfLsmTf-eI-Q9wUkOQOJnEUbKwb83zOTO8eqkFdVgHwekk73yUIeXYivl-XlFllMZ2FwW-UUE1Og9r3DOfJdKA2A2QAV5J9XPxi6RuHq6mShYUZrBf8pSYw9INsclbFmZHv_YPHtbIrNUuTJzglV3FB9L98sXAKLEbvmZmC5ZCixxdBTfBTx_4d5PrzrVubXT9O2fyWhwyfk8cge6d4G7qdkK3TPyPwEiG-_TvPj9ANt2u_AQtPdc9Ie44E-nLujwPRoMl8GVKhHvdzR6or2kTan1HQeLpzigRO6bJrTBR16oObUYQDrKMqCh1uKG-U3jS33zr4cn59T017Bjxqub16Qi8ODZXPERoMF5rnKB2aVD6WxwovSqsw7n8nouFPKA8uLQTnnhONeCsWjkyXApmpbw5C1UdaxFMVLMuv6LrwiNJMhVJWzhYN6UYRQK6i88siLYDIHPGNO9vFv6tVGQ0OjqnV60K-v9DhIdIzc1cL6XFVGVMIaY3xmJXdBFEFFMSc7ExZ6HGq3-k_HmJOP9_jcfwiKHIRXA7w6lxrh1Qjv6_-39YY8wrfSPoFsh8yG9V14C_RjsO_GPvUbJ5TZjg priority: 102 providerName: ProQuest |
| Title | Inferring the vertical distribution of CO and CO2 from TCCON total column values using the TARDISS algorithm |
| URI | https://www.proquest.com/docview/2820207292 https://doi.org/10.5194/amt-16-2601-2023 https://doaj.org/article/ff2c84bd197a474baaad0b62ce43e9f4 |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: ABDBF dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: BFMQW dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: BENPR dateStart: 20100501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: 8FG dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXo7gEufCMWysoHxAHJJXEcJz5uQ5cWqduq3ZXKyfInVKRJtZsVgl_P2AlVQRzg5CSKnCjPk3kztt8g9DoDJ6fAkROvfUGA_1uiUmNI4dKicODPXdTpPl7wwxX7eJFfDPmOsBfm1vw9cAv2Tl11JOUkCF-RUOl7B415Dqx7hMarxensU4inSrD1NIv1SONxCSy8n5H8axeDOv9vlPLutrlW37-pur7lXeYPeqmjTRQlDItKvu5tO71nfvwh2fgvL_4Q3R8oJp71Y-IRuuOax2hyDOy4XcckOn6Dq_oSqGo8e4Lqo7DrLyT4MNBBHCs0A3TYBlHdoR4Wbj2uTrBqLDQUh10peFlVJwvctcDfsQl_uQYH7XC3wWE1fd_Zcnb2_uj8HKv6c7u-7L5cPUWr-cGyOiRDFQZiqUg7ooV1udLMslyLxBqbcG-oEcICFfROGGOYoZYzQb3hOWArSl2CXWvPS5-z7BkaNW3jniOccOeKwujMQFDJnCsFhGepp5lTiQEyMkH7ARl53QttyCB9HS_Ah5WDJUnvqSmZtqkoFCuYVkrZRHNqHMuc8GyCdn_hKgd73EgILIEXQyBBJ-jtDdY3D4JIKIAmATSZchlAkwG0F_9z80t0LzRxaUGyi0bdeuteAWPp9BTtlPMPUzTeP1icnk1j3D8dBvBPACXnzg |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKeygXxKdYKOADcECymjhOsj5UqE1b7dLuFrVbqTfjz4KUJstuqqp_jt_GTDYpcOHWU5RIcSLP2PPG9rxHyPsEgpyGQM6CCTkD_O-Yjq1luY_z3EM89y1P92Sajc7Fl4v0Yo386mth8FhlPye2E7WrLa6Rb0NqAMgGoCD_PP_JUDUKd1d7CQ3dSSu4nZZirCvsOPK3N5DCLXfG-2DvD5wfHsyKEetUBpjjMm6Ykc6n2ggnUiMjZ12UBcutlA6gTvDSWissd5mQPNgshX-XQzMEvzUhG4ZUJNDuA7IhEiEh-dvYO5h-Pe1jQSbiVj4KWeOQ7S9ebZQCahLb-qphccaQ0ouhhnknGvAP0t28rub69kaX5V9B7_AxedShVbq7cq8nZM1XT8lgAkC7XrTr8fQjLcofgHrbu2ekHGMBIa4VUkCWtBV7Bi-gDvl5O2ktWgdanFBdObhwigUudFYUJ1Pa1JAKUIsTZkWRhtwvKR7MXzU22z3dH5-dUV1egmGa71fPyfm9dPULsl7VlX9JaJR5n-fWJBbyU-H9UEKmFweeeB1ZwDUDsoe9qeYrzg6FLNrtg3pxqbpBqULgdiiMi2WuRS6M1tpFJuPWi8TLIAZkq7eF6ob2Uv1xxAH5dGefuw9BUoXmVWBeFWcKzavQvK_-39Y7sjmaTY7V8Xh69Jo8xDfaMwrRFllvFtf-DUCfxrzt_IuSb_ft0r8BSSsYNQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VVIJeeCMCBfYAHJC2sTcbPw4ItQlRQ0kKNBW9LftsEakdEkdV-Wn8Ff4MM36Ux4FbD5wsW_LaXn87883u7DeEPO2Ck1PgyJnXPmbA_y1ToTEsdmEcO_DnrtTpHk-i3UPx5qh3tEa-N3thMK2ysYmloba5wTnyDoQGwGyACvKOr9Mi3g2Gr-ZfGVaQwpXWppxGBZE9d34G4dvy5WgA__oZ58PX0_4uqysMMMvTsGA6ta6ntLCip9PAGhtE3nCTphZojnepMUYYbiORcm-iHrx3mugEMKt9lPie6EK7V8h6giJoLbK-Mxy__9j4gUiEZekoVIxDpb-wWiQFxiQ66rRgYcRQzoth_fK6YMAfLPfaKpur8zM1m_3m8IY3yI-mq6o8ly9bq0JvmW9_qUj-n315k1yveTjdrgbOLbLmstukPYYQIl-UKw30Oe3PPgOfL8_ukNkIt0biLCgFzkzLMtaAb2pRebguGkZzT_v7VGUWDpzi1h067ff3J7TIIcihBl1BRlFg3S0pbjmoGptufxiMDg6omh1D1xQnp3fJ4aV8_D3SyvLM3Sc0iJyLY6O7BiJv4VySQgwbet51KjDA2NpkB7Ei55UaiUR98PJCvjiWtbmR3nOTCG3DNFYiFlopZQMdceNE16VetMlmgwxZG62l_AWLNnlxgb6LB0G4iOCVAF4ZRhLBKxG8D_7d1hNyFcAl344mew_JBt5QJl8Em6RVLFbuEXC6Qj-uBw8lny4bYz8BMkVfjA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVge4ALlC-x0CIfEAckl8RxnPi4pK1apG4R3ZXKyfJnqUiTajcrBL-emSRUBXGAk5MocqI8T-bN2H5DyOsMnJwBR86ijQUD_u-ZSZ1jRUiLIoA_D71O98lcHi3Fh_P8fMx34F6YW_P3wC3EO3PVsVQyFL5iWOn7LtmSObDuCdlazj_OPmM8VYKtp1lfj7Q_LoGFDzOSf-1iVOf_jVLe2zTX5vs3U9e3vMvhw0HqaN2LEuKikq97m87uuR9_SDb-y4tvkwcjxaSzYUw8IndC85hMT4Adt6s-iU7f0Kq-BKranz0h9THu-sMEHwU6SPsKzQAd9SiqO9bDom2k1Sk1jYeGU9yVQhdVdTqnXQv8nTr8yzUUtcPDmuJq-qGzxezT_vHZGTX1Rbu67L5cPSXLw4NFdcTGKgzMc5V2zCofcmOFF7lViXc-kdFxp5QHKhiDcs4Jx70Uikcnc8BWlbYEu7ZRljEX2TMyadomPCc0kSEUhbOZg6BShFAqCM_SyLNgEgdkZEreIzL6ehDa0Ch93V-AD6tHS9IxclcK61NVGFEIa4zxiZXcBZEFFcWU7PzCVY_2uNYQWAIvhkCCT8nbG6xvHgSREIKmATSdSo2gaQTtxf_c_JLcx6ZfWpDskEm32oRdYCydfTUO1p8OHeRZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inferring+the+vertical+distribution+of+CO+and+CO2+from+TCCON+total+column+values+using+the+TARDISS+algorithm&rft.jtitle=Atmospheric+measurement+techniques&rft.au=H.+A.+Parker&rft.au=J.+L.+Laughner&rft.au=G.+C.+Toon&rft.au=D.+Wunch&rft.date=2023-05-30&rft.pub=Copernicus+Publications&rft.issn=1867-1381&rft.eissn=1867-8548&rft.volume=16&rft.spage=2601&rft.epage=2625&rft_id=info:doi/10.5194%2Famt-16-2601-2023&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ff2c84bd197a474baaad0b62ce43e9f4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-1381&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-1381&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-1381&client=summon |