Identify Relative importance of covariates in Bayesian lasso quantile regression via new algorithm in statistical program R

In this paper, we propose a new algorithm to determine the relative importance of covariates by Bayesian Lasso quantile regression for variable selection assigning new formula of Laplace distributions for the regression parameters. Simple and efficient Markov chain Monte Carlo (M.C.M.C) algorithm wa...

Full description

Saved in:
Bibliographic Details
Published inRevista română de statistică Vol. 65; no. 4; pp. 99 - 110
Main Authors Fadel Hamid Hadi Alhusseini, Taha al Shaybawee, Fedaa Abd Almajid Sabbar Alaraje
Format Journal Article
LanguageEnglish
Published Romanian National Institute of Statistics 01.11.2017
Subjects
Online AccessGet full text
ISSN1018-046X
1844-7694

Cover

Abstract In this paper, we propose a new algorithm to determine the relative importance of covariates by Bayesian Lasso quantile regression for variable selection assigning new formula of Laplace distributions for the regression parameters. Simple and efficient Markov chain Monte Carlo (M.C.M.C) algorithm was introduced for Bayesian sampler. Simulation approaches and two real data set are used to assess the performance of the proposed method. Both simulated and real data sets show that the performs of the proposed method is quite good for Identify Relative importance of covariates.
AbstractList In this paper, we propose a new algorithm to determine the relative importance of covariates by Bayesian Lasso quantile regression for variable selection assigning new formula of Laplace distributions for the regression parameters. Simple and efficient Markov chain Monte Carlo (M.C.M.C) algorithm was introduced for Bayesian sampler. Simulation approaches and two real data set are used to assess the performance of the proposed method. Both simulated and real data sets show that the performs of the proposed method is quite good for Identify Relative importance of covariates.
Author Taha al Shaybawee
Fedaa Abd Almajid Sabbar Alaraje
Fadel Hamid Hadi Alhusseini
Author_xml – sequence: 1
  fullname: Fadel Hamid Hadi Alhusseini
  organization: Department of Statistics and Informatics, University of Craiova, Romania
– sequence: 2
  fullname: Taha al Shaybawee
  organization: Faculty of Economics and Business Administration, Al-Qadiseya University, Iraq
– sequence: 3
  fullname: Fedaa Abd Almajid Sabbar Alaraje
  organization: Department of accounting, University of Craiova, Romania
BookMark eNotjttKxDAYhIus4LruO-QFCkmbpOmlLh4WBGFR8K78Tf7ULG2yJnFl8eWth7mZYWA-5rJY-ODxrFgyxXnZyJYv5kyZKimXrxfFOqU9nVUz3nC2LL62Bn129kR2OEJ2RyRuOoSYwWskwRIdjhAdZEzEeXIDJ0wOPBkhpUDeP2Aej0giDhFTcsGTowPi8ZPAOITo8tv0s0t5ZqfsNIzkEMMQYSK7q-Lcwphw_e-r4uXu9nnzUD4-3W8314-lYYLlErSVLYNKq4oz0C3WWCFSsEbbOfcNa0FVQorGMsbqRoAVslHK9IYLakS9KrZ_XBNg3x2imyCeugCu-y1CHDqI87cRO6EqanraV1IiV1QrppQ2UFNVIVDZ1N8Yr2yb
ContentType Journal Article
DBID DOA
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1844-7694
EndPage 110
ExternalDocumentID oai_doaj_org_article_5820db0b266e480c8188cda3082ea067
GroupedDBID ADBBV
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
EBE
EBO
EBR
EBU
EN8
EPL
GROUPED_DOAJ
IPNFZ
KQ8
RIG
RNS
ID FETCH-LOGICAL-d151t-acf691a2c8241ac9e3e2ee0afdcfe3eb719a825657f111375af56788dbd450d53
IEDL.DBID DOA
ISSN 1018-046X
IngestDate Tue Oct 14 19:06:12 EDT 2025
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d151t-acf691a2c8241ac9e3e2ee0afdcfe3eb719a825657f111375af56788dbd450d53
OpenAccessLink https://doaj.org/article/5820db0b266e480c8188cda3082ea067
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_5820db0b266e480c8188cda3082ea067
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Revista română de statistică
PublicationYear 2017
Publisher Romanian National Institute of Statistics
Publisher_xml – name: Romanian National Institute of Statistics
SSID ssj0000314741
ssib020755286
Score 2.0089753
Snippet In this paper, we propose a new algorithm to determine the relative importance of covariates by Bayesian Lasso quantile regression for variable selection...
SourceID doaj
SourceType Open Website
StartPage 99
SubjectTerms Bayesian lasso quantile regression
MCMC algorithm
posterior distributions
Prior distributions
Relative importance
Title Identify Relative importance of covariates in Bayesian lasso quantile regression via new algorithm in statistical program R
URI https://doaj.org/article/5820db0b266e480c8188cda3082ea067
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1844-7694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000314741
  issn: 1018-046X
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1844-7694
  dateEnd: 20201231
  omitProxy: true
  ssIdentifier: ssj0000314741
  issn: 1018-046X
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1844-7694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000314741
  issn: 1018-046X
  databaseCode: AMVHM
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kp17ET_xmD16D6SbbJEcrliLoQSz0Fia7szVgE61pofjnnclGqCcvnhICyYaZzbw3YeaNENecJUOqTZC4JAliUFlQhEP_EwcUq5Mo7kZ-fBpOpvHDTM-2Rn1xTZiXB_aGu9EEUbYICwISjNPQEMCkxgKrrCBQqOXoG6bZVjJFO0kREGrVCaO1MTkaxEk7xpIVqriecfZLpL9Fk_Ge2O1ooLz1y--LHawORJ-ZnxdOPhRfvoXWbaSvV1ujLBctWSY3ydpJU68pz2WqKMtKjmCD3A8pmQ3X8mNFFqMPXi5x7itdK7kuQRKJlvA2r5dl87rg-z5_lqS36Wq15PORmI7vX-4mQTcpIbCE2E0Axg2zASiTEiCDyTBChRiCs8bReZEMMqBUcKgTx6PlEw1OE0qltrCxDq2OjkWvqis8ERILgwBoMbYRi7HxMGJrDDqFlo76VIzYbPm7F8PIWZ66vUBOyzun5X857ew_HnIu-ooxtm0MvBC9ZrnCS2IITXHVboZvFwq8Tg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identify+Relative+importance+of+covariates+in+Bayesian+lasso+quantile+regression+via+new+algorithm+in+statistical+program+R&rft.jtitle=Revista+rom%C3%A2n%C4%83+de+statistic%C4%83&rft.au=Fadel+Hamid+Hadi+Alhusseini&rft.au=Taha+al+Shaybawee&rft.au=Fedaa+Abd+Almajid+Sabbar+Alaraje&rft.date=2017-11-01&rft.pub=Romanian+National+Institute+of+Statistics&rft.issn=1018-046X&rft.eissn=1844-7694&rft.volume=65&rft.issue=4&rft.spage=99&rft.epage=110&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5820db0b266e480c8188cda3082ea067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1018-046X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1018-046X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1018-046X&client=summon