Comparison of Particle Swarm Optimization Algorithms in Hyperparameter Optimization Problem of Multi Layered Perceptron

This paper describes the application of particle swarm optimization (PSO) for the hyperparameter optimization problem of multi-layered perceptron (MLP) model. Several PSO algorithms are presented by many researchers; basic PSO, PSO with inertia weight (PSO-w), PSO with constriction factor (PSO-cf),...

Full description

Saved in:
Bibliographic Details
Published inComputer assisted methods in engineering and science Vol. 32; no. 1
Main Authors Kenta Shiomi, Tetsuya Sato, Eisuke Kita
Format Journal Article
LanguageEnglish
Published Institute of Fundamental Technological Research Polish Academy of Sciences 2025
Subjects
Online AccessGet full text
ISSN2299-3649
2956-5839
DOI10.24423/cames.2025.1730

Cover

Abstract This paper describes the application of particle swarm optimization (PSO) for the hyperparameter optimization problem of multi-layered perceptron (MLP) model. Several PSO algorithms are presented by many researchers; basic PSO, PSO with inertia weight (PSO-w), PSO with constriction factor (PSO-cf), local PSO-w, local PSO-cf, union of local and global PSOs (UPSO), PSO with second global best particle (SG-PSO), and PSO with second local best particle (SP-PSO). The wine dataset is taken as a numerical example and hyperparameters of MLP the model are determined by the above-mentioned PSO algorithms. The sets of hyperparameters determined by these PSO algorithms are compared with the results of the traditional algorithms for hyperparameter optimization such as random search, tree-structured Parzen estimator (TPE), and covariance matrix adaptation evolution strategy (CMA-ES). Numerical results indicate that PSO-cf is the best-performing and local PSO-w is the second best among the PSO algorithms. The sets of hyperparameters determined by the PSO algorithms were relatively similar. An important finding from the numerical results is that PSO algorithms could find better hyperparameters than random search, TPE, and CMA-ES. This demonstrates that PSO is suitable for the hyperparameter optimization problem in MLP models.
AbstractList This paper describes the application of particle swarm optimization (PSO) for the hyperparameter optimization problem of multi-layered perceptron (MLP) model. Several PSO algorithms are presented by many researchers; basic PSO, PSO with inertia weight (PSO-w), PSO with constriction factor (PSO-cf), local PSO-w, local PSO-cf, union of local and global PSOs (UPSO), PSO with second global best particle (SG-PSO), and PSO with second local best particle (SP-PSO). The wine dataset is taken as a numerical example and hyperparameters of MLP the model are determined by the above-mentioned PSO algorithms. The sets of hyperparameters determined by these PSO algorithms are compared with the results of the traditional algorithms for hyperparameter optimization such as random search, tree-structured Parzen estimator (TPE), and covariance matrix adaptation evolution strategy (CMA-ES). Numerical results indicate that PSO-cf is the best-performing and local PSO-w is the second best among the PSO algorithms. The sets of hyperparameters determined by the PSO algorithms were relatively similar. An important finding from the numerical results is that PSO algorithms could find better hyperparameters than random search, TPE, and CMA-ES. This demonstrates that PSO is suitable for the hyperparameter optimization problem in MLP models.
Author Tetsuya Sato
Eisuke Kita
Kenta Shiomi
Author_xml – sequence: 1
  fullname: Kenta Shiomi
  organization: Graduate School of Informatics, Nagoya University, Nagoya
– sequence: 2
  fullname: Tetsuya Sato
  organization: Graduate School of Informatics, Nagoya University, Nagoya
– sequence: 3
  fullname: Eisuke Kita
  organization: Graduate School of Informatics, Nagoya University, Nagoya
BookMark eNpVT11LwzAUDTLBOffuY_5AZ5rP5nEMdYPJBupzSZObmdE2Ja2M-eutuhefzuGej8u5RZM2toDQfU4WlHPKHqxpoF9QQsUiV4xcoSnVQmaiYHoycqp1xiTXN2je90dCSK44pYpM0WkVm86k0McWR4_3Jg3B1oBfTyY1eNcNoQlfZgijvKwPMYXho-lxaPH63EEak-PjAdJ_5z7Fqobmp_Dlsx4C3pozJHB4D8lCN6TY3qFrb-oe5hecofenx7fVOtvunjer5TZzudJDxqvKMF2B5x6s804JIwmhhWC5J1p55YnMrQCAQlIOlAtpPGGCGOBauorN0Oav10VzLLsUGpPOZTSh_D3EdCgvk0tXaKc9o1WRS15Jq4vCciu0kmArZQv2DXu9cZE
ContentType Journal Article
DBID DOA
DOI 10.24423/cames.2025.1730
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2956-5839
ExternalDocumentID oai_doaj_org_article_d89d9f32b8164b6c988c4c5976ecb7c8
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
Y2W
ID FETCH-LOGICAL-d179t-4bba39bef4fecdfd75a60028531f097f7f061c5eee8624e2456af0350ae496db3
IEDL.DBID DOA
ISSN 2299-3649
IngestDate Fri Oct 03 12:50:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d179t-4bba39bef4fecdfd75a60028531f097f7f061c5eee8624e2456af0350ae496db3
OpenAccessLink https://doaj.org/article/d89d9f32b8164b6c988c4c5976ecb7c8
ParticipantIDs doaj_primary_oai_doaj_org_article_d89d9f32b8164b6c988c4c5976ecb7c8
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle Computer assisted methods in engineering and science
PublicationYear 2025
Publisher Institute of Fundamental Technological Research Polish Academy of Sciences
Publisher_xml – name: Institute of Fundamental Technological Research Polish Academy of Sciences
SSID ssj0001742270
Score 2.281127
Snippet This paper describes the application of particle swarm optimization (PSO) for the hyperparameter optimization problem of multi-layered perceptron (MLP) model....
SourceID doaj
SourceType Open Website
SubjectTerms hyperparameter optimization
multi layered perceptron (MLP)
particle swarm optimization (PSO)
wine dataset
Title Comparison of Particle Swarm Optimization Algorithms in Hyperparameter Optimization Problem of Multi Layered Perceptron
URI https://doaj.org/article/d89d9f32b8164b6c988c4c5976ecb7c8
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2956-5839
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001742270
  issn: 2299-3649
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ77JwevafWTzONZiKeKjoIXeljxVsLuyVor_3kmyaD158bos2TCT2ZnJzHwfQueFYlpCmJwIw0xCMpkmklORpIoorUpHqfADzrd3dDwl17NytkL15XvCIjxwFFzfcGGEK3LFIbBXVAvONdEQBlOr4TthzDflYiWZCrcrkPHlgSkuh_9tUlAiYo0SvFle9LXvQIXkMC8vMhYaoH_w-oNjGW2hzS4ixIO4k220ZusdtLGCE7iLlsNvtkDcODzpdo0flrKd43uw-nk3TokHr08N5PvP83f8UuMxZJmtR_ee-66X329OIpWMXzBM4eIb-emJO_Ek9rq0Tb2HpqOrx-E46RgTEgOGtUiIUrIQyjrirDbOsFL6uhu45MylgjnmwH3r0lrr50KsL3pK52uL0hJBjSr2Ua9uanuAsGPc5NQpahklJVPCObB-lnlAMQ7iP0SXXmbVWwTFqDxMdXgAyqs6MVR_Ke_oPxY5Rutek_Fe5AT1Fu2HPYVIYaHOwqH4AioevhU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Particle+Swarm+Optimization+Algorithms+in+Hyperparameter+Optimization+Problem+of+Multi+Layered+Perceptron&rft.jtitle=Computer+assisted+methods+in+engineering+and+science&rft.au=Kenta+Shiomi&rft.au=Tetsuya+Sato&rft.au=Eisuke+Kita&rft.date=2025&rft.pub=Institute+of+Fundamental+Technological+Research+Polish+Academy+of+Sciences&rft.issn=2299-3649&rft.eissn=2956-5839&rft.volume=32&rft.issue=1&rft_id=info:doi/10.24423%2Fcames.2025.1730&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d89d9f32b8164b6c988c4c5976ecb7c8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2299-3649&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2299-3649&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2299-3649&client=summon